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Abstract. Vector images are widely used in the design field, particu-
larly for logos and icons, due to their scalable properties. Consequently,
the flexible and high-quality creation of such images is expected to sup-
port creative activities. In this study, we leverage a recently proposed
differentiable renderer and the strong raster image generation capabil-
ities of Stable Diffusion to generate vector-format logo images. This is
achieved through optimizing vector parameters based on losses calcu-
lated from text prompts and shape images. Additionally, we address the
self-intersection issue, a common challenge in vector image generation
through optimization methods, by introducing a new technique called
Radiation Loss. This approach explicitly monitors control points to en-
hance the quality of the output. While this method successfully gen-
erates logo images that maintain the input text and shape, challenges
remain, including the persistence of unnecessary paths and difficulty in
controlling the output entirely by text prompts. The experimental results
showed the effectiveness of the proposed methods.
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1 Introduction

Vector images, which represent visuals through parametric mathematical primi-
tives, are widely used in design fields such as fonts and icons due to their inherent
advantages. These advantages include the ability to scale without losing image
quality and typically smaller data sizes compared to equivalent raster images.
Vector graphics are often employed for various visual elements, with logo cre-
ation being especially challenging. This is because logos need to embody artistic
expression while also aligning with a specific visual identity.

Moreover, creating vector images is a time-consuming and labor-intensive
process that requires not only proficiency in vector graphics but also the use of
specialized tools. The ability to intuitively and flexibly generate vector images
using text and image inputs as guides could significantly support artistic activ-
ities, streamlining the design process and minimizing unnecessary iterations.

This paper focuses on the generation of vector-format logo images. It explores
methods for producing a diverse range of vector images that incorporate both
visual identity and artistic design by utilizing shape-indicating images and text
prompts to define the content.

This ACCV 2024 workshop paper, provided here by the Computer Vision Foundation, is the author-created
version. The content of this paper is identical to the content of the officially published ACCV 2024
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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Currently, vector graphics generation using generative models is primarily
achieved through two methods: language-based approaches, which rely on models
trained with explicit supervision of vector graphics command sequences, and
image-based approaches, which combine pre-trained Text-to-Image models with
image vectorization. The former approach is often limited to specific domains,
such as logos and fonts, due to the challenges of collecting large, high-quality
vector graphics datasets and the fact that vector graphics do not always have a
unique representation.

In contrast, the latter approach benefits from recent advances in image gen-
eration models, as it can draw upon the knowledge of models trained on large
datasets of raster images. Moreover, with the advent of differentiable render-
ers [6], raster images can now be vectorized through a straightforward optimiza-
tion process using loss functions, as illustrated in Figure 1, without the need for
complex vector transformation steps.

This paper adopts the latter approach, leveraging the capabilities of Text-to-
Image models to generate diverse and stable vector graphics. Our contributions
in this paper are summarized as follows:

– We propose a method for generating vector-format logo images by combin-
ing a differentiable renderer with the raster image generation capabilities of
Stable Diffusion.

– We introduce Radiation Loss, a novel loss function that addresses the self-
intersection problem in vector image generation, improving the quality and
structure of the output.

– We demonstrate the successful generation of logo images that preserve both
input text and shapes through extensive experiments using text prompts and
shape images.

2 Related Work

2.1 Differentiable Renderer

Traditionally, the rendering process for vector graphics has been unidirectional,
and vectorization of raster images required special methods [3, 15] that involve
tracing edges. However, vectorization by these methods is unrelated to the origi-
nal vector metrics and the vector graphics generated have a dramatically different
structure, making it impossible to apply raster-based algorithms to vector graph-
ics. Li et al. [6] addressed the problems of such vectorization methods by using
two methods for pixel prefiltering based on the differentiable 3D renderer [7]:
analytical prefiltering and multisampling antialiasing. They proposed a renderer
that can automatically compute gradients for vector parameters.

2.2 Image Generation with Differentiable Renderer

With the advent of differentiable renderers, several methods were proposed to
optimize vector parameters by directly applying raster-based loss functions and
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Fig. 1: Outline

machine learning methods to vector content, bypassing the limitations of the
need to collect data for high-quality, large-scale vector content.

CLIPDraw [2] uses a large model of learned image-text relationships pub-
lished by OpenAI, CLIP [10], to compute the similarity between an input text
and an output image. The method optimizes the parameters of Bezier curves via
a differentiable renderer, and was the basis for similar frameworks that followed.

CLIPDraw uses CLIP’s image and text encoders to optimize the input text
and output image similarity (CLIP Loss) for each iteration as a loss function to
obtain a vector image output that matches the text. However, CLIPDraw uses
Bezier curves as lines because the main purpose of CLIPDraw is to draw with
vector paths, and the poor representation remains as an issue.

StyleCLIPDraw [14] used the VGG16 model to condition images with auxil-
iary style loss, and extended it to transfer styles to images generated by CLIP-
Draw.

In addition, VectorFusion [5] uses a trained text-to-image (T2I) model, Stable
Diffusion [11]. Score Distillation Sampling (SDS) [9], a method that distills the
model so that its output is transformed into an arbitrary parameter space, such
as 3D or vector parameters, tailored for vector graphics. By using it as a loss
function, we were able to generate more consistent vector graphics. The SDS
Loss used in VectorFusion is also used in this study. Compared to CLIPDraw,
VectorFusion has greatly improved drawing capability by using a robust output
space of diffusion models. However, it does not have the ability to maintain the
shape of the input image because it only receives text as input.

3 Method

3.1 Outline

A schematic diagram of the method is shown in Figure 1. In this method, a
set of Bezier curve parameters (color, opacity, and control point coordinates),
which is generated from the input image I, is rendered by using a differentiable
renderer R with gradient generation enabled and Îi is obtained in each cycle, i.
After enhancement using cropping and perspective transformation, the result is
input into a stable diffusion model.
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In this process, the Tone Loss, Radiation Loss, and SDS Loss are calculated
and used to optimize the Bezier curve parameters through the gradient descent
method.

3.2 Representation format and initialization

The primitives that make up the vector image are restricted to closed cubic
Bezier curves, based on the concept of CLIPDraw [2]. Bezier curves are defined
by a set of control points, and by connecting multiple Bezier curves, a wide
variety of shapes can be approximated. This allows for a simple implementation
and evaluation without losing expressive power.

In this method, a vector graphic Î = {P0, ..., PN−1} is formed using N closed
Bezier curve paths. Each path consists of M cubic Bezier curve segments, and the
four control points pm that make up each segment define Pn = {p0,0, p0,1, p0,2,
..., pM−1,0, pM−1,1, pM−1,2}. Note that a path always passes through the starting
control point of a segment, and the ending control point of a segment is shared
with the starting control point of the next segment to ensure connectivity. Fur-
thermore, each Pn possesses a single color, and vector generation is performed
by individually optimizing the control point coordinates and colors.

Fig. 2: Relationship of path and control points

The vector path is initialized by arranging all control points in a circular
layout, following the idea of LIVE [8]. This method is expected to prevent path
self-intersection issues in advance.

Additionally, to improve the convergence speed of the Tone Loss, the center
coordinates of the path are pre-set within the range of the input image I. An
example of this initialization is shown in Figure 3.

3.3 Self crossing problem

LIVE [8] points out that some vector paths self-intersect as a result of the path
initialization and optimization process, leading to the generation of detrimental
artifacts and improper topology. As shown in the upper left corner of Figure 4,
paths with self-intersecting problems may generate artifacts when scaling beyond
the default rendering size and additional paths may be generated to cover the
artifacts. To address this problem, the study assumes that all vector primitives
are cubic Bezier curves, and if the control points of a path are A,B,C,D in
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Fig. 3: Example of initialization. The center position of the Bezier curve is randomly
obtained according to the input image (left figure) and initialized to a circular shape
(right figure).

that order, the angle between
−−→
AB and

−−→
CD is The Xing Loss is expressed by the

following equation:

D1 = I
(−−→
AB ×

−−→
CD

)
, D2 =

−−→
AB ·

−−→
CD∣∣∣∣∣∣−−→AB

∣∣∣∣∣∣ ∣∣∣∣∣∣−−→CD
∣∣∣∣∣∣ (1)

Lxing = D1(ReLU(−D2)) + (1−D1)(ReLU(D2)), (2)

where × is the outer product, · is the inner product, and I(·) is the sign function.

Fig. 4: Self crossing problem. (cited
from [8])

Fig. 5: Example where the path inter-
sects between segments due to the ini-
tialization method. (cited from [8])

3.4 Loss Function

Figure 6 shows the derivation flow of the loss functions. Since logo images possess
the appearance of a specific shape as a unique identity that preserves artistic
graphics and identity, SDS Loss and Tone Preserving Loss are introduced to
control the content by text and shape, respectively, and to restrict the shape

547



6 R. Yamakura and K. Yanai

Fig. 6: Loss Function

to the region of the image where the input is located. In addition, Radiation
Loss is introduced to solve the self-intersection problem, in which control points
are optimized into uninterpretable shapes during the optimization process, a
problem inherent in vector image generation using optimization methods.

Tone Preserving Loss Tone Preserving Loss is the loss proposed in Word-As-
Image [4], which applies a low-pass filter to the rendered vector image and the
image of the shape being referenced and takes the Euclidean distance between the
images. This loss preserves the local tones of the image and limits the adjusted
image from deviating too much from the input image.

Ltone = ||LPF (R(I))− LPF (R(Îi))||22 (3)

where R(·) is the renderer and P and P̂ are the set of parameters that make up
the vector image.

This method also introduces Ltone to restrict the shape to that of the in-
put image. However, since Word-As-Image is a method intended to manipulate
monotone font shapes, applying Equation (3) directly or applying a gray scale
transformation to a rendered image will optimize the color value to be close to
the mask value (usually 0), resulting in blackening the corresponding parts of
the generated image. and the corresponding areas of the generated image will
be blackened.

Therefore, Equation (5) applied to Tone Loss is used to create an image
showing the region of the path from the difference with the background using
an image rendered with a random noise background image, bg, according to the
following equation:

R(Îi)binary = Sigmoid
(
α(R(Îi)− bg)2)

)
, (4)
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where α is the scaling factor and α = 106.

Ltone = ||LPF (R(I))− LPF (R(Îi)binary)||22 (5)

Score Distillation Sampling Loss Score Distillation Sampling (SDS) Loss is
the loss function proposed in DreamFusion [9] using the sampling results when
the Jacobian term in the diffusion model is omitted. More intuitively, it can
be said to be a loss that optimizes the parameter θ to fit the conditional text
prompt by minimizing.

At each iteration t ∈ 1, 2, ...., T , a randomly rendered image x is generated
and then noise is added to this image, accompanied by the terms ϵ ∼ N (0, I),
αt, σt that control the noise schedule, xt = alphatx+ σtϵ is formed. The noisy
image is then passed to the Imagen [13] pre-trained UNet [12] model, which
outputs a prediction of the noise ϵ. The SDS Loss is defined by the following
equation:

∇θLSDS = Et,ϵ

[
w(t)

(
ϵ̂ϕ(xt, t, y)− ϵ

)∂x
∂θ

]
, (6)

where ϵ̂ϕ is the UNet-based denoising network, y is the conditional text prompt,
θ is the NeRF parameter, and w(t) is a constant multiplier that depends on αt.

While SDS Loss was utilized for the 3D object generation task in the pro-
posed DreamFusion, VectorFusion [5] utilized SDS Loss for the vector graphics
generation task. VectorFusion is defined similarly to DreamFusion with the raster
images generated by Stable Diffusion as vectorized vector images or randomly
initialized vector images as initial values, defined by the following formula:

∇ÎLLSDS = Et,ϵ

[
w(t)

(
ϵ̂ϕ(αtzt + σtϵ, y)− ϵ

) ∂z

∂zaug

∂xaug

∂θ

]
, (7)

where xaug is the enhancement by perspective transformation and cropping as
shown in CLIPDraw [2], z is the encoding applying the stable diffusion pre-
trained encoder E , z = E(xaug). Similarly in this paper, SDS Loss is used to
effectively utilize the T2I feature of Stable Diffusion as well as VectorFusion for
the vector graphics generation task.

Radiation Loss Although the Xing Loss (Equation (2)), which solves the
self-intersection problem, fully prevents self-intersections for single cubic Bezier
curves, it is difficult to prevent segment intersections for actual Bezier curves
with connected segments, and there is room for improvement in this respect.
In this regard, LIVE prevents segment intersections by initializing the paths
circularly. However, this method, which does not allow area-based initialization
based on the target image and has a large variation of control points during the
optimization process, is likely to cause segment intersections even if the same
initialization is used. Figure 5 shows an example of segment intersections due to
the path initialization method.
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Therefore, we propose Radiation Loss, which is an extension of Xing Loss,
taking into account the positional relationship with the segments before and
after.

The simplest condition necessary for the entire connected path to not inter-
sect is that all control points are in order toward one of the rotation directions.
That is, with c as the median of the starting control point for each segment, for
all control points comprising the path Pn, ∠pncpn+1 < ∠pncpn+2 must be ful-
filled. Figure 7 shows an overview of Radiation Loss. Radiation Loss is therefore
defined as in the following equation:

Lrad =
∑
n

ReLU(∠pncpn+1 − ∠pncpn+2) (8)

Fig. 7: Overview of Radiation Loss. (a) Example of sequential placement with respect
to the direction of rotation, (b) Example of crossed paths as a result of placement
against the direction of rotation.

Total Loss The above three losses are weighted and added together to define
Total Loss.

Ltotal = λtoneLtone + λradLrad + λLSDSLLSDS (9)

Note that λtone, λrad, and λLDSD are weights to adjust each loss.

3.5 Path Elimination

Since SDS Loss is calculated using rasterized images in this method, path re-
duction and transparency occur so that Loss becomes smaller. These path am-
biguities are not a problem for the raster image after rendering, but for the
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vector image, they have a negative impact on the data size and rendering pro-
cess. Therefore, a more concise vector image is generated by removing the paths
considering their impact on the rendered image during the optimization process.
With a threshold value of τ , Pn is removed when the conditions represented in
Equation (11) are satisfied.

Îi,n = R({Pn, ..., pN})−R({Pn+1, ..., pN}) (10)∑
x,y alpha(Îi,n)

w × h
< τ, (11)

where R is the renderer, alpha(Îi,n) is the image opacity, and w and h are the
output image sizes. The expression 10 represents how much Pn is visible in the
raster image after rendering, and in the experiment τ = 5.0× 10−4.

Fig. 8: Example before path deletion (left) and with path deletion applied (right). In
this example, the number of Bezier curves has decreased from 200 to 134.

4 Experiments

4.1 Experimental Settings

The size of the input/output image is 600 × 600. The pre-diffusion model en-
hancement crops R(Îi) to 512× 512. By default, the number of Bezier curves is
200, the number of segments is 6, the number of parameter updates i is 1000,
and the loss weights are λtone = 200, λrad = 1, λLSDS = 1, and for Tone loss the
kernel size of the low-pass filter used was set to 101 and σ to 30. These values
were set empirically. Also, the path was removed in case of i = 800. Prompt
engineering was used for the input with reference to VectorFusion [5] and “a logo
of {concept}. minimal flat 2d vector. lineal color. trending on artstation.”

4.2 Results

The experimental results of the proposed method are shown in Figure 9. It can
be seen that the structure shown in the text is generated in the shape of the
input image. For example, in the case of the input “Mt. Fuji”, a structure like
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Fig. 9: Generated samples.

Mt. Fuji appears as the largest structure, while a path is generated that does
not seem to make much sense and fills the input image area. In addition, as in
the “rabbit” example, the color scheme is far from what is intuitively imagined
from the input text.

4.3 Ablation Studies

Inference of Tone Loss The results of applying different weights to the Tone
Loss are shown in Figure 10. It can be seen that the larger the weight, the closer
the shape of the output image is to the input image. Therefore, it is considered
possible to control the shape of the output image by adjusting this loss.

Inference of Radiation Loss The results of applying different weights to
Radiation Loss are shown in Figure 11. The paths with Radiation Loss are com-
pletely convex, even when the weights are small. However, even when Radiation
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Fig. 10: An example of changing the
Tone Loss weight. λtone. (a)λtone = 1.0,
(b)λtone = 1.0× 10, (c)λtone = 1.0× 102,
(d)λtone = 3.0× 102

Fig. 11: Example of varying
the Radiation Loss weight λrad.
(a)λrad = 1.0, (b)λrad = 1.0 × 10,
(c)λrad = 1.0× 102

Fig. 12: Compare of Xing Loss and Radiation Loss

Loss is added, spine-like artifacts are still generated due to the increase in the
size of the two points other than the starting control point.

A comparison of Xing Loss and Radiation Loss is also shown in Figure 12,
showing that path self-intersections are reduced in Radiation Loss compared to
the Xing Loss case, with each path forming a larger structure.

4.4 Other experiments

In order to examine the effect of manipulating text prompts on output results,
experiments were conducted by adding colors to adjectives and by changing the
prefix and suffix of the prompts. Figure 13 shows the results of generating text
prompts as “{color} {concept}”. It can be seen that the output examples with
colored input reflect the color, while for achromatic colors such as “black” and
“white”, the color is either ignored or only partially applied.

Figure 14 shows an example of output when the number of parameter updates
is changed. It can be seen that at i = 1000 most of the shape is formed, and at
i = 1500 an almost completely stable shape is output. Therefore, it is advisable
to choose an appropriate value between 1000 < i < 1500.
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Fig. 13: Example output when color is
added to adjectives

Fig. 14: Example output when i num-
ber of parameter updates is changed.
(a)i = 500, (b)i = 1000, (c)i = 1500,
(d)i = 2000,

Fig. 15: Example output when the number of paths N is varied. The number of paths
changes as follows by applying path deletion. (a) 32 to 32, (b) 64 to 52, (c) 128 to 116,
(d) 256 to 141, and (e) 512 to 166.

An example of the generation when the number of paths N is changed is
shown in Figure 15. It can be seen that by deleting paths, unnecessary paths are
deleted when an excessive number of paths are specified.

5 Discussions

5.1 About the Output Results

Observing the sample of output results (Figure 9), we can see that in some parts,
structures like those shown in the text appear, while in other parts, paths of little
significance appear to satisfy the shape. This decrease is thought to be caused
by the Tone Loss limiting the divergence between the sample results obtained
with SDS Loss and the shape image. In addition, the color scheme of some of the
samples deviates from the hue imagined from the text, and it is thought that
the shape constraint imposed by Tone Loss distorts the shapes that could be
generated. Since it is impossible to change the shape of the sampling result by
SDS Loss with the shape constraint by Tone Loss, it is thought that these effects
are similar to cropping to the shape of the input image. Therefore, it is necessary
to extend the sampling results to maintain the shape of the input image to some
extent by using the input image for conditioning the diffusion model.
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5.2 Influence of Radiation Loss

As shown in Figure 11, Radiation Loss effectively suppressed the self-intersection
problem and contributed to stabilizing the path shape. However, it remains inad-
equate for generating perfectly smooth paths, and artifacts often emerge where
certain segments are elongated, resembling spines. This issue is likely caused by
the optimization process attempting to minimize the effect of unnecessary seg-
ments on the drawing area within the constraints imposed by Radiation Loss.

Furthermore, because Radiation Loss incorporates information about the
starting control point of each segment, it introduces unnecessary restrictions
on its positioning, leading to impossible path shapes. Since this method employs
SDS Loss to capture content based on the raster image post-rendering, the use
of multiple Bézier curves to handle these impossible shapes results in suboptimal
vector paths. To address this, an appropriate reference position corresponding
to the center point c in Radiation Loss must be established.

6 Conclusions

In this paper, we propose a method for generating shape-preserving vector graph-
ics by integrating the capabilities of a differentiable renderer [6] with SDS Loss [9]
and Tone Loss [4]. Additionally, we introduce Radiation Loss, an extension of
Xing Loss [8], to address the self-intersection problem in vector graphics gen-
eration. Our experimental results demonstrate that the proposed method can
effectively incorporate textual content into vector graphics while preserving the
shape of the input image. However, the output is influenced by the input condi-
tions, indicating room for further improvement.

For future work, we consider employing image-to-image conditioning in Sta-
ble Diffusion, rather than directly controlling the shape, to produce outputs that
more closely match the input image. Furthermore, we plan to refine Radiation
Loss by adopting central-axis transformation [1] instead of the current central
coordinate c, which will help to alleviate unnecessary restrictions on the starting
control point.
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