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Abstract. Image restoration methods like super-resolution and image
synthesis have been successfully used in commercial cloud gaming prod-
ucts like NVIDIA’s Deep Learning Super Sampling (DLSS). However,
restoration over gaming content is not well studied by the general pub-
lic. The discrepancy is mainly caused by the lack of ground-truth gaming
training data that match the test cases. Due to the unique characteristics
of gaming content, e.g., sharp and clear low-resolution (LR) images, the
common approach of generating pseudo training data by degrading the
original high-resolution (HR) images results in inferior restoration per-
formance. In this work, we develop GameIR, a large-scale high-quality
computer-synthesized ground-truth dataset to fill in the blanks, targeting
at two different applications. The first is super-resolution with deferred
rendering, to support the gaming solution of rendering and transferring
LR images only and restoring HR images on the client side. We provide
19200 LR-HR paired ground-truth frames coming from 640 videos ren-
dered at 720p and 1440p for this task. The second is novel view synthesis
(NVS), to support the multiview gaming solution of rendering and trans-
ferring part of the multiview frames and generating the remaining frames
on the client side. This task has 57,600 HR frames from 960 videos of
160 scenes with 6 camera views (with associated camera intrinsic and ex-
trinsic parameters). In addition to the RGB frames, the GBuffers during
the deferred rendering stage (i.e., segmentation maps, and depth maps)
are also provided, which can be used to help restoration. Furthermore,
we evaluate several SOTA super-resolution algorithms and NeRF-based
NVS algorithms over our dataset, which demonstrates the effectiveness of
our ground-truth GameIR data in improving restoration performance for
gaming content. Also, we test the method of incorporating the GBuffers
as additional input information for helping super-resolution and NVS.
We release our dataset and models to the general public to facilitate
research on restoration methods over gaming content.

Keywords: computer-synthesized dataset · super-resolution · novel view
synthesis · cloud gaming
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2 L. Zhou et al.

1 Introduction

Modern cloud gaming has become increasingly popular with an expected global
market share value reaching over $12 billion by 2025. By streaming frames ren-
dered on remote servers to users’ devices, cloud gaming benefits both users and
game developers. Users can play a large library of games on any device, with-
out requiring expensive hardware, and game developers can optimize games for
known server-side hardware, without dealing with heterogeneity of client-side
devices. In recent years, Generative AI (GAI) technologies, such as GAN and
diffusion models, are transforming the gaming industry by enabling fast and ac-
cessible high-quality content creation. GAI makes it possible for anyone to build
and design games without professional artistic and technical knowledge, further
empowering immeasurable market growth.

Being the next-generation game changer, cloud gaming poses tremendous
challenges for data compression and transmission. Most current solutions rely
on heavy server-side computation and network delivery, where the client device
is merely used for display. It is difficult for a client to enjoy high-quality gaming
if the bandwidth is limited, even with a powerful client device. To avoid input de-
lay and over-consuming bandwidth, high-quality frames need to be heavily com-
pressed with extremely low latency. Traditional codecs like H.264/H.265/H.266
[17,18] or recent neural video coding [32] targeting natural videos cannot resolve
this transmission bottleneck.

Generative methods like GAN, when applied to super-resolution and image
rendering and synthesis, can largely alleviate the transmission issues. Server-
side computation and transmission can be reduced by leveraging the computa-
tion power of client devices. For example, the server can render low-resolution
(LR) frames to transfer, and high-resolution (HR) frames can be computed on
the client side. In multiview (e.g., immersive VR) gaming, the server can render
part of the frames or views to transfer, and the remaining frames or views can be
computed by client devices. NVIDIA’s Deep Learning Super Sampling (DLSS)
technology [38–40] has commercialized this idea, demonstrating the great po-
tential of optimizing the gaming experience by leveraging bandwidth conditions
and computation power of client devices.

The key factor of the success of DLSS is the large-scale ground-truth LR-HR
paired data or multiview gaming data used for training that matches the test
scenarios. In comparison, the research community uses pseudo training data for
many restoration tasks [2, 25, 42, 53]. For example, for super-resolution, the LR
data is generated from the HR data by downsampling and adding degradation-
like noises, blurs, and compression artifacts. Such pseudo training data does
not match the real gaming data. For example, as shown in Fig. 3, true LR
gaming frames are high-quality, sharp, and clear without noises or blurs, different
from generated pseudo LR data. Also, there are unnatural visual effects and
object movements, but with little motion blur, different from captured natural
videos. As a result, we have to resort to ground-truth gaming data for effective
training. Unfortunately, it is non-trivial to obtain such ground truth, which
requires technical skills, labor, and computation using graphics engines.
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In this paper, we provide GameIR, a large-scale computer-synthesized ground-
truth dataset to facilitate the research of restoration methods over the gaming
content. We aim to bring the success of commercial-level DLSS to the public
research community so that AI-empowered cloud gaming solutions using im-
age restoration techniques can be more effectively investigated in the field. Our
contributions can be summarized as follows.

– We develop a large-scale, high-quality, computer-synthesized ground-truth
dataset aiming at two different applications: super-resolution with deferred
rendering to support the gaming solution of transferring LR images and
restoring HR images on the client side, and novel view synthesis (NVS) to
support the gaming solution of transferring part of the multiview frames and
generating the remaining frames on the client side. For super-resolution, the
GameIR-SR dataset contains 19,200 LR-HR paired ground-truth frames de-
rived from 640 videos rendered at 720p and 1440p using the open-source
CARLA simulator with the Unreal Engine. In addition to the LR-HR paired
RGB images, the additional GBuffers during the deferred rendering stage
(i.e., segmentation maps, and depth maps) are also provided. An example
is shown in Fig. 2. For NVS, the GameIR-NVS dataset contains 57,600 HR
frames at 1440p from 960 videos of 160 scenes with 6 camera views (with as-
sociated camera intrinsic and extrinsic parameters). Besides multiview RGB
frames, the dataset also includes the corresponding segmentation maps and
depth maps. An example is illustrated in Fig. 4.

– We evaluate over our dataset several existing SOTA algorithms. For super-
resolution, we test Anime4K [14] that is designed for anime/cartoon content,
RealESRGAN [47] that learns real-world degradations for general images,
and AdaCode [31] that uses learned generative codebook priors. For NVS,
we test Instant-NGP [37], NeRFacto [44], DSNeRF [9] and PyNeRF [46],
which represent the latest NeRF-based NVS methods. We aim to provide a
baseline to understand how current methods perform over real gaming data
so that improved solutions can be further studied.

– We further evaluate how models can benefit from the additional GBuffers.
For super-resolution, GBuffers are either used as additional inputs by con-
catenating with the RGB frames or used as generative conditions during the
conditional restoration process by feature modulation. For NVS, the depth
map is used to assist NeRF-based models by providing additional geometry
information for the scene.

We release our GameIR dataset and the evaluated models. To the best of our
knowledge, this is the first large-scale video set providing ground-truth computer-
synthesized LR-HR paired or multiview frames with associated GBuffer data at
the scene level. Our dataset can help to advance the research of restoration
methods over gaming content for the general public.
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2 Related Works

2.1 Super-Resolution: Methods and Datasets

The pioneering work of SRCNN [10,11] has inspired extensive research on deep-
learning-based single image super-resolution (SISR). Earlier works [20,23,28,49,
57,60] assumed that LR images were generated by ideal degradation models. To
handle the complex real degradations consisting of unknown factors like blur-
ring and noises, blind SISR [34,58] has become the research focus, which can be
categorized as explicit and implicit methods. Explicit methods [15,33,54,58] ex-
plicitly model and estimate the degradation process, and perform reconstruction
based on the estimated degradation model. However, real-world degradation is
too complicated to model accurately through simple combinations of multiple
degradations. In comparison, implicit methods [14,26,31,47,50,55] automatically
learn and adapt to various degradation conditions based on LR training data
distribution. Although implicit methods have achieved large improvements over
real-world images, their performance is highly limited by the training degrada-
tions, making them difficult to generalize to out-of-distribution images. Previ-
ous methods mitigate this issue by increasing the variety of training degradation
types and scales. However, such a training strategy does not work well for gaming
content. Real-rendered LR images are clear, sharp, and without blur or artifacts,
which are quite different from pseudo LR images generated by applying degrada-
tions. As a result, SISR models need to be trained on real LR-HR paired gaming
data to learn true degenerative features and improve their performance.

Existing datasets for SISR mainly consist of HR images. Commonly used
datasets include DIV2K [1], DIV8K [16], Flickr2K [27], and Flickr-Faces-HQ
(FFHQ) [21]. Other popular datasets for general vision tasks, such as Ima-
geNet [8] and COCO [29], are also used for SISR. LR images for these datasets
are generated by applying degradations to the HR images. To improve the gener-
alization of models when applied to real-world scenarios, complex degradations
have been employed, such as multiple simulated degradations [13] and BSRGAN
generated degradations [55]. However, the gap between the simulated and real
degradations still exists. The problem is especially prominent for gaming images
due to their unique characteristics different from natural images.

There are some datasets providing real-world ground-truth image pairs, e.g.,
City100 [5], RealSR [4], and DRealSR [51], by using two calibrated devices with
varying focal lengths to directly capture LR-HR image pairs. However, due to
the expensive process, scale and content diversity is usually highly limited. Also,
time synchronization and pixel-level alignment still remain challenging.

2.2 Novel View Synthesis: Methods and Datasets

NVS aims to generate novel view images by integrating image data from mul-
tiple camera perspectives. Recently, methods based on Neural Radiance Fields
(NeRF) [36] have shown great performance over a large variety of scenes. NeFR++
[56] builds upon NeRF with improved representations and volume rendering.
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Mip-NeRF [3] uses conical frustums rendering to reduce aliasing and enhance ap-
plicability to multiscale and high-resolution scenes. Instant-NGP [37] uses hash
tables and multi-resolution grids to speed up training and inference. DSNeRF [9]
leverages depth information for supervision to improve performance. 3D Gaus-
sian Splatting (3DGS) [22] uses Gaussian functions for real-time, high-quality
rendering. PyNeRF [46] enhances the rendering speed and quality by training
models across various spatial grid resolutions.

NVS datasets are generally divided into synthetic and real-world. Most syn-
thetic datasets are at the object level. Blender [36], Objaverse [7], and D-NeRF
[41] are typical synthetic datasets, which contain 3D CAD models with varied
textures and geometries without real-world noises or non-ideal conditions.

Earlier real-world datasets were developed for multi-view stereo tasks, such as
Tanks and Temples [24] and DTU [19], offering limited scene variety. ScanNet [6]
contains 3D scans and RGB-D video data, but with motion blur and narrow
field-of-view. Later datasets featuring outward-facing and forward-facing scenes
have limited diversity in general. For instance, LLFF [35] provides 24 cellphone-
captured forward-facing scenes. Mip-NeRF 360 [3] provides 9 indoor and outdoor
scenes with uniform distance around central subjects. Mill 19 [45] provides 2 in-
dustrial and open-space scenes. BlendedMVS [52] offers multi-view images and
depth maps but with limited scenes. Recently, large-scale scene-level real-world
datasets have emerged. For example, RealEstate10K [61] offers diverse indoor
scenes through real estate videos, but with low-resolution and inconsistent qual-
ity. Replica [43] provides high-quality data including RGB images, depth maps,
and semantic annotations, but is limited to indoor environments only. The most
recent DL3DV-10K [30] significantly enriched the real-world scene collection by
providing 10,510 videos captured from 65 types of scene locations, with different
levels of reflection, transparency, and lighting conditions.

In comparison, there is a lack of large-scale scene-level synthetic datasets
for NVS research over synthetic gaming data. Similar to the super-resolution
task, due to the unique characteristics of gaming content, e.g., unnatural object
motion with limited motion blur, NVS methods need to be trained and evaluated
over scene-level synthetic datasets to assess their effectiveness for gaming data.

3 Our Dataset

In this work, we develop the GameIR dataset, which is a large-scale synthetic
scene-level dataset to facilitate image restoration research for cloud gaming solu-
tions. GameIR provides ground-truth LR-HR pairs and synchronized multiview
video frames to support both super-resolution and NVS tasks.

3.1 Acquisition Environment and Settings

GameIR was collected using CARLA [12], an autonomous driving simulator
developed based on the UE4 game engine. CARLA provided 8 towns: Town01,
Town02, Town03, Town04, Town05, Town06, Town07, and Town08. Each town

529



6 L. Zhou et al.

(a) Town01 (b) Town02 (c) Town03 (d) Town04

(e) Town05 (f) Town06 (g) Town07 (h) Town08

Fig. 1: Representative views of 8 different towns.

has a distinct style and environment, including various simulation entities such
as weather, roads, buildings, vehicles, pedestrians, and vegetation. Fig. 1 gives
example views of these towns. For each town, we collected two types of scenes:
the static autonomous driving scene where there were no other moving vehicles
in the scene; and the dynamic autonomous driving scene, where there were other
moving vehicles in the scene. Data were collected by controlling an agent vehicle
driving in different towns with different camera setups. There were many spawn
points for driving agent vehicles in each town, and after initializing the agent
vehicle, we set it to autonomous driving mode. Different cameras were initialized
and attached to the agent vehicle, which dynamically recorded the surrounding
data as the vehicle drove through. During data collection, we set the CARLA
simulation to synchronous mode, which prevented discrepancies between the
camera capture and storage to avoid frame drops in the stored camera photos.

3.2 GameIR-SR: Dataset for Super-Resolution

For both static and dynamic autonomous driving scenes, we randomly selected
20 spawn points in each of the 8 towns, totaling 320 scenes for the GameIR-SR
dataset. To provide ground truth for super-resolution, we placed one set of HR
cameras and one set of LR cameras at the front of the agent vehicle, each set
capturing synchronized RGB images, segmentation maps, and depth maps with
1920x1440 resolution and 960x720 resolution, respectively.

Each video in the GameIR-SR dataset is 2-second long at 30fps, totaling 60
frames. During capture, the GBuffer data from the deferred rendering phase,
as well as the cameras’s intrinsic parameters and extrinsic 6-DoF parameters,
were also collected synchronously. Fig. 2 gives an example of the GameIR-SR
dataset. Finally, GameIR-SR has 19200 LR-HR paired ground-truth frames from
320 LR-HR paired videos, along with the corresponding GBuffers and camera
parameters. The ground-truth LR frames are clear and sharp, different from the
pseudo LR images generated by degrading the HR images, as illustrated in Fig. 3.
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Fig. 2: An example of GameIR-SR dataset, consisting of paired LR-HR (LR top row,
HR bottom row) RGB images with associated GBuffer information.

Such ground-truth LR-HR pairs can better serve as training data for super-
resolution methods targeting at gaming content, where the real degradation
features can be learned to improve the models’ performance.

3.3 GameIR-NVS: Dataset for Novel View Synthesis

For NVS, we only collected data with static autonomous driving scenes. We
randomly selected 20 spawn points in each of the 8 towns and recorded 160
scenes in total for the GameIR-NVS dataset. To provide ground truth for NVS,
we placed 6 sets of cameras in 6 directions around the agent vehicle: front view,
left 60° view, right 60° view, left 120° view, right 120° view, and back view. Each
set captured the RGB images, semantic segmentation maps, and depth maps
at the resolution of 1920x1440 when the vehicle drove through different parts
of the towns. Adjacent cameras have some overlapping field-of-view. For each
scene, the video is 2-second long at 30fps, totaling 60 frames. Fig. 4 gives an
example of the GameIR-NVS dataset. The camera intrinsic parameters and the
6-DoF camera extrinsic parameters for each frame are also recorded. Finally, the
GameIR-NVS dataset comprises 960 videos from 160 scenes, totaling 57,600 HR
frames. These 360-degree scene-level synthetic data are suitable for training and
evaluating NVS methods over gaming content. In addition, the associated depth
maps and segmentation maps can be leveraged by NVS algorithms to further
improve the generation performance.

4 Evaluation of Super-Resolution over GameIR-SR

Our evaluation has 3 progressive stages: test pretrained SISR models, test fine-
tuned models using the GameIR-SR training set, and test modified SISR models
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(a) True LR (b) Pseudo LR

Fig. 3: True LR input versus pseudo LR input. The pseudo LR input is downsampled
from the HR input with added noise and blur as commonly used degradation [57,60].

using the GBuffer information as additional inputs or as generative conditions,
trained over the GameIR-SR training set.
Tested SISR Methods. We evaluated 3 methods: Anime4K [14] that is spe-
cially designed and trained for anime/cartoon images, Real-ESRGAN [47] that
handles diverse real-world image degradations, and Adacode [31] that employs a
learned codebook-based visual representation as learned generative priors. These
methods have their unique strengths in different application areas and give SOTA
performance over both anime/cartoon and real-world images. By evaluating their
pretrained, finetuned, and modified improved models, we can obtain a good as-
sessment of how current SISR methods perform over gaming content.
Implementation Details. We used data from Town01-04 and Town06-08 for
training, and data from Town05 for testing. This ensures that training and test
data have distinct styles and town structures. We used published source code by
Anime4K [14], Real-ESRGAN [47], and Adacode [31]. During training or fine-
tuning, we followed the original methodologies and hyperparameters described
in each method’s seminal papers. We used eight V100 GPUs for training and a
single V100 GPU for testing.
Evaluation Metrics. We evaluated PSNR, SSIM, FID, and LPIPS. PSNR
and SSIM focus on pixel-level distortions. LPIPS highlights local image quality.
FID measures the distance between the distributions of generated and real im-
ages, reflecting the overall perceptual quality. These metrics are widely used for
restoration tasks to provide complementary perspectives on image quality.

4.1 Performance without GBuffer

Without using GBuffer, we tested the pretrained models and finetuned models
with the GameIR-SR training set. Table 1 gives the quantitative performance
comparison. Fig. 5 gives the qualitative comparison of example results. From the
results, we can see that, after finetuning over the GameIR-SR training set, com-
pared to the pretrained models, all three tested methods have large performance
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Fig. 4: An example of our GameIR-NVS dataset, consisting of 6 views of RGB images
with associated segmentation maps and depth maps. From the top to bottom, the
sequence gives views of a 360° rotation, starting from the front.

PSNR↑ SSIM↑ FID↓ LPIPS↓

PT FT
(pseudo)

FT
(GT) PT FT

(pseudo)
FT

(GT) PT FT
(pseudo)

FT
(GT) PT FT

(pseudo)
FT

(GT)
Anime4k 30.9274 30.5923 31.2974 0.9008 0.8874 0.9057 4.7365 6.7408 4.6172 0.0866 0.1069 0.0788

AdaCode 28.6791 27.9637 29.5762 0.8382 0.8146 0.8741 14.8789 17.6222 11.4608 0.0884 0.0899 0.0451

Real-ESRGAN 29.1421 29.2743 30.2517 0.8639 0.8623 0.8916 17.7232 14.7961 8.3153 0.0905 0.0706 0.0379

Table 1: Performance of pretrained (PT) and finetuned (FT) super-resolution meth-
ods, using pseudo-LR training data or ground-truth (GT) LR training data: PSNR and
SSIM, the higher the better; LPIPS and FID, the lower the better.
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improvements across all metrics. As clearly shown in Fig. 5, the finetuned mod-
els are capable of restoring intricate image details more accurately than the pre-
trained models. The finetuned models generate images with enhanced sharpness
and clarity, especially in regions with rich textures. These results demonstrate
the importance of training over ground-truth LR-HR paired data, where models
can better learn real degradation features that match the inference stage.

To further prove our point, we also used BSRGAN [55] as the degradation
model to generate pseudo LR training data and finetuned the tested pretrained
models using such pseudo pairs. The results are also shown in Table 1, which
clearly show that such pseudo training data can not give any performance gain.
That is, improvements can not be obtained by simply increasing pseudo training
data. Ground-truth LR-HR gaming data are necessary for effective training.

4.2 Performance with Additional GBuffer

We modified the Real-ESRGAN [47] to make use of GBuffers as additional in-
formation to help SISR. There are two common ways to include additional input
information into a model: as additional inputs or as generation conditions.

Input Channels PSNR↑ SSIM↑ FID↓ LPIPS↓

RGB (pretrained models) 30.1798 0.9040 10.0374 0.0535

w/ S(concat) 30.1065 0.9026 9.9637 0.0518

w/ D(concat) 30.2236 0.9038 10.2756 0.0499

w/ SD(concat) 30.1639 0.9033 9.9164 0.0524

w/ S(SFT) 30.0750 0.9025 10.2182 0.0519

w/ D(SFT) 30.1049 0.9020 9.5882 0.0492

w/ SD(SFT) 30.1996 0.9052 9.8511 0.0507

Table 2: Performance of using different GBuffer information: segmentation map (S),
depth map (D), or both (SD), by different methods: as additional input (concat), or
as generative condition (SFT).

GBuffer as Additional Input. The GBuffers provide two types of information:
segmentation maps and depth maps. We experimented with adding segmenta-
tion map or depth map alone, or adding both of them together. Specifically,
we concatenated either the segmentation map or depth Map, or both of them
with the RGB image to form a 4-channel or 5-channel input and adjusted the
input layer of Real-ESRGAN accordingly. We followed the two-phase training
procedure of the original Real-ESRGAN [47]. In phase 1, Real-ESRNet with
RRDBNet was finetuned as the backbone using the GameIR-SR training data.
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LR Anime4K (PT) AdaCode (PT) Real-ESRGAN (PT)

HR Anime4K (FT) AdaCode (FT) Real-ESRGAN (FT)

LR Anime4K (PT) AdaCode (PT) Real-ESRGAN (PT)

HR Anime4K (FT) AdaCode (FT) Real-ESRGAN (FT)

LR Anime4K (PT) AdaCode (PT) Real-ESRGAN (PT)

HR Anime4K (FT) AdaCode (FT) Real-ESRGAN (FT)

Fig. 5: Qualitative comparison of pretrained (PT) and finetuned (FT) super-resolution
methods. Finetuning with ground-truth LR-HR paired data can restore intricate details
more accurately with better clarity.
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In phase 2, we continued tuning with GAN loss, where Real-ESRNet served as
the generator tuned together with a UNet discriminator.
GBuffer as Generation Condition. The GBuffer information can serve as
generation conditions during reconstruction. Following the two-phase training
process of Real-ESRGAN, in phase 1, we added a control network (CtrlNet) [59]
to Real-ESRNet, feeding the segmentation map, depth map, or both of them
into CtrlNet respectively. Then, we used a Spatial Feature Transform (SFT)
module [48] to fuse the output of the Real-ESRNet and CtrlNet in reconstructing
the final image output. CtrlNet comprises upsample layers and ResBlocks, which
extract multi-scale features from segmentation maps or depth maps, or both. In
the SFT module, the scale and shift layers use outputs from CtrlNet to perform
spatial feature transformations on the feature maps. The scale layer dynamically
adjusts the scales of the output feature maps by Real-ESRNet. The shift layer
adjusts the baseline activation levels of the Real-ESRNet outputs, tuning feature
activation by the conditional information.

Table 2 gives the performance comparison of different ways of using GBuffer
inputs. From the results, by using both the segmentation map and depth map
as generative conditions, we can both improve distortion and perceptual qual-
ity across all metrics. Note that due to modifications of the models, no pre-
trained model is used here. Better performance can be expected in the future if
larger-scale and more diverse gaming data can be available for learning a general
pretrained model for general gaming content.

5 Evaluation of NVS over GameIR-NVS

We evaluated SOTA NeRF-based NVS algorithms over the GameIR-NVS dataset.
For each town, we randomly selected 5 out of the 20 multiview videos with dif-
ferent spawn sites. For each selected video, we randomly sampled a subset of
multiview frames to train NeRF-based models and then rendered the remaining
frames to compare with the ground-truth frames for evaluation.

We evaluated 4 latest methods: Instant-NGP [37] that targets fast compu-
tation, NeRFacto [44] that improves efficiency in complex scenes, PyNeRF [46]
that improves both speed and quality by training models across different spatial
grid resolutions, and DSNerF [9] that uses depth maps to improve performance.

We used the NeRFStudio implementation [44] of the tested methods. The
default provided hyperparameters were used. The training and test were done
on a single V100 graphics card.

We evaluated PSNR, SSIM, LPIPS, and FID to measure both distortion
and visual quality. In addition, we evaluated normalized root mean square error
(NRMSE) that measured the quality of generated depth maps.

5.1 Performance without GBuffer

We tested 2 cases: using only the front view for both training and testing or using
all 6 views (360°). In this experiment, for each video, we randomly extracted 10%
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of the frames as the test set, with the remainder for training. Table 3 gives the
performance comparison.

The results show that PyNeRF outperforms the other methods across all
metrics on our GameIR-NVS dataset. Also, metrics obtained using only front
views are better than those using 360° views. We attribute this to the front view’s
single-directional nature as opposed to the comprehensive perspective provided
by 360° views, simplifying the model’s task by lowering the complexity involved
in handling variations in lighting and perspective differences.

PSNR↑ SSIM↑ FID↓ LPIPS↓

front 360° front 360° front 360° front 360°

Instant-NGP 30.9481 27.7004 0.9373 0.9089 30.8528 44.7195 0.1095 0.1703

NeRFacto 26.6457 26.7710 0.8539 0.8774 36.1718 43.0672 0.1206 0.1648

PyNeRF 36.1329 32.0542 0.9612 0.9357 20.2392 36.3312 0.0758 0.1301

Table 3: Performance of different NVS methods, using front views or 360° training
data: PSNR and SSIM, the higher the better; LPIPS and FID, the lower the better.

5.2 Performance with Additional GBuffer

Motivated by the finding of DSNeRF [9] that supervising training with depth
maps enhances the model’s understanding of the scene, allowing it to render high-
quality images with fewer training views, in this experiment, we aim to test how
depth maps from GBuffer can help NVS with reduced training views. Specifically,
we used NeRFactor and Depth-NeRFactor, where Depth-NeRFactor extended
NeRFactor by incorporating depth maps as inputs and employed depth loss
for supervised training. Instead of using 10% frames for testing in the previous
experiments, here we used 10% randomly sampled frames for training, and the
remaining 90% for evaluation. Table 4 gives performance metrics, and Fig. 6
gives qualitative results.

As shown in Table 4, using depth maps improves the NVS performance across
all metrics. This demonstrates that depth maps can enrich the available geomet-
ric information even with limited views, facilitating faster learning and a deeper
understanding of the scene’s 3D structure. Furthermore, Fig. 6 illustrates that
depth maps enhance the realism of the generated RGB images, reduce distor-
tions, and result in images with more detailed and textured representations.
Results also clearly show that training with depth maps can significantly reduce
depth error, and the depth maps generated by Depth-NeRFactor are very close
to the ground truth. Such improvement is quite meaningful for gaming scenarios,
as accurately generated depth maps provide precise three-dimensional geometric
information.
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PSNR↑ SSIM↑ FID↓ LPIPS↓ Depth Err%↓

front 360° front 360° front 360° front 360° front 360°

NeRFacto 22.9597 23.3168 0.8133 0.8276 60.3013 40.8520 0.1654 0.1830 32.8053 30.5997

Depth-

NeRFacto
25.3482 24.4990 0.8425 0.8306 29.3219 28.7427 0.1249 0.1736 5.4212 7.2538

Table 4: Performance with 10% training views: PSNR and SSIM, the higher the better;
LPIPS, FID, and Depth Error, the lower the better.

Ground Truth NeRFacto Depth-NeRFacto

Fig. 6: Qualitative comparison of NeRFacto and Depth-NeRFacto. The RGB (left)
and depth map (right) generated by Depth-NeRFacto better match the ground truth
compared to NeRFacto.

6 Conclusion

In this paper, we proposed GameIR, a large-scale synthetic dataset specifically
designed for image restoration in gaming content. This dataset comprises two
subsets aiming at two tasks: the GameIR-SR dataset for super-resolution and
the GameIR-NVS dataset for NVS. GameIR-SR contains ground-truth LR and
HR image pairs, and GameIR-NVS contains multiview videos with associated
camera parameters. The corresponding GBuffers from deferred rendering are also
provided for both datasets. We evaluated several SOTA algorithms for super-
resolution and for NVS on our dataset to establish a baseline assessment for
subsequent research on real gaming data. Additionally, we explored methods
of utilizing GBuffers as supplementary information to help the super-resolution
and NVS tasks. Our results demonstrated that GBuffers can provide enriched
contextual information to improve performance.

This paper is our first attempt to provide ground-truth gaming data to fa-
cilitate public research on image restoration methods over the gaming content.
In the future, we will continue to enrich our data collection by increasing the
diversity of the data content, such as collecting different types of gaming data
with different styles.
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