
RSSep: Sequence-to-Sequence Model for
Simultaneous Referring Remote Sensing

Segmentation and Detection

Ngoc-Vuong Ho*1, Thinh Phan1, Meredith Adkins1,
Chase Rainwater1, Jackson Cothren1, and Ngan Le1

1University of Arkansas, Fayetteville, AR, USA
*Corresponding author: vuongh@uark.edu

Abstract. Semantic segmentation in remote sensing images plays a cru-
cial role in a wide range of geographic information applications. Despite
the abundance of data, this field faces limitations due to the restricted set
of categories and the inability of existing methods to accurately describe
and localize individual or multiple objects within scenes. Addressing this
challenge, the emerging fields of referring remote sensing image segmen-
tation (RRSIS) and referring remote sensing object detection (RRSOD)
have recently garnered attention. Both tasks, RRSIS and RRSOD, com-
bine computer vision and natural language processing to localize ob-
jects based on a text query, with the outputs being segmentation masks
and bounding boxes. Additionally, boundary information in remote sens-
ing images, such as land-cover delineations, is crucial for segmentation
tasks. To tackle this novel challenge, we introduce RSSep, a Sequence-
to-Sequence model designed for simultaneous RRSIS and RRSOD. Un-
like conventional approaches that use encoder-decoder blocks for pixel-
level classification, our network leverages a sequence-to-sequence model
to estimate polygonal boundaries, represented as sequences of vertices.
Furthermore, we enhanced the network by improving the text encoder
using both query and object noun features, employing the same archi-
tecture to extract these features. Our network is benchmarked on the
recently introduced RRSIS-D dataset, notable for its extensive collec-
tion of image-caption-mask triplets across diverse scales and variations.
Experimental results demonstrate the superiority of our method over ex-
isting techniques in both the RRSIS and RRSOD fields, underscoring its
efficacy in semantic segmentation and object detection tasks in remote
sensing imagery.

1 Introduction

Owing to the advancement and pervasiveness of satellites and aerial vehicles,
remote sensing data collection has surged, leading to an increasing need for an-
alyzing and understanding scene images. Remote sensing image segmentation
(RSIS) has become one of the key tasks, applied in multiple fields such as urban
planning [36], land resource management [22], environmental monitoring [23],
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disaster monitoring [41], agricultural planning [48], street view extraction [14,42],
land change detection [34, 40, 50], land cover classification [44], climate change
studies [38], and deforested region monitoring [2], among others. Although cur-
rent approaches in RSIS are proficient at identifying objects in a scene, they
struggle to specify areas based on descriptions or to perceive the spatial and
orientational features of objects. To address these limitations, Referring Remote
Sensing Image Segmentation (RRSIS) has emerged. The goal of RRSIS is to
take both an aerial image and a natural language query describing appearance,
position, and direction, and return a pixel mask of the relevant objects or areas
in the scene.

Unlike Referring Remote Sensing Image Segmentation (RRSIS), referring
image segmentation (RIS) has been a well-known task for some time, with the
majority of RIS approaches [18, 21, 24, 53] following an encoder-decoder frame-
work where the encoder is responsible for extracting visual and language features
using two separate networks and then aligning them through recurrent interac-
tion [27], cross-modal attention [47], graph reasoning [20], or cross-attention from
a Transformer [5], and subsequently, the decoder unravels the combined features
and performs pixel-level classification, outputting the segmentation mask for the
desired objects. Despite their success on multiple datasets, general RIS methods
are sub-optimal when fully applied to specific data types like remote sensing
images due to the aerial viewpoint reducing the noticeable discrepancies in color
and appearance between objects and backgrounds, while the scales and sizes
of objects vary greatly depending on the distance between the camera and the
ground, resulting in weak contrast between object boundaries and backgrounds
in low spatial resolution images, which often causes the predicted masks to ap-
pear smeared. To address these challenges, we adopt a sequence-to-sequence
(Seq2Seq) framework to indirectly infer the segmentation mask where the input
remains the same as in the encoder-decoder framework but the decoder per-
forms a regression task and outputs the polygonal boundary instead, making this
method better at recognizing object geometry and leading to more precise masks
where the segmentation mask is converted into a sequence of polygon vertices
(with unrestricted length) and a bounding box is also output by the Seq2Seq
module, transforming each vertex into a coordinate embedding token, and in
cases where multiple objects are queried, different sequences can be merged into
a longer sequence and distinguished by separator tokens while the model learns
to predict the next coordinate token based on the visual features, text features,
and previous tokens, with the polygon sequence being extended iteratively un-
til the end-of-sequence token is predicted, which allows our approach to be less
susceptible to inconspicuous boundaries, scale variations, and omni-directional
objects.

Our main contributions are summarized as follows:

– We present an effective RSSeq network for simultaneous RRSIS and RRSOD.
Our RSSeq is built upon the Seq2Seq framework, modeling the object bound-
ary as a sequence of vertices. Our network is designed not only to focus on
the object boundary but also to handle an arbitrary number of objects.
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– To effectively train the model to handle both boundary and segmentation
mask tasks, our RSSeq model is trained using a combination of weighted L1

and L2 regression losses, cross-entropy (CE) loss, and Dice loss. This com-
prehensive loss function aims to optimize the prediction of polygon vertices,
vertex types, and segmentation masks.

– We benchmarked the proposed RSSeq on the newly introduced RRSIS-D
dataset, demonstrating superior performance over all existing state-of-the-
art methods in the RRSIS task.

2 Related work

2.1 Mask & Polygon-based Image Segmentation

Mask-based image segmentation has still been on the growth and the primary
technique for object segmentation. Fully Convolutional Neural (FCN) [33] estab-
lished the baseline for semantic segmentation field by repalce all fully-connected
layers with convolution layers in classification network. For the purposed of accu-
mulating multi-scale contextual information, DeepLab series [7] upgraded FCN
with dilated convolutions. With the same intention, PSPNet [55] introduced the
pyramid pooling operations. Latest work such as Mask2Former [9] utilized the
end-to-end Transformer [3] encoder-decoder network and multi-scale high reso-
lution features, deducing the each object mask from corresponding embedding
query. Treating segmentation mask as set of polygon vertices is also considered
because this task simulates how human annotates the mask. The boundary is re-
fined or sequentially predicted until we reach the initial point. The early work [4]
made use of the Recurrent Neural Network (RNN) and was extended by [1] with
the application of graph neural network. Ling et al. [26] initiated with a circle
and tried to deform it into the boundary. Done et al. [13] extended this task to
spline curve prediction and did the multitasking training on edge detection and
object segmention. PolyTransform [25] predicted the mask first and forwarded
it as polygon type to deforming network for final polygon prediction.

2.2 Remote Sensing Image Segmentation (RSIS)

RSIS aims to segment and classify the objects such as building, vehicle, road or
field on the earth surface from the aerial viewpoint. In the early period of deep
learning application on this topic, FCN was the standard approach on many
datasets [8]. The methods improved along with the development of deep learning
segmentation model. ResUNet-a [12] combined U-Net with other CNN to elim-
inate the the problem of gradient disappearance and explosion. S-RA-FCN [35]
enhanced the global contextual information by adding the spatial and channel
relational reasoning modules. HMANet [37] proposing three attention modules to
better obtain correlation features in space, channel and category. The efficiency
of self-attention in transformer-based network set a new model trend in this field.
Due to the low contrast between the foreground saliency and background noise,
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RSSFormer [51] was designed with the Adaptive Transformer Fusion Module and
Detail-aware Attention Layer. [45] introduced the a densely connected feature
aggregation module for precise segmentation. While transformer-based methods
are good at capturing long-range dependencies, intricate and tiny objects are
still an obstacle for them.

2.3 Referring Image Segmentation (RIS)

RIS has been one of most active topics in the field of visual-language under-
standing and interaction. The main objective has been the fusion mechanism of
visual and language features. Straightforward feature concatenation [43] was first
implemented as the fusion operation. Chen et al. [6] followed this technique but
applied recurrent refinement to polish the feature maps at different scales. Later
works employed several types of attention mechanism [53] to model the visual-
textual co-embeddings. CMPC [20] used graph-based reasoning to localize the
image region that were highly related to the linguistic features of entity words
and attribute words. BRINet [19] computed the relevance among each word and
each image area in a bi-directional relationship modeling through vision and
language-guided attention modules. As a result of the success of vision-language
model such as CLIP [39], recent models [46] tried to transfer this rich knowl-
edge to their fusion model. LAVT [52] replaced the complicated cross-modal
decoder by early language-aware encoding module. PolyFormer [28] proposed
the regression-based Tranformer decoder which directly output 2D coordinates
from concatenated image feature and textual feature.

3 Methodology

3.1 Overall Methodology

Network Architecture: At the core of our approach is the idea of feature
fusion between natural language processing and computer vision. Figure 1.b il-
lustrates the network architecture: the inputs are the image and a text query,
and the outputs are the polygon covering to the mask needed for segmentation
and the bounding box for object detection as per the text description. Moti-
vated by recent advancements in multimodal architectures such as CLIP [39],
we use two separate encoder branches to extract visual and textual features from
both the image and text prompt. The image encoder is based on Swin trans-
former [31], whereas the text encoder is based on BERT [10]. Both the visual
and textual features are then concatenated by a fusion module before passing
through a Seq2Seq network to obtain a sequence of vertexes of a polygon. To
effectively handle floating-point coordinates, vertexes are passed through a re-
gression network. Finally, the polygon will be converted to a segmentation mask.

Encoder: We use Swin Transformer fv(.|θv), defined by weights θv, to extract
visual feature Fv from a given image I ∈ RH×W×3, i.e. Fv = fv(I|θv). We select
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Fig. 1: Comparison between existing RRSIS approaches (top) and our proposed RSSeq
(bottom). While conventional RRSIS methods directly generate a segmentation mask
from a Decoder network, our RSSeq first produces a sequence of vertices and subse-
quently converts them into a polygonal segmentation mask.

the feature at stage-4, thus the feature Fv ∈ RH
32×

W
32×Cv . For the textual de-

scription extraction, we use BERT [10] ft(.|θt), defined by weights θt, to extract
textual feature from a given text prompt T , i.e. Ft = ft(T |θt) and Ft ∈ RN×Cn ,
where N is the number of words.

Fusion module: The visual feature Fv and textual feature Ft into new fea-
ture Fvt. To achieve this, the visual feature Fv ∈ RH

32×
W
32×Cv is first flatten into

2D space F̂v ∈ R( H
32∗

W
32 )×Cv . Subsequently, both F̂v and Ft are passed through

two separate fully-connected (FC) layers to project them into the same em-
bedding space. These projected features are then concatenated into Fvl, i.e.,
Fvl =

[
FC(F̂v), FC(Ft)

]
. Finally, Fvl is fed into a Transformer encoder consist-

ing of multi-head self attention layer to object a visual-textual feature F .

Seq2Seq: The Seq2Seq takes the 2 inputs: (i) visual-textual feature F from the
fusion module and (ii) input token, which represents the polygon vertexes. The
input token of the module are define as format:

[<BOS>, (x1
1, y

1
1), (x

1
2, y

1
2), (x

1
3, y

1
3), ..., (x

1
n, y

1
n), <SEP>

(x2
1, y

2
1), ..., (x

1
m, y1m)<SEP>, (x1

k, y
1
k), ..., <EOS>], (1)

Where (xi
1, y

i
1) and (xi

2, y
i
2) denote the bounding box coordinates, and

(xi
3, y

i
3), ..., (x

i
n, y

i
n) represent the coordinates of the bounding polygons. The to-

kens <BOS> and <EOS> indicate the beginning and end of the tokens, while <SEP>
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denotes the token used for separation between objects. With this definition, our
model is capable of flexibly supporting multiple objects.

The prediction of vertex (xt, yt) at time step t depends on all the preceding
tokens (x1, y1), (x2, y2), .., (xt−1, yt−1).

The model accommodates an arbitrary number of input tokens to handle an
arbitrary number of objects. During training, we process based on the last token,
while during inference, the procedure is based on the EOS token.

Decoder: To predict continuous coordinate values for vertex coordinates, we ap-
ply bilinear interpolation [15] into the decoder. Let f(x, y) denote the coordinate
embedding of (x, y). To capture the relations between the visual-textual feature
F and the coordinate embedding f(x, y), we apply N transformer decoder layers
with multi-head cross-attention mechanism. Consequently, we obtain FN as the
output feature of the last decoder layer.

Prediction Heads: There are two output heads, i.e., token-based head and
coordinate-based head. Both are built on the last feature FN . The token-based
head consists of a linear layer, which predicts the token type. Token types can be
either coordinate token ((x1

1, y
1
1), (x

1
2, y

1
2), (x

1
3, y

1
3), ..., (x

1
n, y

1
n)), which is labeled

as 0 or separate token <SEP>, which is labeled as 1, or ending token <EOS>,
which is labeled as 1. The coordinate-based head is defined as a 3-layer feed-
forward network (FFN). It aims to predict the 2D coordinates of the bounding
box corner points ((xi

1, y
i
1), (x

i
2, y

i
2) and polygon vertices ((xi

3, y
i
3), ..., (x

i
n, y

i
n) for

the reference object i.

Mask to Polygons Converter: The current available dataset provides masks
only. Therefore, to train the model, we need to convert these masks into polygons.
Given a mask M ∈ RH×W , we obtain the contour, a set of points (x, y) ∈ R2,
which are then converted into polygons. Due to the large number of points on the
contour, we sample a subset of points, typically ranging from 100 to 200 points
for each object. We select the top-left point as the starting point of the sequence
{(xi, yi)}Pi=1, (xi, yi) ∈ R2 in the clock-wise order, P ∈ [100, 200]. Finally, we
construct the input tokens for the polygon coordinates as
<BOS>(x1

1, y
1
1), (x

1
2, y

1
2)...(x

1
n, y

1
n)<SEP>...<SEP>(x

k
2 , y

k
2 ), (x

k
2 , y

k
2 )...(x

k
m, ykm)<EOS>,

where k is the number of object, n and m are the number of token for each
object. By using <SEP>, the number of objects and the number of tokens for
each object are flexible.

Polygon to Mask Converter: The output of the network contains two com-
ponents: a token-based head and a coordinate-based head. To convert from the
polygon to a mask, we utilize both the token-type and coordinate outputs. By
combining the outputs of both heads, we can obtain:
<BOS>(x1

1, y
1
1), (x

1
2, y

1
2)...(x

1
n, y

1
n)<SEP>...<SEP>(x

k
2 , y

k
2 ), (x

k
2 , y

k
2 )...(x

k
m, ykm)<EOS>
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Then, we can separate the coordinate output into multiple bounding boxes
and boundary vertices based on <SEP>. Finally, the boundary vertices are con-
verted to a binary mask to be compared with the ground truth.

3.2 Loss function

Given an image I, a text prompt (referring description) T , and preceding tokens
xi, yi, the model is trained to predict the next token xt, yt, its corresponding
token type l, and the corresponding segmentation S. The prediction of the next
token is guided by a combination of weighted L1 and L2 regression losses. The
token type is is determined by the cross-entropy (CE) loss. The segmentation
mask is based on Dice loss.

L =L1 ((xt, yt), (x̂t, ŷt)) + L2((xt, yt), (x̂t, ŷt))

+ CE(l, l̂) +Dice(S, Ŝ)
(2)

The weighted L1 and L2 loss employs different weights to balance the im-
portance of box coordinates and polygon coordinates, and is defined as follows.

L1 ((xt, yt), (x̂t, ŷt)) = 0.1× L1 ((xt, yt), (x̂t, ŷt))t=1,2

+ 0.9× L1 ((xt, yt), (x̂t, ŷt))t>2

(3)

Similar weights are employed in the weighted L2 loss.

4 Experiments

4.1 Datasets and Metrics

RRSIS-D Dataset: In this work, we utilize the RRSIS-D dataset, which
was made public at CVPR 2024, for our experiments. This dataset contains
17,402 image-caption-mask triplets, split into train/validation/test sets with
12,181/1,740/3,481 samples, respectively. The remote sensing images have var-
ious spatial resolutions ranging from 0.3 to 30.0 meters/pixel, with each image
having a size of 800x800 pixels. The dataset comprises 20 categories: ariplane,
airport, basketball court, bridge, baseball field, chimney, dam,
expressway service area, expressway toll station, golf field, ground
track field, harbor, overpass, ship, stadium, storage tank, tennis court,
train station, vehicle, wind mill.

Metrics: In the experiments, we use overall Intersection-over-Union (oIoU),
which is the overall ratio of intersection to union areas between predicted and
ground truth masks, while mean Intersection-over-Union (mIoU) calculates the
average accuracy for all the predicted and ground truth masks in pairs. Addition-
ally, we use Precision@X (P@X) as an evaluation metric to evaluate precision
based on IoU thresholds, reflecting the method’s accuracy in object targeting.
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4.2 Implementation Details

We trained the model on both the base and large versions of the Swin Trans-
former [31], with the language backbone based on BERT from Hugging Face’s
library [49]. The model was trained on an NVIDIA RTX 4090 TI for 100 epochs
over 1 day. We initialized the learning rate to 0.00003 using Adam optimization.
For better performance, we first trained RSSeq with RRSOD to obtain the ini-
tial checkpoint, making it aware of the global features. Then, we reloaded the
checkpoint for the RRSOD task to train the multi-task RRSOD and RRSIS. In
our experiments, we found that initializing the model with RRSOD resulted in
better performance compared to training the multi-task setup from the start.

4.3 Comparison Results

Table 1 presents a quantitative comparison between our RSSeq model and ex-
isting state-of-the-art methods in referring segmentation. It is noteworthy that
RMSIN [30] represents the latest advancement in RRSIS and introduces the
RRSIS-D dataset. We showcase the performance of our RSSeq model with two
backbone architectures: Swin-B and Swin-L. Both RSSeq-B and RSSeq-L out-
perform existing state-of-the-art methods, with RSSeq-L achieving superior per-
formance across all metrics except for P@0.9. Further investigation into this
metric will be included in future analyses.

Table 1: Quantitative comparison with state-of-the-art methods on validation set
of RRSIS-D dataset [30]. Our proposed The best result is bold.

Methods Venues Visual
Encoder

Language
Encoder

Performance
P@0.5↑ P@0.6↑ P@0.7↑ P@0.8↑ P@0.9↑ oIoU↑ mIoU↑

RRN [24] CVPR 2018 ResNet-101 [16] LSTM [17] 51.09 42.47 33.04 20.80 6.14 66.53 46.06
CSMA [53] CVPR 2019 ResNet-101 - 55.68 48.04 38.27 26.55 9.02 69.68 48.85
LSCM [21] ECCV 2020 ResNet-101 LSTM 57.12 48.04 37.87 26.37 7.93 69.28 50.36
CMPC [20] CVPR 2020 ResNet-101 LSTM 57.93 48.85 38.50 25.28 9.31 70.15 50.41
BRINet [18] CVPR 2020 ResNet-101 LSTM 58.79 49.54 39.65 28.21 9.19 70.73 51.14
CMPC+ [29] TPAMI ResNet-101 LSTM 59.19 49.36 38.67 25.91 8.16 70.14 51.41
LGCE [54] - Swin-B [32] BERT [11] 68.10 60.52 52.24 42.24 23.85 76.68 60.16
LAVT [52] CVPR 2022 Swin-B BERT 69.54 63.51 53.16 43.97 24.25 77.59 61.46
RMSIN [30] CVPR 2024 Swin-B BERT 74.66 68.22 57.41 45.29 24.43 78.27 65.10
RSSeq - B (Ours) - Swin-B BERT 79.13 71.03 61.56 46.87 17.85 81.08 67.33
RSSeq - L (Ours) - Swin-L BERT 80.25 73.29 62.43 48.91 17.87 82.10 69.23

Figure 2 visually illustrates a qualitative comparison between our RSSeq
model and the runner-up, RMSIN [30]. While RMSIN only provides the seg-
mentation mask, our RSSeq offers both the boundary and segmentation mask,
along with the corresponding bounding boxes. By leveraging polygons to fo-
cus on boundaries, our model adeptly localizes objects, particularly along their
edges.
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ID(2005)  A green golf
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Ground
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ID(6) A ship at the bottom ID(449) The white vehicle ID(2630) The vehicle in
the middle

Large Object Tiny Object Oriented Object

ID(11298) A harbor is on
the right of the large gray

bridge in the middle

Original
Image

Fig. 2: Visualization comparison on the RRSIS-D Dataset [30]. From the top: 1st:
Original images with various types of objects of interest; 2nd: Ground truth; 3rd: Seg-
mentation mask by RMSIN [30]; 4th: Our proposed RSSeq, which simultaneously gen-
erates both segmentation and detection.

4.4 Ablation Studies

We further investigate the effectiveness of our proposed RSSeq by pre-training
the model on the RMSIN-D dataset to obtain initial weights. Table 2 shows a
comparison between two scenarios: one with and one without initializing weights
on the RMSIN-D dataset across two different backbones.

Table 2: Ablation study of our proposed RSSeq on the validation set of the RRSIS-
D dataset [30], comparing the performance with and without the pre-training proce-
dure for initializing weights.

Language-Encoder Visual-Encoder Pre-train Performance
P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 oIoU mIoU

BERT
Swin-B ✗ 75.31 67.09 57.60 43.16 17.50 79.26 64.26

✓ 79.13 71.03 61.56 46.87 17.85 81.08 67.33

Swin-L ✗ 79.63 71.21 59.17 44.71 21.49 78.20 68.18
✓ 80.25 73.29 62.43 48.91 17.87 82.10 69.23

To better illustrate how our RSSeq predicts polygon vertices at inference
time, we visualize some vertices around objects, as shown in Figure 3, at different
time steps.
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Expression: The green and gray golf field in the middle

t = 1(start) t = 10 t = 20 t = 30 t = 40 t = 50

t = 60 t = 70 t = 80 t = 90 t = 94 (end) convert polygon to
mask

Fig. 3: Visualization of the steps during inference. The model begins with the BOS
token. At step t = 1, it predicts the top-left vertex of the object. The model continues
predicting until it reaches the EOS token. Finally, once the full polygon covers the
object, the last step converts the polygon to a mask.

5 Conclusion

In this study, we introduce RSSeq, an end-to-end framework designed for refer-
ring remote sensing image segmentation (RRSIS) and object detection (RRSOD).
RSSeq employs a multimodal approach within a sequence-to-sequence frame-
work for multitask learning. By leveraging this architecture, RSSeq effectively
segments object boundaries as sequences of vertices while supporting image
segmentation for multiple objects. Additionally, RSSeq outperforms all exist-
ing state-of-the-art methods in RRSIS. We anticipate that this method can be
extended to other remote sensing tasks, such as multi-label image segmentation
and crop-type classification.

In future work, we plan to explore sequence-to-sequence methods for multi-
label remote sensing image segmentation.
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