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1 Affine Transformation Fusion Schematic

For Affine Transformation Fusion, as shown in Fig. 1, we projected language-
conditioned channel-wise scaling parameters α and shifting parameters β from
text vector C from two MLPs (Multilayer Perceptron).

α = MLP1(C), β = MLP2(C). (1)

For any given input feature X from the backbone, we first conduct the channel-
wise scaling operation with the scaling parameter α, then apply the channel-wise
shifting operation with the shifting parameter β,

ATF (X,C) = αX + β = MLP1(C) ·X +MLP2(C). (2)
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Fig. 1: Affine Transformation Fusion schematic diagram
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2 Mahalanobis Metric and Euclidean Metric
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Fig. 2: Our method corrects the projection bias problem of the model through Maha-
lanobis distance: Mahalanobis distance-based inference correctly assigns the unknown
sample from unseen classes to its true class Cat.

Fig. 2 shows our motivation for using Mahalanobis distance instead of Eu-
clidean distance in reasoning through a specific example of two similar classes,
Lion and Cat. First, we project unknown samples and semantic vectors into the
same common space through a deep network model. According to the Euclidean
distance, it can be seen that the unknown sample is closer to the seen class Lion,
and then the unknown sample from the unseen class Cat will be mistakenly clas-
sified into the Lion class. However, according to the Mahalanobis distance, the
unknown sample is closer to the class Cat. Note that the Mahalanobis distance
from the dotted points of the ellipse to the center of the ellipse is equal. Still,
the category Lion is outside the dotted points of the ellipse, so the Mahalanobis
distance between the category Lion and the ellipse’s center is farther. Therefore,
our method can alleviate the biased problem of projection learning in inference
to some extent if our deep model learns a less accurate projection representation.

3 Comparison with pre-2019 methods

Tab. 2 gives the performance comparison between our method and the method
before 2019 as a supplement to the experimental results of the main text. It can
be seen that the methods in 2019 mainly focus on the performance of seen classes
(S columns), while the generalization on unseen (U columns) has been greatly
improved. For example, on CUB, our method has greatly improved on invisible
classes, reaching 62.1, compared with 31.73 of the f-CLSWGAN method.

4 Ablation Study

Impact of λVAE, λMSE and λM Tab. 1 gives a more detailed data comparison
of Figure 3. Each parameter takes {0.1, 0.5, 0.8}, while keeping the other two
parameter values as 1, so that the impact of each parameter on the model can
be quantitatively analyzed.
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Table 1: Quantitative results of the impact of parameters λVAE, λMSE, and λM on the
model

(λVAE, λMSE, λM)
CUB AWA2

U S H U S H
(0.1, 1.0, 1.0) 16.1 24.3 19.4 13.6 27.7 18.2
(0.5, 1.0, 1.0) 24.2 27.6 25.8 17.6 31.7 22.6
(0.8, 1.0, 1.0) 54.3 76.4 63.5 59.3 67.3 63.0
(1.0, 0.1, 1.0) 49.3 51.7 50.5 47.5 57.1 51.9
(1.0, 0.5, 1.0) 48.4 52.6 50.4 42.3 49.9 45.8
(1.0, 0.8, 1.0) 58.7 57.2 64.5 57.7 67.6 62.3
(1.0, 1.0, 0.1) 15.7 38.3 22.3 21.4 39.9 27.9
(1.0, 1.0, 0.5) 22.3 32.1 26.3 27.1 34.4 30.3
(1.0, 1.0, 0.8) 61.4 69.8 65.3 63.1 71.6 67.1
(1.0, 1.0, 1.0) 62.1 74.6 67.8 64.9 79.1 71.3

Fig. 3: Performance of various λVAE, λMSE and λM ratios on CUB dataset (above row)
and AWA2 dataset (below row).

Table 2: Comparison of our method with pre-2019 state-of-the-art methods on four
datasets

Model CUB AWA1 AWA2 SUN
U S H U S H U S H U S H

ALE [2015] 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 21.8 33.1 26.3
DEM [2017] 19.6 57.9 29.2 32.8 84.7 47.3 30.5 81.4 45.1 19.6 57.9 29.2
f-CLSWGAN [2018] 31.73 64.34 42.50 61.41 59.63 60.51 29.85 76.60 42.96 42.6 36.6 39.4
Our model + ResNet50 57.1 81.6 67.2 62.9 83.1 71.6 62.2 82.3 70.9 39.6 52.7 45.9
Our model + ViT-B 62.1 74.6 67.8 67.2 76.3 71.5 64.9 79.1 71.3 45.7 49.8 47.7

Impact on Dimensions of Feature Vectors Regarding feature vector di-
mensions of image and semantic information, we take the hidden layer of each
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pre-trained model as the default output vector. At the same time, we also set
the dimensions of the visual features to 500 and 1000 on the data sets CUB and
AWA2 to explore the impact of the model parameters on the model performance,
as shown in Fig. 4.

Fig. 4: Impact of changes in the visual dimensions relative to the semantic dimensions
of the dataset on model performance.

It can be observed from Fig. 4 that the performance of the zero-shot ex-
periments on the CUB and AWA2 datasets is less affected when the semantic
dimension k is fixed and the visualization dimension d increases or decreases
relative to the baseline value of 900. On both datasets, increasing or decreas-
ing the dimensionality of the visual features resulted in a slight improvement or
decrease, but overall, the impact on model performance is not very large.

With one parameter fixed, we also experimented with several sets of pa-
rameters to observe how the performance of the algorithm changes with the
parameters, as shown in Tab. 3, where the lengths of the latent semantic vector
and visual vector are set to Ds and Dv, respectively. It can be seen that these
two parameters have a very slight impact on the model performance.

Table 3: Performance comparison of the number of synthesized features on visual
features

Model CUB AWA2
U S H U S H

Dv = 1000, Ds = 500 61.7 75.6 67.9 66.1 76.1 70.7
Dv = 500, Ds = 500 60.8 72.9 66.3 61.9 76.8 68.5
Dv = 900, Ds = 500 62.1 74.6 67.8 64.9 79.1 71.3
Dv = 900, Ds = 1000 62.6 72.4 67.1 63.8 78.7 70.5
Dv = 900, Ds = 700 61.7 74.9 67.7 65.2 77.5 70.8
Dv = 900, Ds = 500 62.1 74.6 67.8 64.9 79.1 71.3
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5 T-SNE Visualization Results Comparison

In this section, as shown in Fig. 5 and Fig. 6 below, we did four sets of T-
SNE visualizations. The former group is a T-SNE visualization of the entire
dataset features after extracting the data features using ResNet50 and ViT-B on
the CUB dataset, respectively. The latter two groups are T-SNE visualization
after visual feature extraction of our dataset with VAEGAN and our model,
respectively.

To reduce the dimensionality of our extracted features to 3 dimensions, we
have set the dimension of the embedding space(n_components) to 3. Addition-
ally, we have set the random_state to 42, the initialization method of the em-
bedding space to PCA embedding, the perplexity to 50, and the number of
iterations(n_iter) of the optimization process to 2000.

(a) (b)

Fig. 5: T-SNE visualization on CUB dataset. Fig(a). The visual feature extracted by
ResNet50 backbone. Fig(b). The visual feature extracted by ViT-B backbone.

From the first set of results, ViT-B is effective in visual feature extraction
thanks to ResNet50. After the former extracts the original visual features, the
spatial distribution of visible and invisible classes is clearer, which lays the foun-
dation for effective feature classification based on Mahalanobis distance in the
next step. At the same time, it can be seen that ViT-B reduces the relative
geometric relationship of entanglement between different classes, improves the
performance and portability of the model, and plays a positive role in mapping
from seen classes to unseen classes.

The second set of data is visualized by T-SNE to further explain why our
method is significantly improved over the previous one. Our method significantly
improves the visual features of both seen and unseen classes, making the figure
more capable of enhancing visual features and reducing classification complexity,
thus increasing the recognition and transferability of the model.
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(c) (d)

Fig. 6: T-SNE visualization on CUB dataset. Fig(c). The visual feature extracted by
VAEGAN. Fig(d). The visual feature extracted by our model.


	Supplementary Material on Bridging the Projection Gap: Overcoming Projection Bias Through Parameterized Distance Learning

