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1 More Implementation Details

During the training phase, the PPO algorithm [5] is employed as follows: the
network Φ, which includes GRUs and multi-layer perceptrons (MLPs), acts as
the policy network. The sub-network V functions as a value network, sharing the
GRUs in Φ but utilizing new MLPs. For stage II, we configure a distinct training
setup, using the Adam optimizer [1] with a learning rate of 0.0003.

When using ConvNeXt-T [2] as the backbone, both the input dimension and
the hidden state dimension of the FIPL and VQPL branches are set to 768.

In the main experiments, we randomly select four compression factors for the
test images: 100, 78, 23, and 9. A higher factor indicates better image quality,
with 100 representing an uncompressed image.

In the robustness analysis, the severity levels for each perturbation are as fol-
lows: For Saturation, we first convert the RGB image x to a YCbCr image x∗ and
adjust the saturation using this equation: x∗ = 128+(x∗−128)·α, where α is the
factor selected from {0.4, 0.3, 0.2, 0.1, 0.0}. Then the YCbCr image is converted
back to RGB space. For Contrast, we directly multiply the image x with a factor
α from {0.85, 0.725, 0.6, 0.475, 0.35}. For Blockwise, the block size is 8×8 and the
number of blocks α is selected from {16, 32, 48, 64, 80}. For Noise, we scale the
magnitude of Gaussian noise with a factor α from {0.001, 0.002, 0.005, 0.01, 0.05}.

2 More Experimental Details and Analysis

More Details of Cross-quality Cross-manipulation Evaluation. Tab. 1
shows the detail of Tab. 3 in the main body under specific compression factors.
We can observe that our method performs competitively and often surpasses
others, especially at lower quality levels. For instance, it improves performance
by approximately 2% on 9(c40) and 1% on 9(c23) when trained on FS dataset.
Effect of Each Component. This part further studies the effect of each
component on other datasets: CDFv2, FFIW10k, FSH(c40), and FSH(c23), re-
spectively. The results are shown in Tab. 2. The effect of these components
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Table 1: Cross manipulation evaluation results (AUC).

100%(c40) 78%(c40) 23%(c40) 9%(c40) 100%(c23) 78%(c23) 23%(c23) 9%(c23)

NT
QAD 0.6417 0.6433 0.6457 0.6270 0.7245 0.7051 0.6766 0.6539
UCF 0.6164 0.6175 0.6170 0.6040 0.6676 0.6565 0.6389 0.6288
DPL 0.6492 0.6479 0.6413 0.6169 0.7212 0.7012 0.6751 0.6472

F2F
QAD 0.6841 0.6841 0.6802 0.6699 0.6932 0.6931 0.6928 0.6884
UCF 0.6766 0.6772 0.6721 0.6644 0.6859 0.6858 0.6791 0.6751
DPL 0.6972 0.6942 0.6842 0.6649 0.7343 0.7257 0.7078 0.6848

FS
QAD 0.6490 0.6505 0.6620 0.6692 0.6715 0.6740 0.6872 0.6958
UCF 0.6649 0.6640 0.6702 0.6657 0.6778 0.6785 0.6838 0.6821
DPL 0.6671 0.6718 0.6842 0.6856 0.7120 0.7105 0.7166 0.7099

DF
QAD 0.7120 0.7108 0.7075 0.7048 0.6988 0.6973 0.7017 0.7039
UCF 0.6952 0.6955 0.6977 0.6890 0.6652 0.6667 0.6717 0.6724
DPL 0.7102 0.7071 0.7081 0.7011 0.6995 0.6983 0.7007 0.6963

varies across different datasets. For instance, omitting FIPL results in the best
performance on FSH(c40), while excluding LREG yields the best results on
FFIW10k. However, incorporating all components tends to perform well across
most datasets.

Table 2: Performance (AUC) of different components on the proposed DPL.

Variant FSH(c40) FSH(c23) CDFv2 FFIW10k

Random JPEG Compression on test set

baseline 67.51 74.20 73.37 69.32
w/o VQPL 65.28 70.03 71.67 66.83
w/o FIPL 70.19 74.67 69.87 67.36
w/o Train Stage II 68.43 75.04 71.08 68.84
w/o LREG 68.70 73.82 73.21 69.00
DPL (ours) 68.11 74.91 71.00 68.77

Effect of Different Backbones. This part studies the effect of different back-
bones across various datasets. As shown in Tab. 3, our method generally improves
performance in most cases, highlighting its generalizability even across different
datasets.
Integrating CLIP for Detection. This part further explores the effect of
integrating CLIP for detection across different datasets. The results in Tab. 4
represent a similar trend as in Tab. 7 in the main body, where inconspicuous
improvement has been achieved by integrating CLIP on other datasets.
Integrating Frequency Clues. The previous efforts [3, 4] have demonstrated
that frequency information can enhance forgery detection. Building on this in-
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Table 3: Effect of Different Backbones.

Backbone FSH(c40) FSH(c23) CDFv2 FFIW10k Avg

ConvNeXt-B 68.03 74.14 70.83 68.27 70.31
ConvNeXt-B + DPL 69.19 73.88 70.34 69.01 70.65

ConvNeXt-S 67.94 75.34 71.97 68.13 70.84
ConvNeXt-S + DPL 68.44 72.83 72.83 68.46 70.64

Swin-T 67.12 70.90 69.43 67.99 68.86
Swin-T + DPL 67.44 68.99 73.20 66.16 68.95

Res-50 64.28 71.55 70.30 68.51 68.66
Res-50 + DPL 64.82 70.21 71.11 68.82 68.74

Table 4: Performance (AUC) of integrating CLIP image encoder for detection.

Variant FSH(c40) FSH(c23) CDFv2 FFIW10k Avg

Random JPEG Compression on test set

concat(CLIP, Ψ) 69.00 74.07 71.07 70.00 71.03
add(CLIP, Ψ) 67.65 74.04 72.12 68.48 70.57
add(CLIP, P1,P2) 68.04 73.24 74.86 69.34 71.37

sight, we explore the impact of adding frequency-related modules to our method.
Specifically, we use the FAD [4] module to extract frequency information for
forgery detection. However, as indicated in Tab. 5, incorporating frequency in-
formation does not lead to a significant improvement.

Table 5: Performance (AUC) of FAD component.

Setting FF++(c40) FF++(c23) FSH(c40) FSH(c23) CDFv2 FFIW10k Avg

Random JPEG Compression on test set

w/ FAD 85.17 93.84 65.61 71.54 72.95 68.36 76.24
w/o FAD [4] (Ours) 86.36 94.41 68.11 74.91 71.00 68.77 77.26

More Analysis on FII. To achieve this assessment, we attempts several paired
text prompts, and inspect if the indication score matches the degree of manipu-
lation. The paired text prompt are as follows:

(1) “realistic face”, “synthetic face”
(2) “real face”, “fake face”
(3) “real face”, “manipulated face”
(4) “genuine face”, “manipulated face”
The comparison results are shown in Tab. 6, it can be seen that the final

prompt aligns more closely with actual situation. For more realistic fake images,
such as those in the NeuralTextures (NT) dataset, the prediction accuracy is rela-
tively low. As shown in Fig. 1, the forgery identifiability levels of the two types of
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Table 6: Performance (ACC) of different prompt of FII.

Setting DF NT FS F2F

(1) 29.54 25.48 26.21 25.60
(2) 98.44 97.67 97.61 97.24
(3) 88.82 81.81 87.85 82.70

(4) 29.41 11.43 20.14 12.17

forged images, Deepfakes and FaceSwap, are relatively similar. The identifiability
levels of Face2Face and NeuralTextures are closed to each other, with Deepfake
and FaceSwap being less authentic than Face2Face and NeuralTextures. That is
why prompt (1), (2) and (3) are not selected.

Deepfakes Face2Face FaceSwap NeuralTextures

Fig. 1: Examples of Different Forgery type
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