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A Experimental Setup

A.1 System Hardware

We used three different setups for our experiments due to changing resource
accessibility. First one with 251 GiB system memory, four Intel Xeon E5-2698
v4 CPUs [3], and one NVIDIA Tesla V100 [8]. The second one with 264 GiB
system memory, 36 Intel Core i9-10980XE CPUs [2], and one NVIDIA RTX
A6000 [7]. The third one contained 16 GiB system memory, one AMD Ryzen 5
5600X CPU [1], and one Nvidia RTX 4600 Ti GPU [6].

B Additional Results

B.1 Sample and Time Efficency

This section expands upon the limited results shown in Table 6. Table 7 shows the
full results of the experiment and, specifically, the performance of our method
when we use repairing. With Backdoor Knowledge (BDK), repairing required
5000 samples when aiming to increase Clean Target Class Accuracy (CTCA)
while maintaining a relatively low Attack Success Rate (ASR). With ¬BDK,
repairing had a positive effect on CTCA with 500 samples, but with 5000, the
trade-off between unlearning and target class utility is better.

The baseline methods depended heavily on a certain number of samples
to achieve method-specific top performance. Certain baseline methods, such as
actFT and basicFT, seem to require a high number of samples to have any effect
in reducing ASR or maintaining ACC above random guessing. Without repair-
ing, our method performed similarly for different test runs with different-sized
unlearning data.

Notably, when comparing the results from actFT and basicFT with five sam-
ples, we can see a problem with our current scoring function. While actFT, with
a score close to 0, has not unlearned the backdoor but maintains model utility,
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Table 7: Efficiency of proposed unlearning compared with state-of-the-art methods.
We experimented with 50%(5000), 5%(500), 0.5%(50), and 0.05%(5) of unseen CI-
FAR10 data for unlearning. Best results are highlighted in bold.

Method
Number of Metric

Samples Score (↑) ASR (↓) ACC (↑) CTCA (↑) Time (↓)

actFT [9]

5000 92.95±4.72 5.28±2.48 69.64±0.92 58.1±9.1 3.96±0.34
500 7.0±2.09 87.17±2.86 69.41±1.02 61.47±7.99 2.81±0.04
50 0.21±0.06 93.67±1.59 69.81±1.04 61.42±8.41 3.01±0.5
5 0.22±0.08 93.66±1.6 69.82±1.06 61.58±8.38 2.44±0.03

BaEraser [5]

5000 57.47±15.65 2.0±2.79 41.81±12.3 14.79±20.77 623.3±111.46
500 80.69±1.93 3.81±2.41 59.45±0.83 32.98±1.1 138.88±2.87
50 54.48±13.21 24.16±16.46 51.83±2.66 39.64±8.6 21.35±0.17
5 16.88±11.53 43.01±34.71 19.06±4.29 56.76±31.71 20.23±0.2

Ours(BDK)

5000 92.38±1.67 0.0±0.0 65.39±0.42 0.0±0.0 0.81±0.05
500 92.3±1.45 0.0±0.0 65.2±0.58 0.0±0.0 0.58±0.01
50 92.4±1.39 0.0±0.0 65.29±0.58 0.0±0.0 0.38±0.01
5 92.51±1.34 0.0±0.0 65.37±0.56 0.0±0.0 0.38±0.02

5000 77.95±1.6 9.1±1.08 61.11±0.89 43.98±3.66 49.66±0.53
Ours(BDK) 500 76.63±3.63 0.01±0.0 54.14±2.4 0.0±0.0 67.7±1.76
+repair 50 83.64±2.81 0.0±0.0 59.09±1.82 0.0±0.0 72.02±0.98

5 67.56±8.98 0.0±0.0 47.69±5.95 0.0±0.0 70.39±1.25

basicFT

5000 69.49±1.11 6.0±1.07 52.57±0.91 33.86±4.07 71.56±1.47
500 14.14±0.1 0.0±0.0 9.99±0.03 0.0±0.0 73.34±0.2
50 14.13±0.1 0.0±0.0 9.98±0.02 0.0±0.0 71.59±0.25
5 14.17±0.11 0.0±0.0 10.01±0.0 0.0±0.0 71.49±0.03

NAD [4]

5000 71.23±3.2 4.54±1.48 52.95±1.41 32.05±1.3 114.9±1.45
500 42.18±5.42 6.68±2.06 32.09±3.97 23.18±9.4 117.69±1.9
50 42.49±7.39 9.36±5.28 33.58±6.54 20.92±11.71 111.91±1.06
5 7.44±8.48 59.03±41.63 11.71±1.64 63.93±37.39 118.7±5.99

Ours(¬BDK)

5000 82.67±0.51 0.0±0.0 58.53±0.97 0.0±0.0 0.81±0.02
500 82.8±0.53 0.0±0.0 58.49±0.21 0.0±0.0 0.51±0.06
50 89.9±2.02 0.0±0.0 63.52±1.24 0.0±0.0 0.36±0.02
5 89.5±1.72 0.0±0.0 63.23±0.86 0.0±0.0 0.4±0.01

5000 77.47±2.76 10.79±4.74 62.09±0.81 51.07±4.78 49.4±0.17
Ours(¬BDK) 500 56.7±14.54 24.66±18.58 54.72±2.02 45.26±9.69 68.96±0.33
+repair 50 83.53±1.0 0.0±0.0 59.02±0.64 0.0±0.0 73.86±1.75

5 62.18±4.95 0.04±0.04 43.93±3.13 0.07±0.09 74.43±0.43

Retraining 47500 - 4.03±0.99 70.27± 0.66 60.55±4.3 423.56±73.96
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basicFT achieves a higher score with a model that has completely lost its util-
ity. Our current scoring function prioritizes successful backdoor mitigation over
maintaining model utility. Additionally, the scoring function does not emphasize
tracking the complete loss of utility for a single class. Maintaining at least a de-
cent ACC for each class is crucial to ensuring that a model retains its essential
utility.

B.2 Mitigating Limitation with Repairing

This experiment shows how the learning rate influences repairing with one epoch.
We aim for a suitable learning rate to restore utility without sacrificing too
much backdoor unlearning capability. We are limited to finetune only on unseen
unlearn data. This limitation can lead to reduced generalizability compared to
the original model because DU is one order of magnitude smaller than DT .

Table 8: Repairing performance with different values for learning rate η. For compar-
ison, we include the model state before unlearning (Before) and after weight editing
without repairing (None). Best results are highlighted in bold.

η ASR (↓) ACC (↑) CTCA (↑)

Before - 94.53±1.29 70.5±0.18 61.39±8.51

BDK

None 0.0±0.0 65.49±0.39 0.0±0.0
1e-6 0.0±0.0 62.29±0.09 0.0±0.0
1e-5 0.0±0.0 62.6±0.1 0.0±0.0
1e-4 0.0±0.0 64.08±0.31 0.0±0.0
1e-3 17.83±5.28 67.56±0.23 47.23±2.78
1e-2 9.79±0.88 59.87±3.04 42.07±7.72
1e-1 0.3±0.43 20.44±1.56 0.87±1.23

¬BDK

None 0.3±0.21 59.18±2.63 0.14±0.19
1e-6 28.77±23.08 62.59±0.41 3.3±3.85
1e-5 32.03±24.75 63.18±0.56 5.77±5.66
1e-4 43.17±30.91 66.08±1.47 20.56±14.76
1e-3 53.48±12.29 68.47±0.17 55.06±2.67
1e-2 23.09±8.07 61.83±1.33 55.02±4.41
1e-1 6.01±3.54 24.57±0.38 13.66±8.73

Table 8 shows repairing can help restore CTCA while risking increasing the
ASR and potentially decreasing the ACC for other classes. The effectiveness
of repairing depends heavily on the used dataset and poisoned trigger. In this
experiment, the learning rate 1e-2 was the most effective when aiming for a
decent CTCA and a low ASR, achieving a good balance between forgetting and
utility.
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B.3 Effect of Activation Mean and Standard Deviation

This experiment shows the best values for mean and standard deviation hyperpa-
rameters λ and γ for achieving effective unlearning. We also show how changing
the Batch Normalization (BN) Moving Average (MA) parameters during activa-
tion extraction affects the unlearning performance.
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Fig. 4: Performance of our method when using different values for hyperparameters λ
and γ. Compared with or without change in BN MA parameters.

Figure 4 shows that allowing change of MAs can improve performance when
we unlearn with ¬BDK. For unlearning with BDK, we can achieve the best
performance when we keep the MAs fixed. When using the respective better-
performing process, we get the best performance with 1.0 as a value for λ.

Parameter γ mainly influences the impact of the unlearning process on the
model weights. A higher value for γ generally means a more invasive model
editing and a substantial weight change of those neurons that reacted strongly
to the input dataset.

With BDK, we achieve the best performance with fixed MAs. Without BDK,
allowing change of MAs is better. Rescaling with a mean of 1.0 and standard
deviation of 0.5 is most suitable for stable, high results. When γ equals 0, we
can observe the isolated influence of the change in MA parameters. The reason
is that the influence of model editing is nonexistent when activations are scaled
to 0 before shifting every activation value to 1.

B.4 Effects of different Activations

In this experiment, we show how the unlearning performs when we choose a
different activation formula for Equation 1. Instead of using just the negative
activation of the unlearn dataset DU , we introduce two hyperparameters α and
β that balance out the activation with clean and poisoned DU . In the case of
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¬BDK, where we have no trigger for poisoning, clean and poisoned activation
are the same. The formula that replaces Equation 1 is calculated as

A = α ·Aclean + β ·Apoisoned. (7)

Table 9: Score (↑) comparison for different values for hyperparameter α and β. Best
results are highlighted in bold.

β
α

-1 0 1

BDK
-1 93.38±0.58 93.02±0.66 92.89±1.17
0 33.67±42.76 14.34±0.16 0.0±0.0

1 0.0±0.0 0.0±0.0 0.0±0.0

¬BDK
-1 86.67±1.43 86.67±1.43 14.34±0.16

0 86.67±1.43 14.34±0.16 0.62±0.88

1 14.34±0.16 0.62±0.88 0.62±0.88

Table 9 shows that our method performs well in both unlearning scenarios
when we set β to -1 and α to either -1 or 0. For the final algorithm, we decided
to use values 0 and -1 for α and β, respectively, because setting at least one
hyperparameter to 0 reduces the complexity of the function and allows us to
extract one activation set less.

B.5 Target Class Dependencies

In this experiment, we compare the performance of our methods with the base-
line methods when we use different backdoor target classes. The robustness of
the classes can vary significantly. We want to show that our method achieves
consistency for all classes in CIFAR10.

Table 10 shows that our method performs better on average when we have
¬BDK. With BDK, the actFT proposed by [9] performs slightly better on aver-
age.
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