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1 Architecture Details

1.1 Network Architecture

Table 1: Implementation parameters of RD-Diff. The values of J are 17 and 15 for
Human3.6M and HumanEva-I, respectively. The values of l1 are 8 and 4 for Human3.6M
and HumanEva-I, respectively. The values of O are 25 and 15 for Human3.6M and
HumanEva-I, respectively. Besides, l2 = 4, N = 20, K = 50, C = 3, D = 256.

Component Block Layer Input Size Output Size

Mψ

Sψ

Embedding Layer N × J × C N ×D
l2× RLTransformer N ×D N ×D
Gumbel-Softmax N ×D D

MLP1 D D
MLP2 D D

Modulation
Reparameterization D D

Repeat D N ×D
Eq. (5) in main paper N ×D N ×D

Dθ

DCT - (O + F ) × J × C, N ×D N × J × C, N ×D

ϵθ

Embedding Layer N × J × C, N ×D N ×D, N ×D
l1× RLTransformer

N ×D, N ×D N ×Dwith FiLM
Projection N ×D (O + F ) × J × C

iDCT - (O + F ) × J × C (O + F ) × J × C

As depicted by Fig. 1 in main paper and Tab. 1, our RD-Diff model operates
on an input x ∈ RO×J×C . Here, O represents the number of observed poses, J
is the number of joints in a pose, and C is the dimension size of each joint. To
enhance the quality of generated pose sequences, we replicate the last pose of
x for F times, appending them to x ∈ R(O+F )×J×C [2]. The values of F are
set to 100 and 60 for the Human3.6M and HumanEva-I datasets, respectively.
Following [2], a Discrete Cosine Transform (DCT) operator is applied to induce
temporal smoothness by transforming the temporal information along the O+F
dimension into frequency space. We retain only low-frequency coefficients and
discard high-frequency ones, resulting in data of size [N ×J ×C], where N = 20
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(a) Softmax Transformer (b) Linear Transformer (c) RLTransformer

Fig. 1: Attention architectures of linear transformer, softmax transformer and RL-
Transformer.

represents the number of remaining coefficients. Continuing with the DIM Mψ,
composed of observation encoder Sψ and modulation operations, we learn a
noise-modulated condition ẑk(t). In Sψ, the Embedding Layer initially maps
hidden features into D, followed by l2 layers of RLTransformer extracting a
latent subspace V with dimensions N×D. Subsequently, a random weight vector
w ∈ RN is sampled using the Gumbel-Softmax technique. Multiplying w by V
yields a point in V of shape [D]. Two parallel MLP layers, MLP1 and MLP2,
then project the sampled point into mean b and variance A for a Gaussian
distribution, respectively. In modulation operations, a latent noise variable z
is drawn from Gaussian distributions using the reparameterization trick and
repeated along the frequency dimension N times. The noise-modulated condition
ẑk(t) is obtained by modulating x with decreasing noise z through Eq. (5) in the
main paper. In the RLTransformer-based diffusion model, ẑk(t) and observation
x are fed into the pretrained ϵθ to produce future motions in the frequency space
of shape [(O + F )× J ×C], where FiLM [3] serves as the conditioning method.
Subsequently, frequency features are projected back into the pose space using the
iDCT function, resulting in pose sequences of shape [(O+F )×J×C]. Finally, a
slice operator extracts only the future F frames, yielding shape [F×J×C] results,
representing the future pose sequence predicted by our network. In addition, the
reweighting technique in “FreeU” boosts performance. For example, it enhances
APD by 2.8% and ADE by 1.2% for Human3.6M dataset.

1.2 Transformer Architecture Comparison

For comparison, the detailed attention architectures in linear transformer, soft-
max transformer, and RLTransformer are shown in Fig. 1, which correspond to
attention weights heatmaps in main paper Fig. 4. In softmax transformer [4],
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the similarity is computed as Sim (Q,K) = exp(QKT /
√
d), where weights are

normalized based on exponential terms for each input sequence, results in high
computation complexity. In contrast, linear attention employs similarity mea-
surement as Sim (Q,K) = ϕ(Q)ϕ(K)T , whose attention distribution tends to
be excessively smooth, causing its output to approach the average of all fea-
tures and lacking emphasis on more informative regions. This is attributed to
the inadequacy of simple approximations, such as utilizing ReLU activation [1],
which results in a notable decline in performance. Designed on top of a lin-
ear transformer, our RLTransformer manages to decouple the softmax operation
with proper approximation. It’s worth noting that we do not initialise the fre-
quency re-weighting vector (F ∈ RN ) directly, but via F = norm(q̂× V ), which
makes our model fit different numbers of frequency tokens. Compared to the
softmax transformer, superior performance is achieved while maintaining com-
parable computational costs (FLOPs and number of parameters, see main paper
Sec. 4.3). In addition, RLTransformer (L), where regulation function Γ is applied
to both Q and K, has 0.094 GFLOPs and 0.105m parameters.

2 Additional Ablation Studies

Unless otherwise stated, all ablation studies are conducted on RD-Diff (B) and
Human3.6M dataset.

2.1 Embedding Dimension

Fig. 2: Ablation on different embedding dimensions.

Apart from the computational cost mentioned in the main paper Sec. 4.3,
which adopts 128 as the embedding dimension D, we conduct more experi-
ments using different embedding dimensions on one transformer layer. As shown
in Fig. 2 (a) and (b), plots of the Softmax transformer and our RLTransformer
are almost overlapped, showing our RLTransformer can achieve better perfor-
mance than the softmax transformer at comparable computational cost. As
shown in Fig. 2 (c), the best APD and FDE are obtained when D = 512, and
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the best ADE is obtained when D = 256. When D = 256, APD and FDE are
also comparable with those when D = 512, we finally choose 256 as the default
value of D, the most cost-effective choice.

2.2 One-stage v.s. Two-stage Training

Table 2: One-stage v.s. Two-stage Training.

Pipeline APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓
One-stage 15.178 0.361 0.410 0.447 0.447
Two-stage 15.714 0.347 0.401 0.445 0.444

We experimented with a one-stage training pipeline, where we jointly train
RLTransformer-based diffusion model Dθ and Diversity-Inducing Modulator (DIM)
Mψ. Results on Human3.6M are shown in Tab. 2. Inferior performance on the
one-stage training pipeline shows that training the Dθ with a noisy condition di-
minishes the performance as the network learns to associate constructing latent
subspace with diffusion backbone learning, which entangles noisy conditions with
specific motion sequences. Furthermore, the decomposition of establishing a mo-
tion prior (i.e., Dθ) and diversity-induced sampling process (i.e., Mψ) enhances
control and flexibility.

2.3 RLTransformer

The regulated linear attention in RLTransformer is to balance the trade-offs
between focus and generalization. Applying reweighting functions ensures that
the model can effectively capture both local and global frequency features.

Table 3: Linear attention variations.

Method APD↑ ADE↓ FDE↓
Linear Transformer [52] 14.951 0.362 0.495

Enhanced Linear Attn [14] 15.328 0.356 0.473
FLatten Transformer [37] 15.379 0.354 0.441

RLTransformer 15.714 0.347 0.401

In Tab. 3, RLTransformer outperforms other linear attention variations, show-
ing the advantage over the context aggregation in main paper [14] via fixed-scale
convolutions and the fixed mapping function in main paper [37] via adjusting
element-wise power in capturing the dynamic nature of human motion.

We clarify that a balanced sharpness achieves the best model performance, as
shown in Fig. 3, where intermediate entropy, rather than higher entropy, yields
optimal results.
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Fig. 3: Entropy v.s. performance. The entropy of softmax transformer, RLTransformer
and linear transformer is 8.05, 8.25 and 8.33, respectively.

Fig. 4: Regulation Function Γ .
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We design regulation function Γ on top of linear transformer, forming RL-
Transformer. Detailed structure of Γ is shown in Fig. 4.

2.4 DCT Transform

Table 4: Ablation studies on DCT transform.

Method APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓
w/o DCT 17.833 0.417 0.432 0.458 0.456
w/ DCT 15.714 0.347 0.401 0.445 0.444

We conduct comparison studies to assess the impact of DCT versus not
using it, where “w/o DCT” denotes removing DCT from RD-Diff, and “w/ DCT”
denotes RD-Diff. As shown in Tab. 4, DCT can reduce prediction error by 5%
to 16%.

2.5 Diversity Loss Only v.s. DIM

We investigate the advantages of our DIM over the diversity loss directly in-
cluded in the main predictor (i.e., Baseline model in main paper Tab. 2). As
shown in Tab. 5, diversity loss causes a trade-off between diversity and accuracy,
whereas DIM boosts both diversity and accuracy.

3 More Visualisation

Additional examples generated from the Human3.6M and HumanEva-I datasets
are shown in Fig. 5 and Fig. 6 for visual evaluation. The “GT” row indicates the
ground truth motion sequence, and the following “Generated Samples” rows in-
dicate the generated motion sequence by our RD-Diff. The “Observation” frames
are identical for the “GT” and “Generated Samples” rows. Various “Prediction”
sequences show high fidelity and diversity of RD-Diff’s prediction.

4 Limitation and Future Work

Limitation. Our proposed method offers a diverse and accurate solution for
HMP as demonstrated in the range of evaluation metrics. However, current met-
rics, specifically APD in measuring the diversity, could not measure the reliability
of predicted poses. To check for failure cases / poses, we have to visualize the
predicted outputs and manually inspect them. A new metric tailored to assessing
the reasonability of predicted actions in diverse results is necessary to enhance
the evaluation process. Future Work. Our proposed pipeline demonstrates po-
tential applicability to different backbones. Investigating its generalization capa-
bility across various backbone models is a promising avenue for future research.
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Table 5: Diversity Loss Only v.s. DIM.

Method Human3.6M HumanEva-I
APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓

Baseline 6.325 0.371 0.484 0.513 0.549 6.300 0.217 0.229 0.346 0.349
Baseline + Diversity Loss 8.261 0.369 0.419 0.483 0.483 6.373 0.217 0.228 0.330 0.350
Baseline + DIM 15.657 0.351 0.408 0.449 0.457 6.515 0.203 0.222 0.323 0.326

Fig. 5: Generated samples from the Human3.6M dataset. GT denotes the ground truth
motion sequence.
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Fig. 6: Generated samples from the HumanEva-I dataset. GT denotes the ground truth
motion sequence.
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