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Abstract. Understanding scenes requires not only the detection objects
but also the recognition of the interactions between them. Human-Object
Interaction (HOI) detection plays a crucial role in enhancing contex-
tual comprehension by identifying the interactions between humans and
objects, which is essential for building more robust and intelligent vi-
sion systems. While DETR-based models have shown significant suc-
cess in HOI detection, they are hindered by slow training convergence.
The SOV-STG method has attempted to address this challenge in pre-
vious research. To further improve the learning efficiency and accuracy
of SOV-STG, we introduce a novel Separate Guided Denoising train-
ing strategy specifically designed for HOI detection. Our approach sep-
arates the denoising of noised ground truth data for both the human-
object decoder and the verb decoder, enabling more efficient and tar-
geted training. Furthermore, we enhance training performance by merg-
ing redundant human-object pair annotations, and filtering and regen-
erating noised bounding boxes. The proposed method was validated on
the HICO-DET dataset, achieving state-of-the-art results. Our contri-
butions include a novel training strategy that improves accuracy and
ablation studies demonstrating its effectiveness.

Keywords: Human-Object Interaction Detection · Denoising training ·
Visual Relationship Detection

1 Introduction

Recent advancements in computer vision and machine learning have significantly
enhanced our ability to understand the visual semantics of complex interactions
between humans and objects in images. Human-Object Interaction (HOI) detec-
tion, which aims to identify triplets of <human, verb, object>, is a crucial task
with applications in various domains such as human activity recognition [43],
image retrieval [17], and visual question answering [38].

Models based on DETR [3] (Detection Transformer) have recently achieved
impressive results in HOI detection. However, DETR-based models are known
for their slow training convergence and require many epochs to achieve good
performance. Originally designed for object detection, DETR framework has
prompted extensive research to improve its efficiency, resulting in approaches
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such as DAB-DETR [29] and DN-DETR [23]. DAB-DETR enhances perfor-
mance by leveraging 4D coordinates (x, y, w, h) as anchor boxes and refining
the mode through spatial positional training. Meanwhile, DN-DETR focuses on
the instability of bipartite graph matching. Denoising (DN) training of queries
is introduced to learn one-to-one matching between the outputs of DN queries
and ground truth data, which stabilizes the bipartite graph matching during the
training process.

HOI detection faces similar challenges with the slow convergence of DETR
training. SOV-STG [5] has been proposed to extend these studies to HOI de-
tection. SOV assigns a single decoder to detect humans, objects, and recognize
verbs, while STG utilizes learnable object and verb label embeddings to guide
training. SOV stabilizes training by focusing the decoders on specific targets,
and STG speeds up convergence by connecting ground truth labeling informa-
tion with predefined dataset labels. However, the STG DN training strategy
presents challenges when applied to HOI detectios Fig. 1 show the differences in
noise handling between the previous method and the proposed method. Specifi-
cally, it is unclear what is removed as noise and what remains for DN training.
To address this, we propose a separate guided DN training strategy, where the
detection of human-object pairs and the DN training for verb recognition are
performed separately. This approach clarifies what should be denoised for each
decoder, making the DN training is more effective. Furthermore, we focus on
the existing dataset and add noise to make the DN training for HOI detection
more effective. There are cases in existing datasets where verbs are annotated
in redundant bounding boxes for the same human-object pair. As shown in ??,
one output may recognize only “straddle” while another recognizes “ride” and
“sit on” even though they refer to the same human-object pair. It is redundant
to recognize split verb annotations for the same human-object pair, so we merge
them into a single pair. Furthermore, we filter and regenerate noised bounding
boxes to ensure they are closest to their respective reconstruction targets.

In summary, our contributions are threefold:
· We proposed a separate guided DN training strategy that allows each decoder
to concentrate on its specific denoising task.
· We introduced methods for merging redundant human-object pair annotations
and filtering and regenerating noised bounding boxes to enhance the effectiveness
of DN training.
· We achieved state-of-the-art results in the HICO-DET benchmark.

2 Related Work

Two-stage Methods. The two-stage approach [4, 10, 12, 14, 15, 21, 22, 34, 41,
42, 44–46, 52, 53, 55, 57], using off-the-shelf detectors, first detects humans and
objects and recognize interactions for detected human-object pairs. Since the
introduction of the multi-stream architecture in HO-RCNN [4], many methods
have been proposed based on this framework. In HO-RCNN, human appearance
features, object appearance features, and spatial features are extracted in each
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(a) previous method (b) proposed method

Fig. 1: Comparison between the previous method and the proposed method. In the pre-
vious method, DN queries initialized using noised ground truth and fed into the human-
object decoder. The output of the human-object decoder is then passed to the verb
decoder, making unclear which part of the noise is removed during the human-object
decoding and what remains for the verb decoder.In contrast, our proposed method sep-
arately initializes DN queries for both the human-object decoder and the verb decoder
from the noised ground truth, ensuring that each decoder handles its specific denoising
task independently.

stream and then recognize interactions. Subsequent methods have incorporated
human pose features [12,25,41,55], linguistic features [9,31], and graph structures
[9, 35,40,52,57] to improve recognize interactions.
One-stage Methods. One-stage methods [1,2,5,6,19,24,26,27,33,36,36,37,39,
47–51,54,59,60] typically perform object detection and recognize interactions si-
multaneously. Early methods used interaction keypoints [26,47] and join regions
[18] as predefined anchors. Recently, DETR-based HOI detectors have gained at-
tention, leading to significant performance improvements. However, these meth-
ods often suffer from slow learning convergence. Some approaches [7, 27, 51, 56]
have introduced multiple decoders for each subtask to address this issue, but
they still face challenges in achieving fast convergence.
Effective Learning Methods with Ground Truth. In the DETR family
of object detection methods [3, 29, 58], [23] DN-DETR introduces query denois-
ing(DN) to accelerate training by addressing the instability of bipartite graph
matching. The DN queries are initialized by adding noise to both the ground
truth bounding boxes and their associated labels. These noised queries are then
fed into the Transformer decoder. The model is trained to reconstruct the orig-
inal bounding boxes and labels, stabilizing the training process and improving
convergence speed. In the HOI detection task, HQM [54] encodes shifted ground
truth boxes as hard positive queries to guide training. However, HQM does not
consider ground truth label information. DOQ [36] introduces an oracle query
that implicitly encodes the ground truth boxes and object labels of human-
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(a) Original annotation (b) Merged annotation

Fig. 2: Illustration of the problem of redundant human-Object pairs annotations in the
HICO-DET [4] dataet for HOI detection. The left side displays the original annotations
of the dataset, where human-object pairs are represented by red and green bounding
boxes. In this example, the same human-object pair is annotated twice with different
verbs, causing redundant annotations. The right side displays the result after merging
these redundant annotations, combining the verb labels into a single instance for each
human-object pair. This merging reduces redundancy and improves the accuracy of the
model during denoising training by avoiding the learning of conflicting annotations.

object pairs, guiding the decoder to reconstruct the ground truth HOI instances
during training. SOV-STG [5] encodes DN training queries from noised ground
truth data to guide the reconstruction of the original ground truth. However,
SOV-STG uses two decoders and inputs the DN training query to the human-
object decoder. Since the verb decoder receives the output of the human-object
decoder, the noise introduced to the verb decoder is not clearly defined. The
unstable output of the human-object decoder during the early stages of training
destabilizes the verb decoder’s training. In addition, the unstable output of the
human-object decoder during the early stages of training may destabilize the
verb decoder’s training. Furthermore, in the later stages of DN training process
applied to the human-object decoder for verbs can interfere with the training
of the verb recognition decoder. We propose a DN training method for the verb
decoder that is not dependent on the results of the human-object decoder. Fur-
thermore, we use annotation cleaning and added noise filtering to make the DN
training more effective for HOI detection.

3 Method

Fig. 3 shows the training pipeline of our framework. In the normal training and
inference phases, learnable anchor boxes and label queries are used as inputs to
the human-object decoder, which is responsible for detecting human-object pairs.
The embeddings and anchor pairs generated by the human-object decoder are
subsequently fed into the verb decoder to predict verb classes. The human-object
embeddings and anchor pairs output from the human-object decoder are then
input to the verb decoder to predict verb classes. For denoising(DN) training,
we utilize DN queries that are initialized from ground truth HOI instances with
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Fig. 3: The training pipeline of our proposal framework. During the inference and
training phase, The human-object decoder and the verb decoder are connected in series
to predict HOI. Queries Qho are initialized learnable parameters and queries Qv are
initialized Human-Object Decoder output. However, in the denoising training phase,
DN queries Qdn

ho and Qdn
v are initialized and input in parallel to the human-object

decoder and the verb decoder. This separation enables each decoder to focus on its
specific task, improving training efficiency by reducing inference between decoders. By
isolating the tasks of detection human-object pairs and recognizing verbs, the model
effectively reconstruct ground truth HOI instances.

added noise. These DN queries are separately input into both the human-object
decoder and the verb decoder, allowing for the reconstruction of the ground
truth HOI instances. This separation of DN queries enhances learning efficiency
by clearly defining the reconstruction targets for each decoder.

Sec. 3.1 provides a detailed description of our framework, while Sec. 3.2
explains the methods for redundant human-object pair annotations and filter
and regenerate noised bounding boxes.

3.1 Separate Guided Denoising Training

In our training pipeline, we populate the human-object decoder and the verb
decoder with their respective DN queries, thereby enhancing training efficiency
by clearly defining the training targets for each decoder.
Human-Object Decoder and Verb Decoder. Our framework uses a image
encoder extract global features, which are then input to a human-object de-
coder and a verb decoder. The image encoder leverages a hierarchical backbone
and a deformable transformer encoder [58] to capture multi-scale global features
fg∈RNg×D, where Ng represents the total number of pixels in the multi-scale
feature map and D denotes the hidden dimension of the embedding within the en-
tire transducer architecture. For the decoding process, we utilize the deformable
transformer decoder as proposed in [29], capable of handling label queries and
anchor boxes. The human-object decoder uses a label query Qo ∈ RNq×D as its
input query, which is initialized from learnable parameters. The output from the
human-object decoder is then used to predict the object class, object bound-
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ing box, and human bounding box. The output from the human-object decoder
is then utilized to predict the object class, object bounding box, and human
bounding box. Subsequently, the output is fed into the verb decoder to predict
verb classes. During DN training, the human-object decoder and verb decoder
receives a DN queries, which is generated by adding noise to the ground truth
bounding boxes and verb labels.
Label-specific Priors. We initialize the object and verb label embeddings
based on the SOV-STG [5] framework. Specifically, the object label embeddings
to ∈ RCo×D serve as the object label priors, and the verb label embeddings
tv ∈ RCv×D serve as the verb label priors. The query embeddings for object
labels qo∈RNq×D are initialized through a linear combination of the object label
embeddings to and the object coefficient matrix Ao∈RNq × Co. Similarly, the
query embeddings for verb labels qv ∈ RNq×D are initialized through a linear
combination of tv and Av∈RNq × Cv. These label embeddings to and tv are
utilized in both the DN training and inference stages, and are trained jointly to
enhance training efficiency.
Separate Guided Denoising Training Strategy. As shown in Fig. 3, DN
training is conducted separately for the human-object decoder and the verb
decoder. This separation clarifies the training targets for each decoder and en-
hances training efficiency. DN queries are generated for each decoder’s input. The
process of adding noise to the ground truth and creating DN label embeddings
follows the SOV-STG framework. First, we explain the method of adding noise
to the ground truth. Given a set of ground truth object labels Ogt = oi

K
i=1 and

a set of verb labels Vgt = vi
Ki = 1 for an image, where oi and vi are the object

class and verb class labels, respectively, and K is the number of ground truth
HOI instances. For the ith ground truth HOI instance, the noised object label
is obtained by randomly changing the ground truth index of the object class
oi to another object class index. Since the verb labels vi consist of co-occurring
ground truth classes, the indices other than the ground truth verb labels are ran-
domly changed to preserve the co-occurring ground truth indices that appear in
the noised verb labels. Two flipping rate hyperparameters ηo∈(0, 1) and ηv∈(0, 1)
control the percentage of noised HOI instances for object and verb labels, respec-
tively. In addition, the verb class flipping rate hyperparameter λv∈(0, 1) controls
the class-specific flipping rate of verb labels.

Next, we describe how to initialize DN label embeddings using noised object
and verb labels. The DN query embeddings are initialized using the indices of
the noised label and label embeddings to and tv. The DN query embedding of
the object label qõi is initialized based on the object label embeddings to, which
correspond to the index of the noised object label. Similarly, the DN query
embedding of the verb label qi

ṽ is initialized based on the sum of the verb label
embeddings tv, which correspond to the indices of the noised verb labels.

Finally, we explain the method of initializing the DN queries for DN training.
The detection DN queries Qdn

ho used for training the human-object decoder are
initialized from the DN query embeddings of the object labels qi

õ and the DN
query embeddings of the verb labels qi

ṽ. Here, the DN process is trained to
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reconstruct the ground truth of the object while handling noised verb labels as
anything. The detection DN queries Qdn

ho used for training the human-object
decoder is initialized from the DN query embeddings of object label qi

õ and the
DN query embeddings of verb labels qi

ṽ. Here, the DN is trained to reconstruct
the ground truth of the object. The recognition DN queries Qdn

v used for training
the verb decoder are initialized from the DN query embeddings of the verb labels
qi
ṽ and the query embeddings of the ground truth object labels qi

ogt. The query
embeddings of the ground truth object labels enable DN training of verb decoder
given the ground truth object information. Thus, by inputting detection DN
queries into the human-object decoder and recognition DN queries into the verb
decoder, the DN training of each decoder can be clarified to reconstruct targets.

3.2 For effective denoising training of HOI detection

Merging redundant human-object pair annotations. In object detection,
a single object in an image is typically assigned a single instance with a bounding
box and class label. However, in HOI detection, a single human-object pair may
have multiple bounding box pairs, as shown in ??. During DN training, the
data is trained using one-to-one matching to reconstruct ground truth from
noised data. If multiple bounding box pairs exist for the same human-object
pair and if the verbs are split, only the verbs associated with each bounding box
pair are learned as positive, while the rest are learned as negative. To ensure
all verbs associated with a human-object pair are recognized and prevent them
from being incorrectly learned as negative, we propose a method to unify ground
truth instances for the same human-object pair. If the object labels are the same
and the minimum value of Intersection over Union (IoU) for a human-object
bounding box pair is above the threshold and does not contain the same verb
label, it can be considered a split verb annotation for the same human-object
pair. The formula for IoU is as follows.

IoU
(i,j)
min = min(IoU

(i,j)
hum, IoU

(i,j)
obj ) (1)

IoU
(i,j)
hum(Bi

hum,Bj
hum) =

|Bi
hum ∩Bj

hum|
|Bi

hum ∪Bj
hum|

(2)

IoU
(i,j)
obj (Bi

obj ,B
j
obj) =

|Bi
obj ∩Bj

obj |
|Bi

obj ∪Bj
obj |

(3)

where i, j denote the ith or jth HOI instance in the same image, and Bhum

and Bobj represent the human and object bounding box. If there are split verb
annotations for the same human-object pair, the human and object bounding
boxes are averaged, and the set of verb labels is unified into a single instance.
Eventually, the process is repeated for HOI instances in the image, ensuring
there are no more split annotations for the same human-object pair.
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Fig. 4: The effect of noised bounding boxes in the HICO-DET [4] dataset. The left side
shows the ground truth instances, while the right side shows the effect of adding noise.
The red and green boxes represent humans, and the blue box represents the object (a
bench). The dashed circle represents the original center, and the arrow represents the
displacement required adjust the noised bounding box to match correct one. When a
bounding box is used as an anchor, the model tends to detect the object closest to it.
During denoising training, the ground truth and noised bounding boxes are learned
through one-to-one matching. If the noised box is closer to non-target object than the
actual target, the model learns incorrect predictions by focusing on the wrong object.
To resolve this, we regenerate the noised bounding boxes to ensure that the target
object is closest to the anchor, improving training efficiency.

Filtering and regenerating noised bounding boxes. In DN training for
HOI detection, ground truth bounding boxes of human-object pair are recon-
structed from noised bounding boxes. When object detection is based on an-
chors, it is common to detect objects that are close to the anchor. However,
adding noise to the bounding box may bring it closer to objects other than the
target object for reconstruction. For example, if the noised bounding box as
shown in Fig. 4, is used as an anchor for DN training, it will learn to detect ob-
jects that are not the closest to the anchor. To address this issue, we introduce
to filter out the noised bounding box and regenerate it.

We compute the IoU between the ground truth bounding boxes and the
noised bounding boxes. If the IoU of a noised bounding box with any bounding
box other than the target for reconstruction is the largest, regenerate it. We
distinguish between the bounding boxes of humans and objects, and repeat this
calculation only for the bounding boxes of humans and only for the objects.
Continue regenerating the noised bounding boxes until all are closest to their
respective reconstruction targets. In this way, DN training more effective.

3.3 Training and Inference

As shown in Fig. 3, our proposed method performs DN training simultaneously
with normal training. For the inference queries Qho and Qv, the Hungarian
algorithm is used to match ground truth HOI instances with predicted HOI
instances, and the matching cost and the learning loss of predicted HOI instances
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are similar to previous transformer-based methods [6]. For DN queries Qdn
ho and

Qdn
v , the ground truth index used in query initialization is used for matching

with predictive HOI instances, and the loss function is the same as for inference
queries.

4 Experiment

Based on the HICO-DET [4] and V-COCO [11] datasets, the proposed method
was evaluated and compared with the previous method, STG. In addition, ex-
periments were carried out on state-of-the-art method RLIPv2. Furthermore,
an ablation study was conducted to analyse the contribution of each element
and to demonstrate the effectiveness of the proposed method. Through these ex-
periments, we were able to validate the improvements brought by our proposed
approach.

4.1 Experimental Settings

Dataset and Metrics. The HICO-DET dataset contains 38,118 images for
training and 9,658 images for testing. The 117 verb classes and 80 object classes
in HICO-DET form a total of 600 HOI classes. Based on the number of HOI
instances appearing in the dataset, the HOI classes in HICO-DET are classified
into two categories, ’rare’ and ’non-rare’. The V-COCO dataset contains 5,400
training images and 4,946 test images. In V-COCO, 80 object classes and 29
verb classes are annotated and two scenarios are considered: scenario 1 with 29
verb classes and scenario 2 with 25 verb classes. The mean Average Precision
(mAP) scores are reported according to standard evaluations [4].
Details of implementation. We have applied and investigated the proposed
method in the SOV-STG [5] and RLIPv2 [50] frameworks in order to develop an
optimal approach for denoising(DN) training for HOI detection. All experiments
were performed on 8 NVIDIA A40 GPUs.
SOV-STG setups. The SOV-STG framework comprises a human decoder, an
object decoder, and a verb decoder, along with the STG DN training strat-
egy. The weights of the image encoder, human decoder, and object decoder
were initialized using the DAB-DeformableDETR model trained on the COCO
dataset [28]. The human and object decoders were fed the same detection DN
query, and the corresponding indices of the decoder outputs represented human-
object pairs. The verb decoder, which combines the outputs of the human and
object decoders using the SO-Attention module, was then used to predict verb
classes. The feature image encoder consists of a ResNet-50 [13] backbone and
a 6-layer deformable transformer encoder. The total number of backbones and
decoders is based on the SOV-STG paper set-up, while ResNet-50 and 3-layer
decoders were validated in SOV-STG-S. The hidden dimension of the trans-
former is D = 256 and the number of queries is Nq = 64. In the DN part,
a 2Np = 6 group of noised labels is generated for each ground truth HOI in-
stance. The dynamic DN scale is set to γ = 2

3 , the box noisification rate is set to
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δb = 0.4, the object label flipping rate to ηo = 0.3 and the verb noisification rate
to ηv = 0.6, The maximum noisification level is defined by setting the flipping
rate of verb labels to λv = 0.6. The model is trained by the AdamW optimiser
with a learning rate of 2e-4 and weight decay of 1e-4. The backbone was fixed
in the SOV validation to reduce training time. The batch size is set to 32, the
training epochs are 30, and learning rate drops at the 20th epoch.
RLIPv2 setups. Since RLIPv2 does not use the label-specific priors of SOV-
STG, we replaced the label embeddings used for initializing the DN queries with
language features obtained from RLIPv2’s Asymmetric Language-Image Fusion
(ALIF). Without altering the content of the inference queries, we added new DN
queries and fine-tuned the pre-trained model on the dataset. The basic setup
was similar to that of SOV-STG. We verified this by finetuning the pre-trained
models of RLIPv2-ParseDA ResNet-50 and Swin-Large [32] on each dataset. The
batch size is set to 16, the training epochs are 20, and learning rate drops at the
15th epoch. The other setups was similar to that of SOV-STG setups.

4.2 Comparison to State-of-the-Arts

Tab. 1 presents a comparison of our proposed method with recent state-of-the-
art (SOTA) methods on the HICO-DET dataset. Our method, when integrated
with SOV, shows an improvement of 0.4 percentage points in mean Average
Precision (mAP) over the experimental results of SOV-STG in the full category
under default settings. Furthermore, when our method is applied to the pre-
trained model of the SOTA method RLIPv2-ParSeDA and fine-tuned on the
HICO-DET dataset, we achieve an improvement of 0.80 percentage points for
the ResNet-50 (R50) model and 1.00 percentage points for the Swin-Large (Swin-
L) model. Tab. 2 compares the results on the V-COCO dataset, demonstrating
that our proposed method improves accuracy in both scenario 1 and scenario 2.
Specifically, our method enhances the performance of RLIPv2-ParSeDA, leading
to higher accuracy scores in both scenarios.

4.3 Ablation Study

Contributions of proposed component.
Tab. 3 shows the contributions of each proposed component using the HICO-

DET dataset. The columns “Separate Guided” “Merge Annotations” and “Noise
Filtering” indicate whether DN training is separated, merging redundant human-
object pair annotations, filtering and regenerating noised bounding boxes, re-
spectively. Row (1) represents the baseline result without the proposed method,
using the SOV-STG R50 model. Both “Separate Guided” and “Merge Anno-
tations” were effective on their own and improved accuracy. “Noise Filtering”
needed to be combined with “Merge Annotations” to be effective. The combina-
tion of all elements resulted in the highest accuracy improvement.
Contributions of merging redundant human-object annotations on
HICO-DET. In Tab. 4, the effect of merging redundant human-object annota-
tions is investigated. During DN training, the data is trained using one-to-one
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Table 1: Comparisons with previous methods on HICO-DET. R50 denote
ResNet-50 [13]. Swin-L denote Swin-Large [32]. * denotes evaluation results using pub-
licly available models or models we have trained, and unmarked denotes results from
paper.

Default Setting
Method Backbone Full Rare Non-Rare

CATN [8] R50 31.86 25.15 33.84
Liu et al. [30] R50 33.51 30.30 34.46
QAHOI [6] R50 26.18 18.06 28.61
QPIC [37] R50 29.07 21.85 31.23
CDN-S [51] R50 31.44 27.39 33.53
DOQ(CDN-S) [36] R50 33.28 29.19 34.50
GEN-VLKT-S [27] R50 33.75 29.25 35.10
DiffHOI-S [48] R50 34.41 31.07 35.40
CLIP4HOI [33] R50 35.33 33.95 35.74
LOGICHOI [24] R50 35.47 32.03 36.22
PViC w/DETR [53] R50 34.69 32.14 35.45
DiffHOI-L [48] Swin-L 41.50 39.96 41.96
PViC w/H-DETR [53] Swin-L 44.32 44.61 44.24
SOV-STG* [5] R50 33.19 29.39 34.32
SOV+Ours* R50 33.59 29.20 34.90
RLIPv2-ParSeDA* [50] R50 34.60 30.07 36.82
RLIPv2-ParSeDA+Ours* R50 35.40 31.43 37.36
RLIPv2-ParSeDA* [50] Swin-L 45.12 45.33 44.70
RLIPv2-ParSeDA+Ours* Swin-L 46.12 45.58 47.22

matching to reconstruct ground truth from noised data. If multiple bounding box
pairs exist for the same human-object pair and the verbs are split, only the verbs
associated with each bounding box pair are learned as positive, while the rest are
learned as negative. Despite the same person-object pair annotations, it learns
to recognise only different verbs for each bounding box pair. In merging annota-
tions, if the minimum value of IoU for a rectangular human-object pair with the
same object labels is above a threshold and does not contain the same verb la-
bels, it is considered a segmented annotation for the same human-object pair and
is combined into a single annotation. merging threshold represents the threshold
of IoU and (1) represents the result without merging duplcate human-object an-
notations. The accuracy improved the most when threshold = 0.8. Otherwise,
for example, when threshold = 0.4, the object class and verb class are looked at
for pairs with IoU greater than 0.4 and a decision is made whether to combine
them into one. If the threshold is low, different human-object pairs are combined,
which reduces accuracy. In HICO-DET, there is noise in the form of redundant
human-object pairs in the dataset annotations. The proposed method reduces
this noise and improves accuracy.
Contributions of filter and regenerate noised bounding boxes on HICO-
DET. Tab. 5 examines the effects of noise filtering. As noised bounding boxes
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Table 2: Comparisons with previous methods on V-COCO.

Method Backbone APS1
role APS2

role

RLIP-ParSe [49] R50 61.9 64.2
MSTR [20] R50 62.0 65.2
ParSe [49] R50 62.5 64.8
GEN-VLKT-M [27] R101 63.3 65.6
GEN-VLKT-L [27] R101 63.6 65.9
CDN-L [51] R101 63.9 65.9
SSRT [16] R101 65.0 67.1
SOV-STG* [5] R50 63.1 64.6
SOV+Ours* R50 63.4 65.2
RLIPv2-ParSeDA* [50] R50 65.9 68.1
RLIPv2-ParSeDA+Ours* R50 66.4 68.5
RLIPv2-ParSeDA* [50] Swin-L 72.0 74.1
RLIPv2-ParSeDA+Ours* Swin-L 72.4 74.8

Table 3: Ablation studies for proposal component on HICO-DET.

Separate Merging Noise Default Setting
# Guided Annotations Filtering Full Rare Non-Rare
(1) 33.19 29.39 34.32
(2) ✓ 33.48 29.23 34.75
(3) ✓ 33.48 29.82 34.44
(4) ✓ 33.34 29.61 34.46
(7) ✓ ✓ ✓ 33.59 29.20 34.90

are used as anchors, undesired training may occur if they are close to a hu-
man or object other than the reconstruction target. Therefore, the noise-added
bounding box is monitored, and the noise is regenerated when a human or ob-
ject other than the reconstruction target is closest. Rows (1) and (3) show the
results when noise filtering is not applied. Applying noise filtering improved ac-
curacy. Additionally, in row (4), where the parameter that generates noise in the
bounding box is increased, the improvement in accuracy is greater, verifying the
effectiveness of noise filtering.

Table 4: Ablation studies for Merging Annotations on R50 model.

Merging Default
Method threshold Full mAP

(1) 1.0 33.19
(2) 0.8 33.48
(3) 0.6 33.37
(4) 0.4 33.16
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Table 5: Ablation studies for Noise Filtering on HICO-DET.

Noise Noise Default
Method Filtering Parameterδ Full mAP

(1) 0.4 33.19
(2) ✓ 0.4 33.34
(3) 0.8 32.66
(4) ✓ 0.8 33.21

5 Conclusion

This paper introduces a novel separate guided denoising (DN) training strat-
egy for Human-Object Interaction (HOI) detection, where the human-object
decoder and the verb decoder are trained independently. This approach allows
for the application of explicit noise to each decoder, enhancing the effectiveness
of DN training and demonstrating superior performance compared to previous
methods. Additionally, our method includes merging redundant human-object
annotations and filtering and regenerating noised bounding boxes, which further
improve the efficiency of DN training for HOI detection. This strategy can be
seamlessly integrated into DETR-based one-stage methods, incorporating both
a human-object decoder and a verb decoder, thereby enhancing the performance
of state-of-the-art models on relevant benchmarks.
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