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Abstract. In dermatology, the demand for accurate skin lesion diagnoses
is critical, especially during peak times like summer when skin cancer
screenings surge. The need for efficient processing of large volumes of
medical images and the risk of human error highlights the importance
of innovative diagnostic tools. In this paper, we propose DermAl, an ad-
vanced Al-driven framework to improve diagnostic accuracy and efficiency
in skin lesion analysis. Our DermAI framework combines a state-of-the-art
segmentation model and a large language model to assist clinicians in
interpreting medical images swiftly and precisely. Our framework isolates
and analyzes key lesion features using advanced segmentation models
and vision encoders, while a large language model provides contextual
insights to understand lesion characteristics and potential malignancies.
By integrating visual and linguistic analysis, our DermAl framework
reduces diagnostic errors, alleviates clinician workloads, and enhances
patient care with faster, more accurate results, supporting dermatologists
in making informed decisions and advancing Al-assisted diagnostics.

Keywords: Large Language Model - Medical Vision-Language Model -
Skin lesion Segmentation

1 Introduction

In today’s healthcare landscape, dermatologists and clinicians face increasing
pressure to interpret complex medical images, such as skin lesion scans, within
limited timeframes. During peak seasons, particularly in summer, when skin
cancer screenings surge, clinicians are tasked with reviewing hundreds of lesion
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images daily, where even minor delays in diagnosis can significantly impact patient
outcomes [13,22]. These high-stakes situations increase the risk of human error
or oversight, placing additional pressure on healthcare professionals.

The growing demand for enhanced diagnostic accuracy and efficiency calls
for advanced tools in medical imaging. Artificial Intelligence (AI) [23,28] offers
a transformative solution, reshaping how medical images are analyzed. To this
end, we address this need through an Al-driven chatbot that integrates advanced
vision and language models to assist in skin lesion diagnosis. The objective is
to ease the workload on healthcare professionals, minimize diagnostic errors,
and deliver faster, more accurate insights, ultimately improving patient care.
In this paper, we present DermAI (Der-
matology AT Assistant), a novel framework
that utilizes a segmentation model to iso-
late key areas of skin lesions, focusing on
clinically relevant features. The vision com-
ponent, powered by a state-of-the-art med-
ical image segmentation model [6] and vi-
sion encoder [26,31], processes visual data,
while a linear transformation enhances im-
age quality for more accurate interpreta-

What are the potential indicators of malignancy,
such as asymmetry, irregular borders, multiple
colors,

changes in si

tion. In addition, based on Generative Pre-
trained Transformer 4 (GPT-4) [17], the
language component contextualizes the vi-
sual data, providing deeper insights into
lesion characteristics and potential malig-
nancy. Our approach delivers comprehen-
sive analyses, supporting healthcare profes-

1.Asymmetry: A change in shape or size of a
mole, wart or lesion can indicate malignancy.
2.Irregular borders: An irregular, ragged or
notched border can suggest malignancy.
3.Multiple colors: A mole with multiple colors
can be an indication of malignancy.

4.Changes in size: A mole that increases in size
over time can be a sign of malignancy.

It's important to note that these are just some
indicators and a biopsy is the only way to
confirm whether a mole is malignant or benign.

Fig.1: Our DermAI with an interac-
tive chat assistant. The user enters a
prompt and a skin photo. The assistant
responds with text feedback.

sionals in making well-informed decisions.
The Contributions of this Work. We
first investigate state-of-the-art skin lesion
segmentation methods. Then, we introduce
a novel framework integrating vision with a Large Language Model (LLM)
trained on large-scale medical data, namely DermAI, illustrated in Fig. 1.
Our experiments show exceptional performance in skin lesion segmentation and
practical interpretation, earning recognition from medical professionals.

2 Related Work

2.1 Skin Lesion Segmentation

Recently, medical image segmentation methods inspired by Transformer [16] and
CNN architectures [20]. In particular for skin lesion segmentation methods (e.g.,
MobileUNetR [19] and DuAT [25]), which balance efficiency and accuracy by
addressing the challenges of preserving global context and local detail. Polar
transformations [5] and boundary-aware mechanisms [30] also enhance segmenta-
tion performance and data efficiency by capturing crucial boundary information.
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In addition, the integrating diffusion models (e.g., DermoSegDiff [6] and Med-
SegDiff [34]) with attention mechanisms further improve boundary delineation,
which improving overall segmentation quality. To tackle data imbalance, particu-
larly in small lesion segmentation, the Focal Tversky loss function [1] improves the
precision-recall trade-off. At the same time, Inconsistency Masks (IM) [29] enable
strong results with minimal labeled data. Moreover, enhanced U-Net variants such
as DoubleU-Net [12] and BCDU-Net [4], which utilize pre-trained encoders, dense
connections, and bi-directional ConvLSTM for feature extraction and fusion.
Multi-scale approaches like MSRF-Net [24] and context-gating mechanisms (3]
address variable object sizes and complex anatomical variations.

2.2 Medical Chatbot

The introduction of large language models, particularly ChatGPT, has ignited
increasing interest in developing medical chatbots, especially for their capacity
to automate X-ray image analysis. These technologies serve as valuable tools
for patients and healthcare professionals by facilitating a more comprehensive
understanding of diagnostic findings from X-ray images. Recent advancements
in Large Language Models (LLMs) and Multi-Modal Learning have highlighted
the potential of these systems in medical applications. Several notable works
have emerged in this domain, including Chatdoctor [15], LLaMA [27], MedAl-
paca [11], PMC-LLaMA [33], and DoctorGLM [35]. For instance, Chatdoctor [15],
built upon the LLaMA [27] model, provides reliable interpretations of X-ray
images for both patients and clinicians, offering personalized medical advice. Sim-
ilarly, MedAlpaca [11], PMC-LLaMA [33], and DoctorGLM [35] have fine-tuned
open-source LLMs on medical data to develop chatbots tailored to healthcare
contexts. These advancements emphasize the growing potential of integrating
LLMs and multi-modal learning into medical applications, paving the way for
more personalized, accurate, and accessible diagnostic tools in healthcare.

2.3 Discussion

As presented in Sections 2.1 and 2.2, while advancements in skin lesion seg-
mentation and medical chatbots have progressed, a noticeable gap remains in
integrating chatbots with skin lesion segmentation capabilities. Although chatbots
have proven valuable in tasks like X-ray analysis, none currently harness the
power of segmentation for skin lesions, a crucial tool in dermatology. Developing
a DermAI chatbot, which combines skin lesion segmentation with interactive
conversational capabilities, offers transformative potential. Our system assists
healthcare professionals in making precise diagnoses by delivering real-time
segmented imagery with expert guidance while empowering patients with per-
sonalized, easily understandable feedback. This innovation has the potential to
streamline dermatological workflows, boost diagnostic accuracy, improve patient
outcomes, and bridge a gap in healthcare technology for dermatology.
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Fig. 2: Overview of the proposed framework, namely DermAI. Our approach consists of
two stages: skin lesion segmentation and SkinGPT. In the first stage, the segmentation
model [6] isolates the lesion from the input image. In the second stage, SkinGPT [37]
leverages a pre-trained Vision Transformer and LLM (Llama-2 [27]) to provide context-
aware diagnostic insights based on the segmented image.

3 Our Proposed Framework

Framework Overview. Our proposed framework, illustrated in Fig. 2, intro-
duces a two-stage process designed to revolutionize dermatological diagnostics.
In the first stage, we leverage DermoDiff [6] to segment the input image, isolating
key features for analysis. This segmented output is fed into SkinGPT [37], an
innovative, multimodal diagnostic system powered by large language models. By
aligning a pre-trained Vision Transformer with the Llama-2 LLM, SkinGPT lever-
ages an extensive dataset of skin disease images enriched with clinical concepts
and doctors’ notes to generate highly insightful diagnostic outputs.

3.1 Skin lesion Segmentation

Skin lesion segmentation plays a critical role in medical imaging and dermatology,
serving as a cornerstone in diagnosing and analyzing various skin conditions,
including life-threatening cancers such as melanoma. With the global incidence
of skin cancer rising and melanoma being one of the most aggressive forms, the
demand for accurate, automated diagnostic tools has grown significantly. Segmen-
tation techniques are pivotal in this context, enabling healthcare professionals
to identify, assess, and monitor skin lesions from dermoscopic or clinical images,
supporting more timely and informed medical decisions. In our approach, we
levage DermoSegDif [6] including an encoder, a bottleneck, and a decoder.
Encoder. The Encoder consists of a series of stacked Encoder Modules (EM),
followed by a convolution layer that reduces the spatial dimensions to a four-by-
four tensor. Instead of the conventional approach of concatenating €y and g;_1
before feeding them into the network, as proposed in prior work [32], the authors
introduce a two-path feature extraction strategy within each EM. This method
emphasizes the mutual influence between the noisy segmentation mask and the
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guidance image. Each path in the encoder includes two ResNet Blocks (RB)
and a Linear Attention (L-Att) mechanism, providing computational efficiency
and non-redundant feature extraction. Time embeddings are incorporated into
each RB using sinusoidal positional embeddings, processed through linear layers
and GeLU activation functions. Separate time embeddings are used for the
guidance image (t,) and the noisy segmentation mask (¢,), allowing the model
to capture the temporal dynamics of both inputs. To enhance feature extraction,
knowledge from the noise path (RBY) is transferred and concatenated with the
guidance path, creating an intermediate feature (h;) that captures complementary
representations. The guidance path processes the output through RBj, and a
feedback mechanism applies a convolution to the output, reconnecting it to RBF.
This feedback loop ensures boundary and noise information integration, allowing
the model to emphasize key features while suppressing irrelevant details.

Bottleneck. The final outputs of the encoder, 7" and gy, are concatenated
and passed through the Bottleneck Module (BM). This module includes a ResNet
Block (RB), a Linear Self-Attention (LS-Att) mechanism, and another ResNet
Block. The LS-Att module enhances feature representation by combining the
spatial relationships captured by Self-Attention (S-Att) and the semantic context
captured by Linear Attention (L-Att). These two attention mechanisms operate
in parallel, allowing the model to integrate spatial and contextual information
effectively. The output from the Bottleneck Module is then passed to the decoder.
Decoder. The Decoder comprises stacked Decoder Modules (DM) that match the
number of Encoder Modules (EM). Each DM operates as a single-path module,
consisting of two consecutive ResNet Blocks (RB) and one Linear Attention
(L-Att) module, followed by a convolutional block that outputs the estimated
noise €g. The decoder integrates information from both the noise and guidance
paths by concatenating the encoder outputs, b; and h;, before and after applying
RB{. This enables the decoder to effectively utilize the refined features from the
encoder, improving its ability to estimate the added noise and recover missing
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Fig. 4: Illustration of the diffusion process: noise is progressively added to the input

image and then estimated and reduced by the model to reconstruct an accurate
segmentation mask, delineating the boundaries of the lesion.

.’

segmentation details. A skip connection is also introduced, linking the original
input x to the final decoder layer. This skip connection concatenates the output of
the first decoder module (DM;) with 21, and the combined features are processed
through a final convolutional block to produce the estimated noise €g.

Fig. 4 illustrates the diffusion process, a key component in generating and
refining noise for reconstructing segmentation masks. In this process, noise is
incrementally added to the input image to simulate data uncertainty, which the
model progressively estimates and reduces to recover the lesion’s clear boundaries.
The model refines its predictions as noise is removed, producing an accurate
segmentation mask that outlines the lesion’s exact contours. A skip connection
linking the original input to the final decoder layer preserves critical details,
combining them with intermediate features to enhance segmentation. The model
effectively handles complex, irregular lesion boundaries by predicting the noise
(ep) at each step, resulting in more precise and robust segmentation.

3.2 SkinGPT

SkinGPT, built on ChatGPT [17] and fine-tuned for dermatology, has gained
attention for its ability to assist healthcare professionals in analyzing and in-
terpreting medical images. A key application involves integrating a skin lesion
segmentation model with ChatGPT to enhance diagnostic accuracy when pro-
cessing medical images and responding to prompts, such as doctors’ inquiries.
In the first stage, MiniGPT-4 [38] is trained to understand the alignment
between visual information and language by learning from a large dataset of
image-text pairs. It uses Vicuna [18], a language decoder based on LLaMA [27],
and adopts the Vision Transformer (ViT) [2] from BLIP-2 [14], extracting features
with Q-Former [36]. In addition, a linear projection layer is introduced to align
the features from the visual encoder with the LLM, transforming them into
soft prompts for generating textual descriptions. During pretraining, only the
projection layer is trained while the vision encoder and LLM remain frozen.
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In the second stage, the model undergoes fine-tuning to address issues from the
first stage, such as incoherent outputs and repetitive phrases. Since high-quality
vision-language datasets are scarce, the authors created their own by generating
detailed image descriptions using the pre-trained model. Prompts were designed
to encourage exhaustive descriptions in a conversational format, such as:

###Human : <Img><ImgFeature></Img> Describe this image in detail.

###Assistant:

If descriptions were too short, additional prompts were used to elicit more
comprehensive responses. Despite generating a large number of image-text pairs,
many descriptions still contained errors like redundancy or irrelevant content.
ChatGPT was used to clean the data, automate refinement, and remove errors
and redundant information. Moreover, MiniGPT-4 is fine-tuned using the curated
dataset. The predefined prompt template follows the below format:

###Human: <Img><ImageFeature></Img <Instruction>

###Assistant:
where <Instruction> refers to a randomly selected prompt, such as “Describe
this image in detail” or “ Could you describe the contents of this image for me?”.
The fine-tuning process aims to enhance the model’s ability to generate natural,
coherent language that aligns contextually with the visual input. Importantly,
no regression loss is calculated for these text-image prompts, as the primary
objective is to improve the fluency and reliability of the model’s output.

3.3 DermAI: Dermatology AI Assistant

Our DermALI system first processes the input image by isolating the region of
interest (ROI) through a segmentation method that creates a mask M, high-
lighting the skin lesions. This mask is then applied to the image, producing a
masked version I, that reveals only the lesion area. Next, the masked image Ins
is analyzed by SkinGPT, a language model fine-tuned for dermatology, which
examines key features such as the lesion’s shape, color, borders, and texture. By
focusing solely on the segmented region, DermAl ensures attention to clinically
significant areas, generating detailed, context-aware explanations.
Discussion. DermAT’s integration of segmentation delivers significant advantages
by focusing the model’s attention on the region of interest (ROI), allowing
for a more precise and detailed analysis of the lesion. This targeted approach
enhances the ability of SkinGPT to identify critical lesion characteristics, such
as asymmetry, border irregularity, and color variation, which are essential for
diagnosing conditions like melanoma. Our framework minimizes distractions
by filtering out irrelevant areas, leading to more specific and clinically relevant
insights, ultimately improving the reliability of DermAI’s diagnostic outputs.
Segmentation and SkinGPT work together within our DermAlI framework
to maximize precision and contextual relevance in dermatological analysis. Seg-
mentation ensures the model concentrates on the most important regions of the
image, while SkinGPT, fine-tuned for medical language tasks, generates detailed,
context-aware explanations. Our approach enables more accurate diagnoses by
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leveraging the strengths of both components, ultimately providing healthcare
professionals with reliable and actionable information for evaluating skin lesions.

4 Experiment Results

4.1 Implementation Details

Training. We first train a segmentation model on the ISIC [8,10] datasets. The
segmented images are then analyzed with the pre-trained SkinGPT [10], which was
initially trained on SKINCON [9], a dataset densely annotated by dermatologists
across multiple skin disease concepts, and Dermnet, which includes a diverse
range of images features skin disease classes by board-certified dermatologists.
Inference. During inference, DermAl operates as a unified framework by pro-
cessing the skin image and the user-provided prompt. Our system uses the
segmentation model to isolate the skin lesion, generating a masked image. This
segmented image and the prompt are fed into the SkinGPT model, where the
visual data and the prompt are jointly analyzed to produce a response.
Datasets. The ISIC 2016 [10] dataset includes 900 training images and 379 test
images, each with expert-annotated binary masks delineating lesion boundaries.
The ISIC 2017 [8] dataset includes 2,000 training images and 150 validation
images. Additionally, the SkinGPT model is trained on two large-scale datasets.
While the SKINCON [9] dataset features diverse dermatological annotations
across 48 clinical concepts, the Dermnet® dataset covers 15 skin diseases.
Evaluation Metrics. We evaluate the segmentation model using the Dice and
Intersection over Union (IoU) as previous work for fair comparison. Higher Dice
values reflect better region overlap, indicating improved segmentation accuracy.
Higher IoU values denote closer alignment between predictions and ground truth.

4.2 Quantitative Analysis

The results in Table 1 compare Dice
scores across the ISIC 2016 and ISIC
2017 datasets, highlighting the perfor- Table 1: Comparison (%) on ISIC 2016 and
mance variation of DermoDiff against ISIC 2017 against baseline methods at Dice.

baseline methods. On the ISIC 2016 Methods |ISIC’16 ISIC’17

dataset, DermoDiff achieves a compet-
itive Dice score of 90.37%, closely fol- Swin-UNet [7] 85.68 79.14

lowing the highest scorer, UNet, which
reaches 89.84%. Our experimental re- UNet [21] 89.84  77.08

sults suggest that DermoDiff is well- DermoDiff [6] 90.37 74.63
suited for handling relatively straight-
forward lesion segmentation tasks, where the boundaries between lesions and
healthy tissue are well-defined, making segmentation less complex.

5 https://www.kaggle.com /datasets/shubhamgoel27/dermnet
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However, the performance gap becomes more pronounced when analyzing
the ISIC 2017 dataset. The Dicde score of DermoDiff drops to 74.63%, notably
behind Swin-UNet at 79.14%. This decrease indicates that DermoDiff struggles
with the more challenging images in the ISIC 2017 dataset, where lesions are
often more irregular in shape, size, and texture and may present higher variability
in appearance. For example, cases require advanced feature extraction and spatial
context understanding, which DermoDiff appears to have limitations in addressing
effectively. The lower score of DermoDiff points to a need for enhancing the ability
to generalize across diverse datasets, particularly when dealing with more nuanced
clinical cases where lesion characteristics are less homogeneous.

Table 2 further reinforces these observations through IoU scores, which offer
an additional perspective on model accuracy in identifying lesion boundaries.
DermoDiff performs admirably on the ISIC 2016 dataset, securing an IoU of
82.43%, slightly outperforming UNet (82.09%) and significantly ahead of Swin-
UNet (75.59%). This strong performance on ISIC 2016 underscores the capability
of DermoDiff in environments where segmentation challenges are moderate and
lesions are relatively distinguishable. However, the drop in IoU to 59.53% on
the ISIC 2017 dataset is significant, highlighting the limitations of DermoD-
iff in more intricate segmentation tasks. This decline suggests that DermoD-
iff still struggles with distinguishing between lesion boundaries and surround-
ing tissues when faced with more significant variability in lesion presentations.

Additionally, the disparity in re-

sults between the ISIC 2016 and ISIC
2017 datasets suggests that DermoDiff
is optimized for cases where lesion ap-

Table 2: Comparison (%) on ISIC 2016 and
ISIC 2017 against baseline methods at loU.

. Methods |ISIC’16 ISIC’17
pearances are more consistent and well-
bt pertorms lees ffoctvely with the S¥in-UNet [7]] - 75.50  66.76
ut perform ively wi
more heterogeneous cases on the ISIC UNet [21] 82.09 64.10
2017. This underperformance on ISIC DermoDiff [6] 82.43 59.53

2017 may stem from its reduced ability
to capture complex spatial relationships or its reliance on prominent features
in simpler images. In contrast, the superior performance of Swin-UNet on ISIC
2017 highlights that models using advanced transformer-based architectures are
better equipped to handle complex skin lesion segmentation, as they can capture
long-range dependencies and contextual information more effectively.

4.3 Qualitative Analysis

We provide qualitative evaluations of the segmentation model in Fig. 5, illus-
trating the precision of the predictions (blue outlines) compared to the ground
truth (green outlines) across a spectrum of skin lesions. The model exhibits
commendable accuracy in lesions with homogeneous boundaries, such as in the
top left and bottom center images, where the blue and green outlines align closely.
However, it encounters challenges with lesions that exhibit more complex features
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Fig. 5: Comparison of skin lesion segmentation results: Blue outlines show model
predictions, while green outlines represent the ground truth.

like irregular borders or heterogeneous pigmentation. For instance, the image in
the top second from left shows the model overextending the lesion boundary, a
common issue in cases where the lesion fades gradually into surrounding tissue,
leading to over-segmentation. In contrast, the bottom second from the left image
highlights under-segmentation, where the model fails to capture the entire lesion,
likely due to its inability to detect subtle differences in color and texture.

In addition, Fig. 6 underscores the critical importance of segmentation in
medical image analysis, particularly when leveraged by the advanced capabil-
ities of DermAI. Moreover, Fig. 1 illustrates the interaction of the DermAl
chat assistant with an internet-sourced image (not from the ISIC 2016 or 2017
datasets), demonstrating the generalization of our DermAl framework. By iso-
lating regions of interest, DermAI can focus its pattern recognition algorithms
on specific areas, identifying subtle dermatological markers such as asymmetry,
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The skin appears to be healthy with no
signs of irritation or abnormalities.

Are there unusual
signs this skin area?

The picture shows a circular brown spot on
the right arm, which could be a skin tag or
wart. It may also indicate a sunburn or age
spot. It is important to have any unusual
skin spots checked by a dermatologist for
‘ proper diagnosis and treatment.

\

Fig. 6: Example of how segmentation (shown below) enhances dermatological analysis
by highlighting a skin lesion for focused and precise assessment by DermAl.

irregular borders, color variation, and changes in size, which are factors crucial
for distinguishing malignant lesions, like melanoma, from benign growths such
as warts and skin tags. This segmentation-driven approach closely mimics the
systematic evaluation process employed by dermatologists, ensuring that the
model’s analysis adheres to clinical best practices. DermAl effectively reduces
image noise, enhances diagnostic accuracy, and delivers clinically relevant insights
by isolating and analyzing distinct, well-defined regions. The refined focus of our
proposed approach significantly enhances the precision of lesion identification by
concentrating on the most relevant areas of interest. Therefore, DermAl leads
to more accurate and reliable diagnoses, enabling healthcare professionals to
make informed, actionable decisions. By reducing false positives and increasing
diagnostic clarity, our approach contributes to higher-quality assessments in
dermatological care, ultimately supporting improved patient outcomes.

Expert Medical Evaluation. In a comprehensive evaluation, we presented
our software to three medical experts, who compared two versions of DermAl:
one with segmentation and one without. All three unanimously agreed that
the version with segmentation significantly outperformed the one without. The
segmentation-enhanced model consistently identified critical lesion features such
as shape, color, borders, and location while providing more actionable insights
regarding potential causes and recommendations for diagnosis or treatment. This
feedback demonstrates that segmentation enhances the model’s ability to detect
key visual features and improves the accuracy of its diagnostic insights.

In contrast, the version without segmentation struggled to produce focused
and detailed responses, often lacking the specificity required for accurate diag-
nosis. Segmentation empowered the model to concentrate on the most relevant
areas of the lesion, resulting in a more thorough and precise analysis. Experts
noted that the segmented model delivered far more informative and clinically
useful descriptions. Based on this feedback, we will include additional lesion at-
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tributes such as size, surface texture, and fluid presence, which will further refine
diagnostic accuracy. Importantly, these evaluations underscore the importance of
segmentation in boosting diagnostic precision and clinical effectiveness.

5 Conclusion

In this paper, we have introduced DermAlI, a novel framework designed to en-
hance the efficiency of skin lesion diagnosis by integrating advanced vision and
language models. Our system combines state-of-the-art segmentation models
with LLM, allowing clinicians to swiftly and accurately interpret medical im-
ages while reducing the risk of diagnostic errors. Integrating vision encoders
with language models provides a comprehensive understanding of skin lesions,
helping dermatologists make well-informed decisions. The results demonstrate
the effectiveness of DermAl in streamlining diagnostic workflows and improving
patient care, particularly during peak times, such as in summer when skin cancer
screenings surge. Despite its promising capabilities, DermAl also highlights the
importance of continuous refinement to better generalize across diverse datasets,
as shown by performance variations between ISIC 2016 and ISIC 2017 datasets.

In the future, we aim to enhance the robustness and clinical utility of DermAlI
First, we will refine the segmentation model to handle complex and diverse
datasets, improving its generalization across different lesion types and skin
conditions. Second, we will incorporate active learning strategies, enabling the
model to continuously learn and improve from real-world data with minimal
human intervention. Third, we plan to expand DermATI’s capabilities to support
real-time image processing and provide clinicians with interactive, interpretable
Al-driven insights. Lastly, future iterations will explore integrating multimodal
data inputs, such as patient history or genetic information, to create a more
holistic diagnostic tool, further increasing precision and clinical relevance.
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