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Abstract. Virtual try-on, a rapidly evolving field in computer vision,
is transforming e-commerce by improving customer experiences through
precise garment warping and seamless integration onto the human body.
Existing methods such as TPS and flow address the garment warping,
but overlook the finer contextual details. In this paper, we introduce
a novel graph based warping technique which emphasizes the value of
context in garment flow. Our graph based warping module generates
warped garment as well as a coarse person image, which is utilised by
a simple refinement network to give a coarse virtual tryon image. We
then exploit a latent diffusion model to generate the final tryon, treat-
ing garment transfer as an inpainting task. The diffusion model incor-
porates a Decoupled Garment Attention Adaptor(DGAA) for attention
based diffusion inversion of visual and textual information. Our method,
validated on VITON-HD and Dresscode datasets, showcases substantial
state-of-the-art qualitative and quantitative results showing considerable
improvement in garment warping, texture preservation, and overall real-
ism.

Keywords: Virtual tryon · Optical Flow · Graph · Latent Diffusion
models

1 Introduction

With the evolving shopping trends, ecommerce platforms have started catering
to the customer needs keeping in sync with the emerging requirements. In the
apparel industry, this has come into view as virtual tryon, which can provide a
real inshop experience to the customers. The image based tryon methods [3,12]
have proven to be more practical when compared to the 3D [15] models which
require modelling of the person for a realistic tryon synthesis which is quite
labor-some.

To produce a perfect tryon result, the person and garment variability has
to be prioritised while formulating the tryon pipeline. Although various studies
have synthesized compelling results on the benchmarks [21] [6] [11], there still
exist some paucity in terms of realism.

This ACCV 2024 workshop paper, provided here by the Computer Vision Foundation, is the author-created
version. The content of this paper is identical to the content of the officially published ACCV 2024
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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2 Pathak et al.

The tryon technique was first introduced by VITON [11], which used TPS
warping for solving the problem of warping garments in virtual tryon. CPV-
TON [25] preserved texture, but lacked perfect alignment, while the flow based
approaches [3,16,33] learnt robust structural alignment but lacked texture con-
sistency. Other methods [20, 26] focused more on improving the generation by
using various synthesis models such as GANs and recently diffusion [14, 20, 28].
Amid all the advancements in various stages of virtual tryon, there are still con-
siderable gaps such as learning better garment warp, handling occlusion, pose
transformations, generating consistent texture, etc. present, that leave a great
scope of improvement.

The current methods [3,33] typically model the flow as result of correlations
(utilising either a simple convolution network or feature correlation) between
features across garment and reference images(pose,agnostic). These approaches
mainly encode the point wise correspondence between an image feature pair(s)
while neglecting the intra-relations among pixels within regions [19]. There’s a
need to capture discriminative features for region and shape representations.
Thus, decoupling the garment context from the warping procedure, and simul-
taneously transferring the region and shape prior of garment context to warping
network can aid in learning an optimal garment warp.

Motivated from AGFLOW [19], which introduces iterative graph based flow
estimation, we propose a solution to the aforementioned problem on warping
by building a novel graph based garment warping module, which embeds con-
text into learning garment warp onto the warping pipeline. The proposed Graph
based flow warping module (GFW) learns to match features conditioned on gar-
ment context. This allows object’s spatial neighbourhood to be well aggregated
and thus largely decreases the uncertainty of ambiguous warping of garment.

Diffusion models [7] currently stand as the top-performing models; when com-
pared to the flow and TPS based counterparts [2, 25, 33]. However, maintaining
texture consistency during warping poses a challenge. Recent diffusion-based ap-
proaches, exemplified by LaDI-VTON [20], StableViton [14], dci-vton [8], CAT-
DM [32] address this challenge by leveraging textual and visual context for vir-
tual try-on generation, treating it as a conditional image inpainting task. To
achieve this, LaDI-VTON [20] proposes an inversion module, where image fea-
tures are extracted from an image encoder and mapped to new word embeddings
by a trainable network and then concatenated with text embeddings. StableV-
TON [14] utilises a ControlNet model that is directly conditioned on straight
garment, incorporating a zero-conv cross attention block. CAT-DM [32] initi-
ates a reverse denoising process, utilising an LDM, with an implicit distribution
generated by a pre-trained GAN-based model, thereby reducing the sampling
steps without compromising generation quality. In the cross-attention module
of LaDI-VTON [20], merging straight cloth features and text features into the
cross-attention layer only accomplishes the alignment of image features to text
features, and potentially misses some image-specific information and eventually
leads to only coarse-grained controllable generation with the reference image.
This leads to texture transfer artefacts in some scenarios. For a better tryon
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GraVITON 3

inversion, we propose Decoupled Garment Attention Adaptor(DGAA), which
adds an additional cross-attention layer only for image features [31].

The contributions of our proposed work are as follows:

– We introduce a Graph based flow warping module(GFW), that guides the
appearance flow by providing garment pixel neighbourhood context into flow
prediction.

– We propose a Decoupled Garment Attention Adaptor (DGAA), enriching
latent space diffusion inversion for a realistic tryon.

– Extensive experimentation and rigorous validation demonstrates that our
method achieves state-of-the-art performance compared to existing promi-
nent methods.

2 Related Works

2.1 Virtual tryon

Given a set of straight cloth and a person image, the goal of virtual tryon is to
seamlessly warp the garment and overlay it onto the target person image. The
initial work that introduced the garment warping and a generated complete per-
son tryon was VITON [11]. Other methods [10, 12, 25, 30, 33] followed a similar
two stage warping and generation pipeline, which learnt TPS or affine transfor-
mation parameters for computing garment warp. Although TPS preserves the
texture of warped garment better than to that of it’s flow based counterparts, in-
corporating flow achieves optimal garment alignment with the changing human
pose. In order to achieve the realism in the final tryon, it is crucial to formulate
a robust garment deformation module. This is usually achieved by the defor-
mation of control points with an energy function (radial basis function) in TPS
based pipelines (Thin Plate Spline) [25], and by computing per pixel appearance
flow followed by target view synthesis in flow based pipelines. The flow based
warping learns dense per-pixel correspondence [3, 12, 16, 33], when compared to
the TPS based methods which are unable to capture such local warp details.

2.2 Graph neural networks in flow

Optical flow is the task of estimating dense per-pixel correspondence between
images. GMFlow [27] introduced vision transformers for computing optical flow,
but its heavy computational dependencies made it less diversely applicable.
AGFlow [19] exploited the scene/context information, utilising graph convolu-
tional networks, and incorporated it in the matching procedure to robustly com-
pute optical flow. Virtual tryon entails computation of appearance flow [10,33],
to warp the source cloth based on the reference person features (pose, densepose,
etc.) GPVTON [33] tried to address the local deformations by applying a part
wise flow based deformation, where the garment is disintegrated and deformed
separately into three regions, one for each upper body part. GPVTON is not
able to jointly optimise the local and global deformations. Another work KGI [17]
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utilised graph to predict the garment pose points guided by human pose which
inpainted the predicted region using human segmentation. The method failed to
achieve the precision in tryon alignment due to sparse guiding points to guide
the dense pixel warping for garment texture unlike in flow methods. Hence, mo-
tivated by AGFlow [19], in this work we have shown that GCNs can help the
garment warping by focusing on the pixel level deformations establishing a dense
correlation that helps in preserving the local details post deformation, which is
ideally faced by all the flow based garment warping methods.

2.3 Diffusion Models

Diffusion models marked research has become a foundational area in the field
of image synthesis [7] because of its high quality image generation. Tasks such
as image-to-image translation [24], image editing [1], text-to-image synthesis [9],
and inpainting [18,22] have seen significant progress due to their realistic gener-
ation results. [13] concentrated on creating full-body images by sampling from a
trained texture-aware codebook, given human position and textual descriptions
of clothing shapes and textures. Furthermore, in order to address the problem of
pose-guided human prediction, [5] created a texture diffusion block that was con-
ditioned by multi-scale texture patterns from the encoded source image. Adding
to the tryon generation features, [4] introduced using the model pose, the gar-
ment sketch, and a textual description of the garment to condition the tryon
generation process. Building on these methods and to improve the texture gen-
eration in person tryon, LaDI-VTON [20] utilised a textual inversion component,
enabling mapping of garment visual features to the CLIP [23] token embedding
space. This process generates a set of pseudo-word token embeddings, effectively
conditioning the generation process. DCI-VTON [8] leverages a warping mod-
ule to combine the warped clothes with clothes-agnostic person image and adds
noise to guide the diffusion model’s generation. Other methods on diffusion such
as StableVITON [14] and CAT-DM [32] utilises a ControlNet based approach
conditioned on straight garment for tryon.

3 Proposed Approach

Our model uses a two-stage pipeline. The first stage involves warping, with
a graph-based warping module followed by a refinement module. It takes the
source garment (Ig), a reference input (reference pose Ipose and agnostic image
Iagnostic) as input. This stage computes dense flow fo using graph correlation,
producing a warped garment (Iwarpg

) and a coarse try-on (Itryonc
). The second

stage generates the final try-on result using a diffusion model with an inpaint-
ing approach. Inputs include the person segmentation mask (Icoarseb) from the
coarse try-on, warped output (Iwarpg ), human pose keypoints (Ipose), agnostic
image (Iagnostic), and noise (Iz). The diffusion process is conditioned on the
source cloth texture (Ig) and produces final try-on image(Itryon). The diffusion
process is conditioned with the attention based inversion between textual data
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Fig. 1: Architecture Diagram of GraVITON. The top module utilizes GCNs for gener-
ating warped cloth and coarse tryon image. These outputs are processed to condition
the Stable Diffusion model. The inversion model efficiently computes Cross-Modal at-
tention to improve texture and structural consistency, generating the final tryon image.

(Tgar) and source cloth for texture (Ig). The calculated decoupled attention
conditions the latent space to generate final tryon(Itryon).

3.1 Graph based coarse tryon

The coarse tryon stage caters to the generation of warped garment Iwarpg
) along

with coarse tryon (Itryonc) that is further used in final tryon generation in stage
2. The input to the first stage, is source garment(Ig), reference pose (Ipose) and
agnostic image (Iagnostic). The network employs a feature extraction module in
form of convolution layers with N=3, N being the number of conv layers and a
stride 2. The features extracted for both source(Feats) and reference(Featr) in-
put are fed to the GraphNet module, that returns the warped source Featswarped

and reference features Featrwarped
that are fed to the RefineNet for predicting

final offsets (xosource , yosource) and (xoref , yoref ) as shown in Figure 1.

GraphNet The overall working of GraphNet is similar to SDAFN [3], with the
major difference is appearance flow estimation. The convolutional deformable
flow warping stage in SDAFN is replaced by our novel Graph based Flow Warp-
ing (GFW) module as shown in Figure 2. The features extracted for both source
(Feats) and reference (Featr) further act as an input to GFW module. The
dense flow offsets (xosource

, yosource
) along with the computed attention maps are
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utilised by the warping module to warp Feats feature to compute source warped
feature Featswarped

. Similarly, the source warped feature Featswarped
and refer-

ence feature Featr are fed to the GFW module to compute reference warped
feature Featrwarped

from offsets (xoref , yoref ).

Fig. 2: Our Graph based Flow Warping (GFW) Module.

RefineNet The RefineNet module computes the refined offsets for predicting
the warped garment Iwarpg

and coarse tryon Itryonc
.

The concatenated source and reference warped features Featswarped
and Featrwarped

are fed as the input to refinement block to compute final offsets xosource
, yosource

and xoref , yoref which are the final warping directives for source garment (Ig)
and reference input (Iagnostic) respectively. The refinement block is a simple four
layer convolutional network based on [3]. The cloth Ig is sent to the shared en-
coder to compute garment features which are sent to the warp module along
with the final source offsets xosource

, yosource
to compute final garment warped

feature Featsrefine
. Similarly, the image agnostic Iagnostic is sent to the shared

encoder to compute agnostic features which are sent to the warp module along
with the final reference offsets xoref , yoref to compute warped reference feature
Featrrefine

. Both source and reference refined features are summed and sent to
a shared decoder to compute the warped output tryon image(Itryonc). Similarly,
the source refined feature Featsrefine

is fed to the shared decoder to compute gen-
erated warped garment image (Iwarp), which is further refined by being passed
through a 1x1 convolution layer to compute Iwarpg

.

Graph based Flow Warping module(GFW) The graph network provides
a highly connected space utilising the dense pixel context for appearance flow
estimation. The source and reference features Feats, Featr are sent to a shared
feature encoder, whose corresponding output is then utilized to construct a 4D
correlation volume capturing the statistical similarity between the two as shown
in Figure 2. The resulting value is sent to four convolutions to capture source
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feature fs. The reference feature (Featr) is fed to the garment encoder network
to compute context feature fc as shown in Figure 2. Both features are utilised
to perform a holistic warp reasoning by computing offsets fo = (xo, yo).

The graph based module in stage 1 consists of nodes(N) and edges(E) formu-
lated in a directed graph as G=(N ,E). The node embeddings are mapped to the
graph space using a simple projection function, u = Pf→u(f), where u denotes
the nodes in graph space, P is the projection function and f depicts the feature
space. We define the nodes mapped into context (garment) feature fc and warp
feature fs encoded as, uc = (u1

c ,u2
c ,.....,un

c ) and us = (u1
s,u2

s,.....,un
s ), where uc is

context nodes for garment warping while us is the warp nodes computed from
the normalized feature correlation between source and reference features Feats
and Featr in the graph space.

The process of node creation for both the source and context entails the
computation of the adjacency matrix, which measures the similarity between all
nodes denoted as uc and us. To facilitate adaptive graph learning, we employ
L() as a graph learner, comprising of a two-layer convolutional network with
ReLU activation. The first layer focuses on channel-wise learning for us, while
the second layer introduces node-wise interaction learning, resulting in a refined
node representation for the source denoted as û

(t)
s .

Ăs = L(us;Θ(uc)); û
=
s FAG(us, Ă) (1)

ûc = FGraph(uc,A), where A = uT
c uc, (2)

The final adjacency matrix for context and warp nodes is formulated in equa-
tion 1 giving the modified nodes for the source, with Θ() signifying a parameter
learner and FAG is adaptive graph learning function for warping. The context
nodes are computed as in equation 2 where FGraph, is graph learner function in
the Graph Adapter block defining the warping context.

The projection function P preserves the spatial details during the first(initial)
conversion to the graph space, and utilising this, the modified nodes are projected
back from graph to feature space using the projection function P as shown in
equation 3 and equation 4, giving f̂c garment (context) and source warp feature
f̂s.

f̂c = fc + hPv→f(ûc), (3)

where, h denotes a learnable parameter that is initialized as 0 and gradually
performs a weighted sum. Similarly, the source warp feature f̂s is produced by

f̂s = fs + lPs→f(ûs). (4)

where, l denotes a learnable parameter The resultant features are then con-
catenated to give the resulting offsets on the original grid from source image.

fo = (xg
o, y

g
o) = (1 + Fch(f̂s)) ∗ concat(f̂c, f̂s) (5)

where, Fch signifies the channel attention.
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The overall loss for training stage 1 is defined below, where Lstyle, Lprec, LL1

are style, perceptual and L1 losses.

L = (λL1LL1 + λpercLperc + λstyleLstyle) (6)

3.2 Cross Modal Attention for Inversion

We utilise the coarse tryon output Itryonc
from stage 1 to compute all the pre-

processing inputs at stage 2 including person agnostic Iagnostic, binary person
segmentation mask Icoarseb , as well as pose keypoints Ipose. The preprocessed
inputs go into the diffusion model for training.

Diffusion model : The model consists of a latent encoder E and latent decoder
D block, from a pretrained VAE. A time conditioned U-net is used with a de-
noising parameter ϵ. The diffusion encoder takes in the warped garment IWarpg

and person agnostic processed by a VAE encoder E giving the warped encoded
garment E(IWarpg ) and encoded person agnostic E(Iagnostic). The additional
inputs: pose Ipose, mask Icoarseb and noise z are resized to the latent size and
concatenated.

The resulting inputs to the network are combined as:
β = [Z; Icoarseb ; Ipose;E(IWarpg

);E(Iagnostic)] and used for latent learning. As
virtual tryon aims to transfer the given warped garment to the person, it is
treated as an inpainting task, inspired by [20]. The stable diffusion model is
used as an in-painting approach where the latent space is conditioned with our
DGAA adaptor. Our proposed framework focuses to inpaint the masked area,
but instead of being guided by a TPS based warped garment, our diffusion model
is guided by the warped garment computed from stage 1.

A CLIP encoder is employed for textual inversion which takes textual dataTgar

as an input. Similarly, input straight cloth Ig is fed to a pretrained variational
encoder, and the features are fed to a ViT layer to compute texture feature
for the same. The texture features from image are represented in CLIP token
embedding space, similar to [20]. The token embeddings from the textual data
acts as a textual prompt that guides the garment texture positioning. To en-
hance this, we introduce a Decoupled garment attention adaptor to condition
the Denoising UNet giving realistic tryon results.

Decoupled Garment Attention Adaptor (DGAA) Although LaDI-VTON
[20] enhances diffusion with inversion, it generates try-ons with erroneous tex-
ture details due to ineffective embedding of image features as they simply feed
the concatenated features to the cross-attention layers. To address this, we pro-
pose the Decoupled Garment Attention Adaptor. Similar to [31], which improves
conditioning in text-to-image generation, we utilise DGAA for conditioning the
inpainting task of virtual tryon.

The textual features obtained from the CLIP embedding xt are fed into the
cross attention layer along with the query features z, given by latent. Hence, the
cross-attention equation is given as,
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Person Garment VITON-HD [6] HR-VITON [16] LaDI-VTON [20] StableVITON [14] OOTdiffusion Proposed

Fig. 3: Qualitative results generated by proposed method in comparison with recent
state-of-the-art approaches.

z′ = Attention(α, β, γ) = Softmax(
αβ⊤
√
d
)γ, (7)

where, α = zWα, β = xiWβ and γ = xiWγ are the query, key, and values ma-
trices from the text features and Wβ ,Wγ . are the corresponding weight matrices.
In DGAA, the cross attention layers for text features and garment features are
separate. We add a new cross attention layer, for each cross attention layer in
the original UNet model to insert garment features. Given the garment features
gi, the output of new cross attention z′′ is computed as follows:

z′′ = Attention(α, β′, γ′) = Softmax(
α(β′)⊤√

d
)γ′, (8)

where, α = zWα, β′ = giW
′
β and γ′ = giW

′
γ are the query, key, and values

matrices from the image features and W ′
β ,W

′
γ . are the corresponding weight

matrices.
We use the same query for image cross-attention as for text cross-attention.

Consequently, we only need to add two paramemters W ′
β and W ′

γ for each cross-
attention layer. In order to speed up the convergence, W ′

β and W ′
γ are initialized

from Wβ and Wγ .
Combining both the equations, 7 and 8 we get the final cross attention equa-

tion as below,

znew = Softmax(
αβ⊤
√
d
)γ + Softmax(

α(β′)⊤√
d

)γ′

where α = zWα, β = xtWβ , γ = xtWγ ,

β′ = xiW
′
β , γ

′ = xiW
′
γ

(9)

Here, W ′
k and W ′

v are the only trainable weights.
Loss: The diffusion model learns from the l1 loss function over noise as in [20].
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Input Cloth Person Graph Tryon Proposed(w/o attention) LadiVTON [20] StableVITON [14] Proposed

Fig. 4: Qualitative results showing the successive visual enhancement in results and
analysis with LaDI-VTON and StableVITON.

3.3 Dataset

The experiments were conducted on VITON-HD and Dresscode datasets. VITON-
HD is a high resolution dataset with resolution of 1024x768. The train set consists
of 11,647 train pairs and 2,032 test pairs. DressCode is composed of 48,392/5,400
training/testing pairs of front-view full-body person and garment from different
categories (i.e., upper, lower, dresses). The model is trained for both datasets
in a paired setting on upper body garments and tested on both paired and un-
paired setting. The same garment tryon is tested on the model as it is wearing
in paired. While, a different garment tryon is tested on the model in an unpaired
setting.

V
IT
O
N
-H
D

Fig. 5: Qualitative results of our proposed methodology on VITON-HD Dataset de-
picting pose, hair, sleeve length and texture variations.
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Fig. 6: Qualitative results of our proposed methodology on Dresscode Dataset depict-
ing pose, sleeve length, upper/dress and texture variations.

SSIM FID KID
Graph based tryon 0.857 10.32 1.8
Flow based tryon 0.851 10.77 2.1
Diffusion with flow 0.873 9.21 1.2
Diffusion with graph 0.881 8.37 0.81

Table 1: Quantitative comparison between proposed method and incremental modules
on VITON-HD dataset for paired setting

3.4 Implementation Details and Training

The model is trained in two stages successively. The graph based warping stage is
trained first for 200 epochs, for a batch of 6 with a learning rate(LR) of 0.000035
on a V100 GPU. Weights for the loss functions are λL1 = 1, λprec = 1, λstyle =
100. We used AdamW as training optimiser with β1= 0.9, β2 = 0.999 and weight
decay equal to 1e-2.

For training stage two, the inputs derived from stage 1 are utilised to con-
struct the preprocessed inputs. This requires training our decoupled attention
adaptor for 160 epochs with Adam optimizer, batch size 8 and 1e−5 LR. We
employ SSIM, FID and KID metrics in both paired and unpaired settings for
evaluation.

SSIM FID
Iterative flow 0.852 9.08
Single stage flow 0.874 8.91
Deformable flow 0.881 8.37

Table 2: Flow method comparison on VITON-HD dataset

3.5 Qualitative Results

To qualitatively assess our findings, we present sample images generated by our
model alongside those by competing methods in Figure 3. While VITON-HD and
HR-VITON have limitations in texture and warp accuracy, LaDI-VTON slightly
improves texture details but looses colour consistency in garment. StableVITON
doesnt preserve the garment shape accurately but improves colour and texture
consistency. OOTDiffusion further improves texture details yet struggles to keep
the garment person alignment intact as can be seen in row 2(right shoulder). Our
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SSIM FID
Attention 0.881 8.37
W/O Attention 0.873 9.24

Table 3: Effect of attention in inversion module

approach produces highly realistic images, preserving the intricate textures and
details of the original garments and garment warp using a decoupled attention-
based inversion module and graph-based flow estimation.

In Figure 4, we compare both stages of our approach. Graph Tryon output
from stage one shows initial garment warp, providing a baseline for refinement.
In Stage 2, the diffusion model generates the warped garment on the agnostic im-
age. This stage uses graph-based flow warping for preprocessing, generating rich
textures and ensuring correct global warp. Through visual inspection, we discern
improvements in texture preservation, micro-texture retention in green top(last
row), spatial coherence in black dress(second row), and consistent boundary
warp(third row) by our proposed approach. Figure 4 also compares our stage 1
and stage 2 results with the existing state-of-the-art methods LaDI-VTON and
StableVITON. We observe that even without attention and inversion, our ap-
proach performs slightly better than LaDI-VTON. This is due to incorporation
of our graph based warping stage, which predicts much better warps than TPS
utilised in LaDI-VTON. The proposed approach as can be seen in last column,
retains better texture and aligns garment optimally according to person’s pose,
thereby giving the best results.

Figure 5 depicts the garment tryon in an unpaired setting for VITON-HD
dataset with texture variations, sleeve lengths, pose and hair. The generated
images provide visual effectiveness of our method to handle self occlusion due to
complex arm positions as can be seen in four images from the left. The proposed
method also generates realistic garment textures retaining the fine details of
text and symbols in the images. Figure 6 shows realistic tryon generation for
Dresscode dataset. Our work generates realistic tryon for garments in unpaired
setting. The results preserve texture, sleeve length and are agnostic to pose
variations.

Graph Diffusion Inversion DGAA SSIM FID
✕ ✕ ✕ ✕ 0.851 11.25
✓ ✕ ✕ ✕ 0.857 10.32
✓ ✓ ✕ ✕ 0.868 9.78
✓ ✓ ✓ ✕ 0.873 9.24
✓ ✓ ✓ ✓ 0.881 8.37

Table 4: Quantitative Ablation of our proposed modules on VITON-HD dataset
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Table 5: Quantitative results on the VITON-HD dataset [6]. The best results are
reported in bold.

Method LPIPS ↓ SSIM ↑ FID ↓ KID ↓

VITON-HD [6] 0.116 0.863 12.13 3.22
HR-VITON [16] 0.097 0.878 12.30 3.82
LaDI-VTON [20] 0.091 0.875 9.31 1.53
GP-VTON [33] 0.083 0.892 9.17 0.93
StableVITON [14] 0.084 0.862 9.13 1.20
OOTDiffusion [28] 0.071 0.878 8.81 0.82

Proposed 0.070 0.881 8.37 0.81

3.6 Quantitative results

We describe the robustness and correctness of our proposed approach by con-
ducting extensive experiments and ablation on Dresscode and VITON-HD datasets.
Table 1 demonstrates that the affect of introduction of graph for garment warp-
ing and coarse try-on prediction improves the accuracy of try-on module sig-
nificantly when compared with the flow based traditional counterparts. It also
describes the improvement in final try-on after utilising our diffusion model for
target person generation. As we see, combination of Graph and Diffusion achieves
the best result quantitatively.

Table 2 describes how various flow modules aid in warping input garment.
The iterative flow which was motivated from RAFT [19] is unable to learn opti-
mal warp, as the flow being learnt is an intermediate component of our network.
While, RAFT [19] being a supervised framework introduced a flow consistency
constraint which utilises ground truth flow that aids in learning of the iterative
flow. We learn flow as an intermediate component in self-supervised manner.
We also see that introduction of deformable flow [3] to our graph based flow
estimation framework drastically improves learning of warped garment. This en-
hancement can be attributed to the fusion of features warped using multiple
flows, resulting in the creation of a single optimized try-on. Consequently, while
individual warped features may exhibit slight discrepancies, the fusion process
aggregates the most favorable attributes from all features to generate an optimal
try-on output.

The introduction of decoupled cross attention between text embedding and
garment texture feature embedding improves the consistency of texture learnt
in final tryon. This can be seen as improvement in FID and SSIM scores in table
3.

We analyzed the impact of each component on the performance of the model.
As shown in Table 4, incorporating graph-based flow estimation led to a no-
table improvement in SSIM scores, indicating enhanced spatial coherence and
perceptual quality in the generated images. Similarly, the integration of diffu-
sion mechanisms in the generation process resulted in significantly lower FID
scores, demonstrating improved fidelity and realism in the synthesized outputs.
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14 Pathak et al.

Table 6: Quantitative results on the Dress Code dataset [21]. The best results are
reported in bold.

Method LPIPS ↓ SSIM ↑ FID ↓ KID ↓

PSAD [21] 0.058 0.918 17.51 7.15
Paint-by-Example [29] 0.078 0.851 18.63 4.81
LaDI-VTON [20] 0.067 0.910 12.30 1.30
GP-VTON [33] 0.051 0.921 12.20 1.22

Proposed 0.041 0.925 10.86 0.69

The inclusion of attention mechanisms within the inversion module led to sub-
stantial gains in both SSIM and FID metrics, highlighting the importance of
selective feature extraction and reconstruction in enhancing image quality and
content preservation. Our comprehensive approach, combining all key compo-
nents yielded the most impressive results.

As depicted in Table 5 and 6, we achieve highest SSIM and lowest FID scores
among all prominent tryon methods on VITON-HD and Dresscode datasets,
demonstrating the synergistic effects of our holistic technique.

4 Conclusion

Our paper introduces novel solutions to enhance virtual try-on, addressing criti-
cal challenges in garment warping and generation. By incorporating novel Graph-
based Flow Warping module (GFW), we achieve accurate context reasoning,
significantly reducing uncertainty in garment transfer. We introduce latent in-
version for rich garment and text conditioning to a stable diffusion inpainting
model. Our novel Decoupled Garment Cross-Attention Mechanism (DGAA) en-
riches latent space information of the diffusion model, leading to realistic try-
on. Empirical validation on VITON-HD and DressCode datasets demonstrates
substantial improvements in garment warping, texture preservation, and overall
realism compared to existing methods.
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