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Abstract. Synthetic generation of post-surgical outcomes holds signif-
icant value in the clinical domain, particularly for Cleft lip and Palate
surgery. These synthetic images can be utilized for surgical planning,
serve as reference points to evaluate surgical success and assist in edu-
cating patients and caretakers about potential outcomes. Image inpaint-
ing is effective for selectively generating Cleft-affected regions, making
it a promising technique for this task. However, due to the lack of pub-
licly available Cleft-specific datasets, Cleft inpainting models are typ-
ically trained on healthy data and applied to Cleft conditions to gen-
erate post-surgical lip appearances. Existing Cleft inpainting methods
often struggle to capture the complexities of Cleft deformities, lead-
ing to implausible outcomes that fail to reflect the unique structural
characteristics of Cleft-affected regions. To address this, we propose a
Structural Guided Pluralistic Inpainting model, trained on healthy im-
ages, which allows for real-time, interactive adjustments to synthesize
Cleft-specific images. We demonstrate the model’s effectiveness by gen-
erating images that closely resemble Cleft conditions and benchmark-
ing it against existing GAN-Inpainting methods. Additionally, we pro-
vide a user-friendly interface designed as a tool for post-surgical visu-
alization of Cleft conditions. The source code is available at https:
//github.com/danielanojan/CleftLipGAN.git
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1 Introduction

Cleft lip and Palate is a prevalent congenital facial anomaly, affecting approxi-
mately 1 in 700 childbirths [42]. Cleft condition is primarily caused by genetic
and environmental factors, which contribute to varying degrees of craniofacial
malformations during fetal development. These malformations result in incom-
plete fusion of the upper lip and/or palate, leading to the formation of Cleft
conditions at birth. [25]. Cleft conditions can significantly impact speech, feed-
ing and dental health, and they also impose socioeconomic and psychological
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2 D.A. Atputharuban et al.

burdens on families and caregivers [4, 14, 46]. Treatment for Cleft repair typi-
cally involves a series of complex surgical procedures and rehabilitation, starting
with initial repair surgery performed at 6 to 12 months of age. The primary goal
of these surgeries are to restore essential facial functions and enhance both facial
appearance and symmetry [56]. Despite advancements in surgical techniques,
the inherent complexity of Cleft conditions and the variability of surgical out-
comes pose significant challenges in both surgical planning and surgical outcome
assessment [38]. Cleft surgical success is measured through functional outcomes
such as speech tests, and aesthetic evaluations using facial markers. However, it
is noteworthy that there are no universally accepted surgical planning protocols
for Cleft lip repair, and the aesthetic assessments remain subjective, leading to
inconsistencies and potential bias in clinical outcomes [13,48,49,51]. These chal-
lenges underscore the need for standardized methods for surgical planning and
surgical evaluation, where machine learning techniques could enhance precision
and consistency.

Synthetically generating variations of post-operative lip regions for patients with
Cleft conditions plays a pivotal role in surgical planning and evaluation. By
visualizing potential outcomes before surgery, surgeons can better tailor their
approach, improving preoperative planning accuracy. These synthetic images
serve as consistent and objective reference points for assessing surgical success.
Additionally, they serve as educational tools, helping surgeons explain outcomes
to parents and caregivers, enhancing their understanding of the surgical process.
Thus, synthetic generation of post-operative lip images holds substantial value
in improving both clinical outcomes and patient education.

Image inpainting models are particularly well-suited for addressing selective im-
age region synthesis, as they focus on reconstructing missing areas of an image
while preserving the surrounding context [53]. In particular, facial inpainting
models have shown great promise in generating realistic and semantically co-
herent facial regions, which are used in real world applications such as facial
restoration and digital forensics [10,47]. However, a major challenge arises from
the lack of publicly available datasets specific to Cleft condition, which hinders
the development of facial inpainting models tailored for Cleft condition [1]. To
overcome this limitation, Cleft inpainting models are typically trained on images
of healthy individuals and later applied to Cleft-affected regions to generate non-
Cleft facial areas or simulate ideal post-surgical outcomes resembling those of
children without Cleft conditions [1, 6].

However, it has been observed that models trained on healthy facial datasets
struggle to capture the complexity and variability of Cleft deformities, making
it difficult to produce realistic post-surgical results. These models often generate
overly smoothed upper lips, resembling average healthy lips [1], without captur-
ing the unique features of Cleft conditions. The underlying issue lies in the fact
that inpainting models pre-trained on healthy faces fail to capture the semantic
and structural details specific to Cleft-affected faces.
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Cleft Lip Reconstruction 3

On the other hand, research in Cleft conditions has demonstrated that Cleft
deformities can be effectively modeled using facial landmarks [2, 21]. Motivated
by this observation, we have developed a structural guided pluralistic inpaint-
ing model with real-time editing capabilities. Our inpainting model, trained on
images of healthy individuals, effectively reconstructs the facial features of pa-
tients with Cleft conditions and can be applied to Cleft-affected areas to generate
realistic non-Cleft regions. Additionally, we demonstrate the model’s ability to
produce plausible results in real time by manipulation of facial keypoints. To
enhance usability, we have developed an interactive user interface that facili-
tates real-time modeling of these adjustments, offering a valuable tool for both
surgical planning and outcome assessment.

2 Related Work

In this study, we categorize the relevant prior work into two distinct areas: facial
inpainting (Section : 2.1) and the application of machine learning techniques for
Cleft-related conditions (Section : 2.2).

2.1 Facial Inpainting

Image inpainting refers to the process of synthetically generating missing parts
of an image, ensuring that the result is both visually realistic and contextually
meaningful. GAN-based inpainting models have demonstrated state-of-the-art
performance by generating plausible content for large corrupted regions. These
models typically follow an encoder-decoder architecture. Different methods have
explored to improve the representation capability in inpainting process such as
coarse-to-fine training [15,27,57], structural guidance [15,37,54,57,58], local and
global discriminators [18], and semantic segmentation-based losses to preserve fa-
cial structure [28]. Specialized network modules, such as partial [31], Fourier [47],
and gated [57] convolutions, are employed to effectively handle corrupted image
regions. Additionally, techniques like pixel shuffle upsampling [7] and attention-
based upsampling [60] help mitigate feature degradation during image propa-
gation. With the success of transformers in machine translation tasks, vision
transformer-based GAN-Inpainting models have been proposed to enhance long
range dependencies present in images, surpassing the performance of traditional
convolution-based GAN-Inpainting frameworks [11, 23, 27, 61, 62]. However, the
quadratic complexity of self-attention poses a bottleneck for implementing end-
to-end vision transformers in inpainting. To overcome this limitation, variations
of transformer-based inpainting models have been developed with linear compu-
tational complexity, integrating the strengths of both convolution and attention
mechanisms [7, 9, 60].

Structure-guided inpainting methods incorporate prior guidance to generate se-
mantically consistent inpainting results. Traditional GAN-Inpainting models em-
ploy various forms of structural guidance, such as facial keypoints [54], canny
edges [15, 37, 60], segmentation maps [5], and gradient maps [12]. While edge,
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segmentation, and gradient information generally offer more robust guidance
compared to landmark-based methods, the accuracy of the structural predictions
is critical for achieving high-quality inpainting results. Inaccurate or redundant
structural information can significantly degrade the performance of inpainting
models, leading to artifacts or inconsistencies in the generated regions [54]. In
parallel, pluralistic inpainting methods aim to generate multiple plausible solu-
tions for a missing region, enhancing the diversity of inpainting outputs [3, 66].
Guided pluralistic inpainting models further refine these outputs by incorporat-
ing user input [30,65] or prior information [24,34].

Building on these approaches, in this work we incorporate edge priors to guide
the inpainting process, ensuring semantically consistent results while enabling
the generation of pluralistic outputs that can represent Cleft conditions. During
the training phase, we use edge contours derived from a face parsing module for
structural guidance. In the inference phase, we leverage facial keypoints, con-
necting them to form edge contours which guide the inpainting process. Facial
keypoints are employed in inference phase for their ease of prediction and flexi-
bility in modifying landmark positions, which facilitates the generation of diverse
and realistic outcomes.

In GAN-based inpainting models, discriminators are crucial for enhancing the re-
alism of generated textures by guiding the generator to produce visually coherent
and perceptually pleasing results. Traditionally, GAN inpainting models employ
DCGAN based [41] image level discriminators. However, image level discrimina-
tors fails to generate inpainting regions that maintain local consistency with sur-
rounding areas. To address this limitation, global and local discriminators have
been introduced to ensure overall image consistency and local coherence [18].

Building on this concept, patch-wise discriminators were proposed as a more
generalized approach, focusing on small patches rather than the entire image.
This design enhances the model’s ability to distinguish between real and synthe-
sized regions locally, contributing to more precise inpainting results [32, 63, 64].
Further advancements in patch-wise discriminators include the incorporation of
spectral normalization, which constrains the spectral norm of the discriminator’s
weight matrix, leading to smoother gradient updates and more stable training
processes [?,37,57]. Yang et al. [54] improved this approach by integrating atten-
tion layers into the discriminator to adaptively manage features, thus enhancing
image consistency. Additionally, WGAN [55,59] and LSGAN [43] based discrim-
inators have been explored for faster and more stable training. Despite these
innovations, the design of discriminators in GAN-inpainting models remains
comparatively under explored, especially when contrasted with the extensive
modifications applied to generators.

Inpainting models are often trained with free-form masks, where irregularly
shaped masks are randomly placed on images during training [8, 31, 37, 54]. In
contrast, our method employs fixed-form masks [15, 50, 58], specifically condi-
tioning the inpainting of Cleft-prone upper lip and philtrum regions based on
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lower lip and surrounding regions which remains unaffected in Cleft conditions.
This targeted approach ensures a more focused reconstruction of the affected
areas. Our proposed inpainting mask covers between 10% and 30% of the total
image area.

2.2 Machine Learning Applications for Cleft Condition

Machine learning applications for Cleft Lip and Palate analysis can be broadly
divided into three subdomains: Cleft surgical marker localization [29,44,45], Cleft
severity prediction [35,39] and synthetic generation of Cleft-specific facial regions
[1, 6, 16]. Facial landmark models are instrumental in predicting Cleft-specific
landmarks for tasks such as prenatal diagnosis, Cleft severity assessment, surgical
planning, and Cleft surgical success assessment. Petcas et al. [39] used pretrained
Facial Beauty Prediction (FBP) models to predict Cleft severity, benchmarking
their results against human ratings. However, their study shows that FBP models
trained on healthy individuals fail to capture the key visual indicators specific
for Cleft severity.

Due to the lack of publicly available Cleft-specific facial datasets, models for gen-
erating Cleft-specific synthetic faces are trained using publicly accessible facial
datasets of healthy individuals. These synthetic faces are designed to resemble
post-operative Cleft lips, which appear similar to normal lips, using GAN-based
inpainting or inversion techniques. Hayajneh et al. [16] have deployed GAN inver-
sion technique on Stylegan2 [20] latent space to generate natural looking normal
lips for Cleft patients. They further extend the work to generate a synthetic
Cleft dataset using GAN inversion techniques. While this work has explored the
development of a synthetic Cleft dataset to address the lack of publicly avail-
able data, the authors report an inherent limitation in the model’s ability to
accurately categorize Cleft faces within StyleGAN’s latent space. This limita-
tion makes it challenging to modify the severity of the Cleft condition without
altering surrounding facial features [16]. A GAN-Inpainting approach has been
proposed by Chen et al. to generate post-operative Cleft faces [6]. This model
is trained on the CelebA dataset [33] using free-form masks and processes the
entire facial image at a resolution of 256x256 to generate post-operative Cleft
faces. Atputharuban et al. [1] trained a GAN-inpainting model to generate up-
per lip and philtrum regions that resemble post-operative Cleft conditions and
developed a surgical success score using the GAN-inpainted images as reference
points to assess Cleft surgery outcomes. However, It can be observed that the
inpainting models generate flat, asymmetric lips that do not accurately repre-
sent Cleft conditions. These models struggle to capture the unique anatomical
features of Cleft-affected lips. We build upon this work by generating realistic
Cleft lips with real-time editable capabilities to model varying Cleft severities.
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3 Methodology

The proposed approach consists of three key components. First, the dataset
acquisition pipeline, which involves obtaining Cleft-prone orofacial regions of
the face, the inpainting mask, and the corresponding edge contour (Section.
3.1). Next, CleftLipGAN inpainting model is described in detail (Section. 3.2).
Finally, the custom landmark detector module, for localizing keypoints in the
orofacial region, is presented (Section. 3.3).

3.1 Dataset Acquisition

Experiments in this study are focused on Cleft-prone orofacial regions, as this
is the area primarily affected by Cleft conditions. Clinicians use these specific
cropped regions to assess surgical outcomes, making it highly relevant for our
study. However, due to the unavailability of Cleft-specific datasets capturing
orofacial regions, we created a dataset from the high resolution FFHQ facial
dataset [19] to support our experiments.

FFHQ dataset [19] comprises 70,000 in-the-wild images of healthy individuals,
representing a wide variation in age and racial demographics with the resolu-
tion of 1024 x 1024. We cropped the orofacial regions and generated custom
fixed-form masks following the approach outlined in [1]. We utilized the facial
keypoint detector and the face parsing model proposed by FaRL [67] for gener-
ating masks cropping the region of interest (ROI) and generating edge contour
maps. Resulting images are resized to the resolution of 256 x 256. The dataset
was then manually curated to remove images with occlusions, extreme poses,
and blurred facial regions. The final dataset consists of 51,000 images, of which
46,000 are used for training inpainting models and remaining 5000 images are
used for testing.

We use a post-operative Cleft dataset to evaluate the performance of inpainting
models on Cleft condition. This fully anonymized dataset, consisting of 164 post-
operative Cleft repair surgery images, was collected at Children’s Health Ireland
at Temple Street between 2009 and 2012 under a research agreement between
Children’s Health Ireland at Temple Street and University College Dublin. We
refer to this post-operative Cleft dataset as Cleft164 dataset. Cleft surgeries were
performed on children aged between 6 months to 1 year, with post-operative im-
ages captured during follow-up consultations when the children were 5 years
old. Cleft164 dataset was used as a test set to assess the performance of Cleft-
LipGAN model on abnormal post-operative Cleft images. Inpainting masks for
the Cleft164 dataset was manually generated, encompassing the upper lip and
philtrum region.

3.2 CleftLipGAN Model for Post-Operative Cleft Lip
Reconstruction

We have proposed CleftLipGAN, an interactive inpainting model designed for
generating post-operative Cleft images. Formally, the inpainting pipeline is for-
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Cleft Lip Reconstruction 7

mulated as follows: the input for the inpainting module, Iinput, is obtained by
concatenating the masked image, Imasked = I ⊙M , the mask image M and the
corresponding edge contour Iedge. The input image, Iinput, is then processed by
the proposed inpainting model, CleftLipGAN, to produce a semantically appeal-
ing inpainted image, Iout. The overall formulation of Cleft lip reconstruction is
denoted as Iout = CleftLipGAN(Iinput). The following subsections describe sub
modules of CleftLipGAN: namely generator, discriminator and the structural
guidance pipeline. CleftLipGAN inpainting module pipeline is illustrated in Fig.
1.

Generator We adapt the generator module proposed by Xiankang et al. [60]
for our inpainting model. The module is built in encoder-decoder fashion with
U-shaped skip connections to pass shallow features from the encoder to decoder.
The generator architecture is composed of Spatial Attention Based Gated Convo-
lution(SAGC) module and Channel Attention based Gated Convolution(CAGC)
module. The SAGC module is employed in both the encoder and decoder blocks
of the network, aiding in the extraction of structural information. In the SACG
module, spatial attention is used instead of self-attention to achieve linear com-
plexity when handling high-resolution features in both the encoder and decoder.
The bottleneck layers of the network are built using the CAGC block, which em-
ploys Squeeze-and-Excitation attention for semantic feature extraction. SAGC
and CAGC blocks, along with the gated convolution layer, produce semantically
consistent images without blurring or watermark artifacts. Gated convolution
layers are employed for their ability to dynamically extract features using learned
gating mechanisms, which help guide the weights of each pixel based on prior
information. We choose the number of the bottleneck layers to be 4 for this task.
The model inputs for the generator are masked RGB image, grayscale inpainting
mask and grayscale edge contour.

Discriminator We adapt the discriminator proposed by [26] for image super-
resolution task. This discriminator module incorporates semantic guidance by
fusing features extracted by a pretrained feature extractor, allowing the discrim-
inator to learn fine-grained distributions. The feature extraction branch built
using a pretrained CLIP ‘RN50’ module [40], is selected for its robust represen-
tation capabilities. As illustrated in Fig. 2, the ground truth image is passed
through the CLIP model to obtain semantic details, which are then fused with
the patch-wise discriminator via the semantic-aware fusion block to guide the
assessment of realism. Unlike vanilla discriminators that focus on coarse-grained
image distributions, this enhanced module leverages self-attention and cross-
attention mechanisms to discriminate fine-grained details, such as textures, aid-
ing the inpainting process. The inpainted image and mask are input into the
discriminator to condition the evaluation specifically on the inpainted regions.

Structural Guidance We train the inpainting network using edge contours
corresponding to the lip region. We used the FaRL face parsing model [67] to
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Fig. 1: Proposed CleftLipGAN inpainting model for reconstructing post-operative
Cleft images: The model takes a masked image, inpainting mask, and edge prior as
inputs to synthetically generate Cleft-prone regions.

obtain segmentation maps, from which we extract lip contours by outlining the
segmented regions. During inference, we use facial keypoints generated by a cus-
tom keypoint detection model to construct lip contours by connecting the key-
points, following the approach proposed in [57]. This approach facilitates more
flexible modifications, and by utilizing contours, richer structural information
can be provided for inpainting.
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Fig. 2: Mask-guided semantic-aware patch-wise discriminator for the CleftLipGAN
inpainting model: Image embedding features are extracted using a pretrained CLIP
model. These features are fused with image features from the discriminator network
through a Semantic-Aware Fusion block. This approach enhances the semantic ex-
traction of patch-wise features, helping the discriminator better assess the realism of
inpainted regions.

Loss Functions To produce high quality inpainting results we have incorpo-
rated a combination of loss functions in line with GAN-Inpainting literature [60].
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We train the inpainting network with L1 loss to ensure pixel-wise consistency and
ensure realness in generated pixel values. Perceptual loss Lperc is used to enforce
high level structural and semantic features, while adversarial loss is employed
Ladv to improve overall quality of the output. The Loss function is denoted as

Ltotal(Igen, Igt) = λ1L1 + λ2Lperc + λ3Ladv

where λ1 = 5, λ2 = 0.4 and λ3 = 0.05 are chosen based on experiments.

3.3 Landmark Detection for Orofacial Region

We also developed a custom lips keypoint detector module specifically designed
to predict keypoints in cropped orofacial region. In our approach, the predicted
keypoints act as guidance during inference, enabling users to adjust and refine
them to create edge contours, facilitating the generation of pluralistic results.

Our facial keypoint detector model is trained to predict 20 keypoints specifically
from the cropped facial region. For this purpose, we have used a subset of 6000
images randomly obtained from CelebA-HQ [33] dataset, in which 5000 images
were used for training and 1000 images were used for validation. We have pre-
processed the images as outlined in Section. 3.1 and resize the images to 256 x
256 resolution. The ground truth keypoints for the lip region were obtained us-
ing the FaRL facial landmark model [67]. The keypoint detection model is built
with a MobileNet [17] backbone and trained using L1 Loss. We measure the
performance of keypoint detector model against the test dataset with Normal-
ized Mean Squared Error(NSME), with the lip width used as the normalization
factor. NMSE on test set is reported to be 0.23.

4 Experiments & Discussion

We have performed the experiments on a single NVIDIA GForce RTX 4090
GPU with the batch size of 4. We train the CleftLipGAN inpainting model with
Adam optimizer [22] with β1 = 0.99 and β2 = 0.5. Model is trained with a
learning rate of 5×10−4 and trained for 300000 iterations. It utilizes a warm-up
phase consisting of 2 epochs, where only the generator is trained. Following this,
generator and discriminator are concurrently trained to fine tune the adversarial
loss.

We benchmark the performance of the CleftLipGAN inpainting model against
state-of-the-art inpainting models using both quantitative and qualitative eval-
uations. For quantitative evaluation, we employ PSNR, SSIM [52], and Brisque
[36] to assess the performance of the inpainting models. PSNR measures pixel-
wise reconstruction accuracy, indicating how closely the inpainted result matches
the original image in terms of visual fidelity. SSIM [52] evaluates structural sim-
ilarity, ensuring that the inpainted regions maintain continuity with the sur-
rounding pixels and remain contextually aligned. Brisque [36] evaluates the per-
ceptual quality of an image by identifying distortions and visual artifacts that
affect overall image quality.
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Table 1: Quantitative comparison on the FFHQ test set shows that the proposed
CleftLipGAN model outperforms in all three metrics employed.

Model PSNR ↑ SSIM [52] ↑ BRISQUE [36] ↓
Ours 31.46 0.9382 21.89

AGG-Net [60] 30.33 0.9246 23.37
HINT [7] 26.25 0.9048 25.49

E2F-GAN [15] 27.89 0.9087 26.67
HourglassAttention [8] 29.12 0.9178 25.89

DeepfillV2 [57] 25.39 0.8979 26.17

For comprehensive evaluation, we compare our model against three structural
guided inpainting models, E2F-Net [15], DeepfillV2 [57] and AGGNet [60]. We
retrained the models using the hyperparameters specified by the authors, but
incorporated our edge contour-based guidance for the inpainting process. We
also benchmark against HINT [7] inpainting model, a vision transformer based
model which has demonstrated superior performance compared to contemporary
state-of-the-art inpainting models. Additionally, we evaluate our model’s perfor-
mance against the Cleft inpainting model proposed by Atputharuban et al. [1]
for synthesizing Cleft-prone region, which is built on the HourglassAttention [8]
architecture. We benchmark the performance of CleftLipGAN against this model
to assess its effectiveness in Cleft inpainting.

Quantitative studies are performed on the test set proposed in Section. 3.1 con-
sisting 5000 images and the results are presented in Table 1. It can be observed
that our model outperforms the other state-of-the-art inpainting models on all
evaluation metrics. This demonstrates that incorporating semantic-aware dis-
criminators enhances inpainting results when combined with carefully selected
generator architecture.

This observation can be further validated with qualitative evaluation. We con-
duct qualitative evaluation on Cleft164 dataset specified in Section. 3.1. Figure.
5 illustrates the post operative Cleft lip reconstruction results. It can be ob-
served that non structure based inpainting models produce flat upper lips that
lack symmetry and are not semantically accurate. In contrast, by adjusting fa-
cial keypoints in inference stage, structure based inpainting models which were
trained on healthy individuals can generate lips which resemble that of Cleft
condition. When compared to other structure guided inpainting models, Cleft-
LipGAN model surpasses them by generating structurally coherent and visually
appealing lips for Cleft conditions, with fine textural details preserved. Although
E2F-GAN [15] can produce accurate structural results, it consistently fails to
capture fine details and struggles to produce smooth textures. Additionally, the
DeepFillV2 [57] model generates blurry results with visible artifacts.

We also evaluate the possibility of generating images resembling Cleft conditions,
with the results presented in Fig. 3. It can be observed that CleftLipGAN pro-
duces images closely resembling Cleft conditions with fewer artifacts compared
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Cleft Lip Reconstruction 11

Fig. 3: Synthetic generation of Cleft lips from healthy lips. We generate lips that
resemble the Cleft condition from healthy lip images by fine tuning facial landmark
locations. All three structure guided inpainting models successfully produce Cleft-like
lips; however, our model captures finer details and achieves a more accurate structural
representation of Cleft lips, enhancing the realism and anatomical correctness of the
generated results.

to other structure-guided inpainting models. We believe that the CleftLipGAN
model can be employed to generate a synthetic dataset resembling Cleft con-
ditions, particularly in this domain where no publicly available Cleft datasets
exist.

Additionally, we have developed an interactive user interface, as illustrated in
Figure. 4. The user interface integrates lip landmark prediction module (Section.
3.3) for identifying keypoints in the orofacial region and the inpainting model
(Section. 3.2) for reconstruction of Cleft prone areas. The interface receives the
image of the orofacial region and the corresponding mask, where the inpainting
will be applied, as inputs. Baseline lip keypoints are predicted using the keypoint
detector module, which can be interactively adjusted by the user to generate
pluralistic results. Once the adjustments are finalized, an edge contour map is
generated by connecting the keypoints. The masked image, inpainting mask,
and edge contour map are then fed into the inpainting model to generate the
inpainted image, which is displayed in the interface for further fine-tuning.
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12 D.A. Atputharuban et al.

Fig. 4: User interface for selective inpainting for Cleft region. Lip keypoints can be
manually adjusted to obtain a edge contour map, which in turn guides CleftLipGAN
model to produce pluralistic inpainting results.

5 Conclusion and Future Work

In this study, we demonstrate the ability of image inpainting models trained
on images of healthy individuals to capture the semantics of Cleft conditions
and generate anatomically accurate lips for Cleft patients using structural guid-
ance. To achieve this, we propose the CleftLipGAN model, which features a
novel mask-guided, semantic-aware, patch-wise discriminator. Our results in-
dicate that the proposed model outperforms existing state-of-the-art inpainting
methods in producing semantically coherent Cleft lips for both normal and post-
operative condition. These findings are supported by comprehensive quantitative
and qualitative analyses. Our pipeline, which includes facial landmark localiza-
tion and reconstruction, is applicable to privacy-sensitive Cleft images, focusing
on the cropped orofacial region to generate post-operative outcomes. Addition-
ally, the interactive user interface enables the generation of synthetic Cleft faces,
addressing the challenge of limited Cleft-specific datasets by providing synthetic
Cleft data, which can be used, for example, in training facial landmark models
tailored to Cleft conditions.

Future work will focus on clinically validating the results and expanding the
evaluation to a broader distribution of Cleft faces. Additionally, we aim to further
explore the semantics of Cleft facial features and automate the generation of Cleft
lips based on specific Cleft conditions. With thorough validation, this approach
could serve as a tool for generating post-operative Cleft facial reconstructions,
aiding in patient and caretaker education about potential outcomes, as well as
providing an objective measure to assess surgical success. Furthermore, we plan
to explore alternative conditional inpainting methods to produce high-resolution,
plausible lip reconstructions for Cleft conditions.
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Fig. 5: Synthetic Non-Cleft Lip generation for patients with Cleft condition: Notably,
we can observe that non structure based inpainting models, HourglassAttention [8] and
HINT [7] fail to capture the specific semantics of Cleft conditions. In contrast, structure
guided inpainting models can generate semantically appealing results specific for Cleft
condition with user guidance. Additionally, DeepFillV2 [57] model produces visible
artifacts making it unsuitable for Cleft reconstruction. In comparison, E2F-GAN [15]
and our model generates semantically appealing lips with minimal artifacts. But E2F-
GAN [15] fails to capture fine details in the inpainted region. On comparison to both
structure-guided and non-structure-guided inpainting models, our model generates lips
that are both semantically and structurally accurate for Cleft conditions.
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