
Hierarchical Feature Aggregation Network Based
on Swin Transformer for Medical Image

Segmentation

Hayato Iyoda1, Yongqing Sun2, and Xian-Hua Han1

1 Graduate School of Artificial Intelligence and Science, Rikkyo University
3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan

[24vr038t, hanxhua]@rikkyo.ac.jp
2 College of Humanities and Sciences, Nihon University

3-25-40 Sakurajosui Setagaya-Ku, Tokyo 156-8550 JAPAN

Abstract. Semantic segmentation plays a crucial role in computer-aided
medical image analysis by achieving important and useful regions, which
are vital for various diagnostic tasks. Recently, vision transformers (ViTs)
have emerged as the leading approach in medical image segmentation,
outperforming traditional convolutional neural networks (CNNs). The
incorporation strategies of the ViTs for medical segmentation are domi-
nated to leverage the widely used U-shape like architecture (U-Net) while
replace the convolution blocks in both encoder and decoder paths using
transformer blocks. It remains uncertain which components of the incor-
porated transformer block contribute most significantly to segmentation
results in the medical field. This study presents a hierarchical feature
aggregation method based on hierarchical Transformer features to en-
hance the performance of ViT-based architecture in data-constrained
medical image segmentation. Specifically, our approach employs the hi-
erarchical vision Transformer to configure the main encoder path for
extracting multi-scale semantic features, and leverages several residual
blocks to achieve local representation with detail spatial information.
Then, we introduce a hierarchical feature aggregation module (HFAM)
to serve as the decoder path for fusing multi-scale semantic features and
residual spatial features. Compared with the existing transformer-based
U-Net, the explored HFAM can not only effectively combine the diverse
contexts but also potentially reduce the computational complexity. Ex-
periments on 3 different medical image segmentation benchmarks have
demonstrated our proposed method consistently outperformers the con-
ventional U-Net, and various Transformer-based U-Net.

Keywords: Medical image segmentation · U-Net · Swin Transformer ·
Hierarchical feature aggregation

1 Introduction

Semantic segmentation is a fundamental process in computer-aided medical im-
age analysis, serving the critical function of identifying and delineating regions of
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interest for various diagnostic tasks [17, 20, 21]. Medical segmentation, however,
is often complicated due to variations in image modality, acquisition techniques,
and inherent pathological or biological differences across patients. Such complex-
ities introduce significant challenges to achieving accurate and reliable segmen-
tation. Recently, the application of deep learning techniques has provided sub-
stantial advancements in addressing these challenges. Of particular significance
is the introduction of the U-Net model [19], which has proven to be remarkably
effective in medical image segmentation tasks. Thus, U-Net [19] and its numer-
ous variants [6, 7, 11, 13, 14, 16, 30, 32] have become the prevailing standard in
many medical image segmentation tasks such as cardiac segmentation, organ
segmentation, lesion segmentation and so on. The U-Net architecture is gener-
ally designed with a symmetric encoder-decoder structure with the dominated
convolution components, and attempt to capture global context by creating large
receptive fields with down-sampling and stacking multiple convolutional layers.

Despite the strong representational power of CNN-based U-net, they face
challenges in establishing clear long-range dependencies because convolutional
kernels have restricted receptive fields. This inherent limitation in the convolu-
tion operation makes it difficult to capture global semantic context [2], which is
vital for dense prediction tasks such as segmentation. Motivated by the atten-
tion mechanism [22,25] in natural language processing, recent research addresses
the limitations of CNNs by integrating attention into their architecture. For in-
stance, Non-local neural networks [18] introduce a plug-and-play operator based
on self-attention, allowing them to capture long-range dependencies within fea-
ture maps. However, this comes at the cost of significant memory and computa-
tional demands. Schlemper et al. [22] offer an alternative with the attention gate
model, which enhances model sensitivity and prediction accuracy while intro-
ducing minimal computational overhead, making it easily adaptable to standard
CNNs. In contrast, the Transformer architecture [5, 25] is explicitly designed to
handle long-range dependencies in sequence-to-sequence tasks, capturing rela-
tionships between any positions within a sequence. Recently, researchers have
explored the application of Transformers in computer vision. The Vision Trans-
former (ViT) [5] was developed to tackle image recognition tasks by using 2D
image patches with positional embeddings and pre-training on large datasets.
ViT achieved performance comparable to CNN-based models. Furthermore, the
Data-efficient Image Transformer (DeiT) [23] demonstrated that Transformers
could be trained on mid-sized datasets, and its performance could be enhanced
through distillation techniques. Additionally, the Swin Transformer [15], a hier-
archical architecture, was later proposed as a vision backbone, achieving state-
of-the-art results in image classification, object detection, and semantic segmen-
tation. The successes of ViT, DeiT, and the Swin Transformer highlight the
growing potential of Transformer models in computer vision applications.

In medical image segmentation filed, the incorporation of Transformers into
U-Net architecture has extensively explored, and led to advancements in seg-
mentation accuracy [1, 24, 26, 27, 31], especially in tasks that require precise de-
lineation of complex structures. By incorporating Transformer blocks into the
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encoder and decoder paths, these Transformer-based U-Net enhances the abil-
ity to capture both local and global features. For example, Swin-UNet [10] uses
Swin Transformer blocks within the U-Net structure to improve segmentation
performance on 2D medical images by modeling long-range dependencies while
maintaining spatial resolution through skip connections. Swin-Unet is a fully
Transformer-based U-shaped architecture, incorporating the Swin Transformer
block into all components: encoder, bottleneck, decoder, and skip connections.
Despite the potential performance gain, the incorporation of the Transformer
blocks into all components may cause high computational cost and memory us-
age, and possibly brings the overfitting problem especially for data-constrained
medial image analysis tasks. Moreover, the impact of incorporating Transformer
blocks into various components of the network on overall performance remains
underexplored, with limited research addressing how these modifications influ-
ence segmentation accuracy and computational efficiency.

To handle the above issues, this study presents a novel hierarchical feature
aggregation framework, leveraging hierarchical Transformer features to enhance
the performance of Vision Transformer (ViT)-based architectures for medical
image segmentation in data-limited scenarios. Our methodology centers on uti-
lizing a hierarchical Vision Transformer as the primary encoder, which facilitates
the extraction of multi-scale semantic features, crucial for capturing global con-
text. Additionally, residual blocks are integrated to preserve fine-grained local
representations and detailed spatial information, addressing the need for precise
segmentation boundaries. To optimize feature fusion, we introduce a Hierarchi-
cal Feature Aggregation Module (HFAM) within the decoder, which effectively
merges multi-scale semantic features with the residual spatial information. Com-
pared to existing Transformer-based U-Net variants, the proposed HFAM not
only efficiently combines rich contextual information but also demonstrates po-
tential in reducing computational complexity. Extensive experiments conducted
on three benchmark datasets for medical image segmentation consistently show
that our approach surpasses both conventional U-Net architectures and sev-
eral Transformer-based U-Net models, highlighting its efficacy and robustness in
challenging segmentation tasks.

2 Related Work

CNN-based methods: Motivated by the great success of the development
of deep learning, convolutional neural networks (CNNs) have widely applied for
many medical image segmentation tasks. A pivotal work was the introduction of
the U-Net architecture [19], specifically designed for biomedical image segmen-
tation. The U-shaped architecture in U-Net [19], characterized by its encoder-
decoder structure with skip connections, enabled both efficient feature extrac-
tion and precise localization, making it highly effective for segmentation tasks.
Due to its simplicity and strong performance, the U-Net framework has inspired
numerous variants aimed at further enhancing its capabilities. Notable exam-
ples include Res-UNet [30], which incorporates residual connections to address
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gradient vanishing in deeper networks, Dense-UNet [14], which leverages dense
connections to improve feature reuse and network efficiency, and U-Net++ [32],
which refines the skip connections with nested architectures for better feature
fusion. Additionally, UNet3+ [11] extends this design by introducing a full-scale
skip connection mechanism, enabling a richer fusion of semantic and spatial
features. U-Net and its variants have also been adapted for 3D medical image
segmentation tasks, with architectures such as 3D U-Net [3] and V-Net [16]
emerging to tackle volumetric data. These 3D models preserve the spatial coher-
ence of medical images across slices, thereby improving segmentation accuracy
in three-dimensional imaging modalities like CT and MRI. Overall, CNN-based
methods, especially U-Net and its derivatives, have achieved remarkable success
in medical image segmentation due to their powerful representation learning ca-
pabilities, adaptability to various tasks, and ability to handle both 2D and 3D
medical imaging data. These advancements have significantly improved segmen-
tation performance across a wide range of medical applications. However, all
these methods generally employ the convolution layers as the dominated com-
ponents, and have limited receptive fields to capture global context.

Vision transformers: The Transformer model was originally introduced for
machine translation tasks [25] and has since revolutionized the field of natu-
ral language processing (NLP). Transformer-based models have achieved state-
of-the-art results across a wide range of NLP tasks [4], owing to their ability
to capture long-range dependencies and model complex relationships through
self-attention mechanisms. Inspired by the success of Transformers in NLP, re-
searchers extended this architecture to the field of computer vision, leading
to the development of the Vision Transformer (ViT) [5], marked a significant
breakthrough in image recognition by offering an impressive balance between
speed and accuracy, especially in large-scale tasks. Unlike CNN-based mod-
els, ViT relies on global self-attention, which allows it to model global context
more effectively. However, a notable limitation of ViT is its reliance on large-
scale datasets for pre-training. Unlike CNNs, which can be efficiently trained on
smaller datasets, ViT requires extensive pre-training on datasets such as Ima-
geNet to achieve competitive performance. To address this challenge, the Data-
efficient Image Transformer (DeiT) [23] introduced several training techniques,
including knowledge distillation, to enable ViT to perform well on mid-sized
datasets, mitigating the need for vast amounts of data.

Building on ViT’s foundations, a series of subsequent works [8, 15, 28] have
further enhanced Transformer-based architectures for vision tasks. Among these,
the Swin Transformer [15] stands out as a highly efficient and versatile model.
The Swin Transformer introduces a hierarchical structure with shifted window-
based attention, which enables the model to capture both local and global in-
formation in a computationally efficient manner. This design significantly re-
duces the complexity typically associated with full self-attention, making Swin
Transformer scalable and suitable for high-resolution inputs. As a result, it has
achieved state-of-the-art performance across various computer vision tasks. Swin
Transformer’s ability to balance computational efficiency with high performance
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makes it an influential architecture in both research and practical applications
within the vision domain. Most Transformers are originally proposed as the en-
coder in image classification tasks to extract different image representation, and
require to configure a decoder to integrate the multi-scale encoder features for
dense prediction tasks such as semantic image segmentation.

Transformers for Medical Image Segmentation: The success of ViT in
traditional computer vision tasks has paved the way for a paradigm shift in
medical image segmentation, and the integration of the Transformer block into
the U-Net achitectires have increasingly been explored [1, 24, 26, 27, 31]. Among
these advancements, TransUNet [2] represents the first framework to incorpo-
rate Transformers into medical image segmentation. It leverages the strengths
of both CNNs and Transformers by combining the local feature extraction ca-
pabilities of CNNs with the global context modeling power of Transformers.
Additionally, Valanarasu et al. [24] proposed the Gated Axial-Attention model
(MedT), specifically designed to address the challenge of limited medical im-
age data by incorporating attention mechanisms that are computationally more
efficient and less data-intensive. Cao et al. [10] proposed Swin-Unet, the first
pure Transformer-based U-shaped architecture for medical image segmentation.
This model replaces traditional convolutional blocks with Swin Transformer lay-
ers, allowing for hierarchical and multiscale feature extraction while maintaining
the U-Net’s core encoder-decoder structure. However, the naive displacement of
convolutional blocks with Swin Transformer blocks in both encoder and decoder
paths may lead to structural redundancy and excessive computational overhead,
without fully capitalizing on the strengths of Transformer encoding capability.
Moreover, the impact of integrating Transformer blocks into different paths of the
U-Net for medical image segmentation remains largely underexplored. Limited
research has investigated how these architectural modifications affect key per-
formance metrics, such as segmentation accuracy and computational efficiency.

3 Proposed Method

This study employs the Swin Transformer and simple ResBlocks to serve as dual
branches of Encoder, and proposes a hierarchical feature aggregation module to
server as the decoder for fusing various features learned in the Encoder. The over-
all framework is dubbed as hirachical feature aggregation network (HFANet),
and the architecture is depicted in Fig. 1. Specifically, similar as the conven-
tional U-Net, HFANet comprises three components: Encoder, decoder, and the
skip connection bridging the interaction between the Encoder and Decoder. The
Encoder path aims to incorporate Transformer blocks and convolution oper-
ation to extract both high-level semantic contexts and low-level detailed spa-
tial structures. The first branch utilizes a Transformer architecture, initiating
with window-based self-attention to model long-range dependencies and achieve
multi-scale semantic contexts. Concretely, we simply adopt the Swin Transformer
proposed for generic vision task [15] to server as one branch of the Encoder, where
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Fig. 1: Proposed hierarchical feature aggregation network based on Swin Transformer.

the extracted feature even with the highest spatial resolution is reduced to 1
4 of

the input resolution, causing sptail detail lost for accurate segmentation. Thus,
the second path employ the simple Resblocks taken from the stem convolution
and the first stage of Resblock in the ResNet50 [9] to extract detailed spatial
structure, which can provide the complementary information to the Transformer
branch. Then, we transfer the multi-scale contexts from the Transformer branch
and the detailed spatial structure from the Resblock branch to the Decoder path
via skip connections, and investigate a hierarchical feature aggregation module
(HFAM) as the decoder to fuse all features for final segmentation prediction.
Particularly, the HFAM utilizes the simple operations such as the up-sampling,
channel concatenation and convolutions to reduce the computational complex-
ity. Next, we will give the detailed descriptions of the Encoder and Decoder of
our proposed HFANet.
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3.1 Encoder

The encoder architecture contains the main Swin Transformer branch and the
complementary Resblock branch.
Transformer branch: Transformer branch includes the 4 levels of Swin Trans-
former blocks, and each level has two blocks. The tokenized data with C-dimensional
vectors and the reduced spatial resolution 1

4 of the input data is firstly processed
by two successive Swin Transformer blocks to extract the first level of semantic
context F1 ∈ ℜC×W/4×H/4. These blocks facilitate representation learning while
preserving both the dimensionality and spatial resolution of the features. Then,
before pass F1 to the second level of Transformer block, a patch merging layer
operates to downsample the input by a factor of 2, thereby reducing the number
of tokens while simultaneously expanding the feature dimensionality to twice
its original size as F2 ∈ ℜ2C×W/8×H/8 . This token reduction and feature en-
hancement process is iterated three times throughout the encoder, progressively
refining the representation at each stage. Finally, we obtain the multi-scale se-
mantic features as F = [F1, ,F2,F3,F4], all of which will be transferred to the
Decoder for aggregation. Subsequently, we present the detailed explanations of
the Swin Transformer block.

Each level of the Transformer branch contains two consecutive Swin trans-
former blocks. In contrast to the conventional multi-head self-attention (MSA)
mechanism, the Swin Transformer block [15] is designed based on a shifted win-
dow paradigm, and comprises several components: a LayerNorm (LN) layer, a
multi-head self-attention mechanism, a residual connection, and a two-layer mul-
tilayer perceptron (MLP) incorporating GELU activation. The first block lever-
ages a window-based multi-head self-attention (WMSA) mechanism, while the
second block employs a shifted window-based multi-head self-attention (SWMSA)
mechanism. This successive Swin Transformer blocks with the above window
partitioning strategy for l − th level can be formulated as:

F̂1
l = WMSA(LN(Fl)) + Fl, F1

l = MLP (LN(F̂1
l )) + F̂1

l . (1)

F̂2
l = SWMSA(LN(F1

l )) + F1
l , F2

l = MLP (LN(F̂2
l )) + F̂2

l , (2)

where , F̂1
l and F1

l denote the results of the WMSA and MLP module in the first
block while F̂2

l and F2
l refer to the output of the SWMSA and MLP module in

the second block, respectively. The self-attention mechanism in the WMSA and
SWMSA modules is calculated using the following equation:

Attention(Q,K,V) = SoftMax(
QKT

√
d

)V, (3)

where, Q, K, V ∈ ℜS2×d refer to the query, key, and value matrices. d signifies
the dimensionality of the query or key while S2 represents the number of patches
within a window.
Resblock branch: Since the Transformer branch produce multi-scale features
F even with the highest spatial resolution W/4 ×H/4, and thus may result in
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potential loss of detailed spatial structure. This study attempts to incorporate
a simple convolution-based branch for compensating the lost structures in the
Transformer branch. Specifically, we take the stem block with the Maxpool op-
eration for reducing spatial decimation and the first layer of Resblock with three
Bottleneck Residual structures to serve as the Resblock branch. This branch can
produce the low-level feature F0 ∈ ℜ256×W/2×H/2 with more detailed spatial
information, which is also skip connected to the decoder path for segmentation
prediction.

3.2 Decoder

To effectively integrate the multi-scale features extracted by the encoder, the
decoder implements a hierarchical fusion mechanism, dubbed as hierarchical fea-
ture aggregation module (HFAM), that replaces the computationally intensive
Swin Transformer blocks with more efficient convolutional layers. This design
choice not only enhances computational efficiency but also maintains the struc-
tural integrity of the feature representations. The HFAM involves an iterative
process, where lower-resolution feature maps generated by the encoder are pro-
gressively upsampled by a factor of 2× and subsequently refined through convo-
lutional operations. After each upsampling step, these refined features are fused
with their corresponding encoder-derived feature maps that possess matching
spatial dimensions. This hierarchical fusion strategy is executed recursively, en-
abling the gradual reconstruction of features at progressively higher resolutions.
The process continues until the reconstructed feature map matches the input
image’s spatial resolution, thereby ensuring fidelity between the output and the
original input in terms of both scale and detail. Specifically, given the lowest
spatial resolution feature F4 extracted in the Encoder, we first employ a simple
up-sampling operation and a point-wise convolution to double the spatial size
and half the channel number, respectively. Then after concatenating with the
feature F3 of the up one level, we further adopt two convolution layer to refine
the fused feature. The above process can be formulated as:

F̄3 = fconv([F3, fup−Pw(F4)]) (4)

Then, F̄3 follows the similar procedure as F4 for aggregating with F2. Fi-
nally, we achieve the fused feature F̄0 by hierarchically aggregating all Encoder
features, which is further up-sampled to the spatial resolution for producing
segmentation output using a convolution block as the prediction head.

4 Experiments

4.1 Datasets

To assess the performance of the proposed HFANet, we conducted a series of
experiments utilizing three publicly available datasets, each representing diverse
tasks and imaging modalities. The datasets employed in the evaluation BUSI [3],
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Table 1: Comparison with the state-of-the-art models.

Models ClinicDB BUSI GLaS
U-Net [19] 90.66 72.27 87.99

MultiResUNet [12] 88.20 72.43 88.34
Swin-Unet [10] 90.69 76.06 86.45

UCTransnet [26] 92.57 75.56 87.17
SMESwin-Unet [29] 89.62 73.94 83.72

HFANet (Ours) 92.39 84.33 91.70

Input                        U-Net               UCTransNet Swin-Unet HFANet (Ours)        Ground-Truth 

Fig. 2: Comparative qualitative results

which includes 437 benign and 210 malignant breast ultrasound images, similar
to those used in [13]; CVC-ClinicDB [4], a colonoscopy dataset with 612 images;
and GlaS [20], for gland segmentation, consisting of 85 training and 80 test
images. To ensure consistency, all images and their corresponding segmentation
masks were resized to 224×224 pixels. For the GlaS dataset, we adhered to
the predefined test split to evaluate the model. In contrast, for the remaining
datasets, we randomly allocated 20% of the images for testing purposes. The
remaining data was divided into 60% for training and 20% for validation.

4.2 Implementation Details

The HFANet was implemented using PyTorch framework. To enhance data vari-
ability and improve model generalization, several data augmentation techniques,
including horizontal and vertical flips as well as random rotations, were applied
to the training dataset. Training was conducted on an Nvidia Geforce RTX 4090
GPU with 24GB of memory, and the model’s Encoder parameters were initial-
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Table 2: Ablation Study.

Encoder2 Decoder ClinicDB BUSI GLaS
ResNet34 Swin 91.99 79.99 91.12
ResNet50 Swin 92.01 81.71 91.68
× HFAM 92.15 82.79 91.74
ResNet50 HFAM 92.39 84.33 91.70

ized using pre-trained weights from ImageNet, leveraging transfer learning to
accelerate convergence and improve performance, while the Decoder parame-
ters were randomly initialized. The model optimization was performed using the
Adam optimizer, initialized with a learning rate of 10−5, and dynamically ad-
justed throughout training using a cosine annealing scheduler. The models were
trained over a total of 1000 epochs with the training process incorporating an
early stopping mechanism. Specifically, an early stopping patience of 100 epochs
was employed, meaning that training was halted if no improvement in perfor-
mance was observed over 100 consecutive epochs, thus preventing overfitting. To
optimize the model, we minimized a hybrid loss function that combined cross-
entropy loss and Dice loss, a strategy designed to balance pixel-wise classification
accuracy with segmentation overlap quality.

4.3 Comparisons with State-of-the-Art Methods

We conducted a comprehensive evaluation of The HFANet by comparing it
against five representative models from U-Net-based architectures: U-Net [19],
MultiResUNet [12], Swin-Unet [10], UCTransnet [26], and SMESwin-Unet [29].
These models were selected to represent key variants within the UNet family.
The compared results in terms of Dice score, are summarized in Table 1, which
presents the performance across various test datasets. It can be observed from
Table 1 that our proposed model outperforms competing methods, achieving
the best segmentation accuracy for the BUSI and GLaS datasets, and the sec-
ond rank for the ClinicDB dataset in terms of the Dice Similarity Coefficient
(DSC). The improvement in DSC compared to existing methods, such as U-
Net [19] and Swin-Unet [10], is marginal for the ClinicDB dataset while our
model demonstrates a substantial gain for BUSI and GLaS datasets. Concretely,
our approach achieves an improvement of approximately 12% over U-Net and
8% over Swin-Unet for the BUSI dataset. Finaly, we provide the visulizations
of the segmentation results with several representative models including U-Net,
UCTarnsNet and Swin-Unet in Fig. 2, and have demonstrated that our proposed
HFANet achieves much better segmentations.

4.4 Ablation study

We conducted an ablation study to systematically evaluate the impact of the
proposed Encoder and Decoder components on all three datasets. Aa intro-
duced above that our HFANet contains two Encoders: Swin Transformer branch
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and ResBlock branch eaxtected from the stem and first layers of the pretrained
ResNet with The ImageNet dataset (Denoted as Encoder2), and one Decoder
with the proposed HFAM. To verify the effectiveness of the HFAM for feature
aggregation, we also employed the symmetric Swin Transformer blocks by replac-
ing the patch merging with upsampling operation as the Decoder component.
For Encoder, we removed the Resblock branch or utilized the layer from the
ResNet34 and ResNet50, respectively. The compared results are manifested in
Table 2, and manifested that the proposed HFAM and the incorporation the
Resblock branch can improve the segmentation performance.

5 Conclusions

This paper introduced a novel approach for improving the performance of ViT-
based architectures in medical image segmentation, especially when data is lim-
ited. The core of our method lies in a hierarchical feature aggregation strategy
built upon hierarchical Transformer features. Our framework employed the hi-
erarchical Vision Transformer as the primary encoder to capture multi-scale
semantic information, while residual blocks are incorporated to preserve fine
spatial details and local representations. To combine these features effectively,
we proposed a hierarchical feature aggregation module (HFAM) that acts as
the decoder, seamlessly merging the multi-scale semantic and spatial features.
Compared to traditional Transformer-based U-Net models, the HFAM not only
enhances context fusion but also holds the potential to reduce computational de-
mands. Extensive experiments across three medical image segmentation datasets
showed that our method consistently surpasses both standard U-Net and other
Transformer-based U-Net models in performance.

References

1. Ailiang, L., Xu, J., Jinxing, L., Guangming, L.: Contrans: Improving transformer
with convolutional attention for medical image segmentation. Medical Image Com-
puting and Computer Assisted Intervention (MICCAI) pp. 297–307 (2022) 2, 5

2. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Y.Wang, Lu, L., Yuille, A.L., Zhou,
Y.: Transunet: Transformers make strong encoders for medical image segmentation.
CoRR (2021) 5

3. Cicek, O., Abdulkadir, A., Lienkamp, S., Brox, T., Ronneberger, O.: 3d u-net:
Learning dense volumetric segmentation from sparse annotation. Medical Image
Computing and Computer-Assisted Intervention (MICCAI) 9901, 424–432 (2016)
4

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies 1 (2019) 4

5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby,
N.: An image is worth 16x16 words: Transformers for image recognition at scale.
International Conference on Learning Representations (2021) 2, 4

463



12 H. Iyada et al.

6. F, K.S.P.J.M.H.K.I., PF, J.: Nnu-net: a self-con
guring method for deep learning-based biomedical image segmentation. Nat Meth-
ods 18(2), 203–211 (2021) 2

7. Gu, Z., Cheng, J., Fu, H., Zhou, K., Hao, H., Zhao, Y., Zhang, T., Gao, S., Liu,
J.: Ce-net: Context encoder network for 2d medical image segmentation. IEEE
Transactions on Medical Imaging 38(10), 2281–2292 (2019) 2

8. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer.
CoRR (2021) 4

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015) 6

10. Hu, C., Wang, Y., Joy, C., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-unet:
Unet-like pure transformer for medical image segmentation. ECCV Computer Vi-
sion Workshop pp. 205–218 (2023) 3, 5, 9, 10

11. Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., Han, X., Chen,
Y.W., J.Wu: Unet 3+: A full-scale connected unet for medical image segmentation.
ICASSP pp. 1055–1059 (2020) 2, 4

12. Ibtehaz, N., Rahman, M.S.: Rethinking the u-net architecture for multimodal
biomedical image segmentation. Neural Networks 121 (2020) 9, 10

13. Jin, Q., Meng, Z., Sun, C., Cui, H., Su, R.: Ra-unet: A hybrid deep attentionaware
network to extract liver and tumor in ct scans. Frontiers in Bioengineering and
Biotechnology 8, 1471 (2020) 2

14. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-denseunet: Hybrid
densely connected unet for liver and tumor segmentation from ct volumes. IEEE
Transactions on Medical Imaging 37(12), 2663–2674 (2018) 2, 4

15. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. CoRR (2021)
2, 4, 5, 7

16. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. Fourth International Conference on
3D Vision (3DV) pp. 565–571 (2016) 2, 4

17. Naik, S., Doyle, S., Agner, S., Madabhushi, A., Feldman, M., Tomaszewski, J.:
Automated gland and nuclei segmentation for grading of prostate and breast cancer
histopathology. 5th IEEE International Symposium in Biomedical Imaging: From
Nano to Macro pp. 284–287 (2008) 2

18. abd R. Girshick, X.W., Gupta, A., He, K.: Non-local neural networks. IEEE con-
ference on computer vision and pattern recognition pp. 7794–7803 (2018) 2

19. Ronneberger, O., P.Fischer, Brox, T.: U-net: Convolutional networks for biomedical
image segmentation. Medical Image Computing and Computer-Assisted Interven-
tion (MICCAI) 9351(3), 234–241 (2015) 2, 3, 9, 10

20. Rouhi, R., Jafari, M., Kasaei, S., Keshavarzian, P.: Benign and malignant breast
tumors classi
cation based on region growing and cnn segmentation. Expert Systems with Ap-
plications 42(3), 990–1002 (2015) 2

21. Schindelin, J., Rueden, C.T., Hiner, M.C., Eliceiri, K.W.: The imagej ecosystem:
an open platform for biomedical image analysis. Molecular reproduction and de-
velopment 82, 518–529 (2015) 2

22. Schlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B., Glocker, B., Rueck-
ert, D.: Attention gated networks: Learning to leverage salient regions in medical
images. Medical Image Analysis 53, 197–207 (2019) 2

464



Abbreviated paper title 13

23. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training
data-efficient image transformers & distillation through attention. CoRR (2020) 2,
4

24. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer:
Gated axial-attention for medical image segmentation. CoRR (2021) 2, 5

25. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
u. Kaiser, L., Polosukhin, I.: Attention is all you need. Advances in Neural In-
formation Processing Systems 30 (2017) 2, 4

26. Wang, H., Cao, P., Wang, J., Zaiane, O.: Uctransnet: Rethinking the skip connec-
tions in u-net from a channel-wise perspective with transformer. AAAI Conference
on Artificial Intelligence 36(3), 2441–2449 (2022) 2, 5, 9, 10

27. Wang, W., Chen, C., Ding, M., Li, J., Yu, H., Zha, S.: Transbts: Multimodal brain
tumor segmentation using transformer. CoRR (2021) 2, 5

28. Wang, W., Xie, E., Li, X., Fan, D., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. CoRR (2021) 4

29. Wang, Z., Min, X., Shi, F., Jin, R., Nawrin, S., Yu, I., Nagatomi, R.: Smeswin
unet: Merging cnn and transformer for medical image segmentation. Medical Image
Computing and Computer Assisted Intervention (MICCAI) pp. 517–526 (2022) 9,
10

30. Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted res-unet for high-quality retina vessel
segmentation. 9th International Conference on Information Technology in Medicine
and Education (ITME) pp. 327–331 (2018) 2, 3

31. Zhang, Y., Liu, H., Hu, Q.: Transfuse: Fusing transformers and cnns for medical
image segmentation. CoRR (2021) 2, 5

32. Zhou, Z., Siddiquee, M.R., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net
architecture for medical image segmentation. Springer Verlag pp. 3–11 (2018) 2, 4

465


	Hierarchical Feature Aggregation Network Based on Swin Transformer for Medical Image Segmentation

