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Abstract. We propose a framework for learned image and video com-
pression using the generative sparse visual representation (SVR) guided
by fidelity-preserving controls. By embedding inputs into a discrete la-
tent space spanned by learned visual codebooks, SVR-based compression
transmits integer codeword indices, which is efficient and cross-platform
robust. However, high-quality (HQ) reconstruction in the decoder relies
on intermediate feature inputs from the encoder via direct connections.
Due to the prohibitively high transmission costs, previous SVR-based
compression methods remove such feature links, resulting in largely de-
graded reconstruction quality. In this work, we treat the intermediate
features as fidelity-preserving control signals that guide the conditioned
generative reconstruction in the decoder. Instead of discarding or di-
rectly transferring such signals, we draw them from a low-quality (LQ)
fidelity-preserving alternative input that is sent to the decoder with very
low bitrate. These control signals provide complementary fidelity cues to
improve reconstruction, and their quality is determined by the compres-
sion rate of the LQ alternative, which can be tuned to trade off bitrate,
fidelity and perceptual quality. Our framework can be conveniently used
for both learned image compression (LIC) and learned video compres-
sion (LVC). Since SVR is robust against input perturbations, a large
portion of codeword indices between adjacent frames can be the same.
By only transferring different indices, SVR-based LIC and LVC can share
a similar processing pipeline. Experiments over standard image and video
compression benchmarks demonstrate the effectiveness of our approach.

Keywords: learned image compression · learned video compression ·
sparse visual representation · generative controls

1 Introduction

Image and video compression has been a decades-long research topic, and great
success has been achieved recently by using neural networks (NN) for both
learned image compression (LIC) [9, 22] and learned video compression (LVC)
[14, 33]. Most existing LIC methods [9, 18, 22, 30, 40] use a hyperprior frame-
work [3], which combines classical entropy coding with NN-based representation
learning in a Variational AutoEncoder (VAE) structure. An entropy model is
used to encode the quantized latent feature for easy transmission. Most existing
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LVC methods follow the pipeline of traditional video coding [16,19], while replac-
ing processing modules like motion estimation, motion compensation, residue
coding etc. by learned NNs.

In this paper, we explore a different compression pipeline for both LIC and
LVC, based on controlled generative modeling using the Sparse Visual Represen-
tation (SVR) (as shown in Fig. 1 and Fig. 2). We learn discrete generative priors
as visual codebooks, and embed images into a discrete latent space spanned by
the codebooks. By sharing the learned codebooks between the encoder and de-
coder, images can be mapped to integer codeword indices in the encoder, and
the decoder can use these indices to retrieve the corresponding codewords’ latent
features for reconstruction.

The SVR-based compression has several benefits. (1) Transferring integer
indices is very robust to heterogeneous platforms. One caveat of the hyperprior
framework is the extreme sensitivity to small differences between the encoder
and decoder in calculating the hyperpriors [4]. Even perturbations caused by
floating round-off error can lead to catastrophic error propagation in the decoded
latent feature. By encoding codeword indices instead of latent features, SVR-
based compression does not suffer from such sensitivity. (2) Transferring indices
gives the freedom of expanding latent feature dimension (often associated with
better representation power for better reconstruction) without increasing bitrate,
in comparison to transferring latent features or residues. (3) Generative SVR
increases robustness to input degradations. Realistic and rich textures can be
generated using hiqh-quality (HQ) codebooks even for low-quality (LQ) inputs.

However, SVR-based HQ restoration [7, 8, 25] relies on the dense connection
of multi-scale features between the embedding network (encoder) and recon-
struction network (decoder). Such intermediate features are too large to trans-
fer, defeating the purpose of the compression task. As a result, previous SVR-
based compression methods remove such direct feature links. By applying to
specific content like human faces [20, 42], a code transformer is used to recover
an aligned structured code sequence for HQ face restoration without intermedi-
ate features. For general images, M-AdaCode [21] compensates the performance
loss of removed feature links by using data-adaptive weights to combine multiple
semantic-class-dependent codebooks and uses weight masking to reduce trans-
mitted weight parameters. However, although the restored images may look okay
perceptually, important fidelity details are usually lost. As shown in Fig. 4, with-
out direct feature links images generated by M-AdaCode often lack rich details.

In our opinion, the generative SVR-based reconstruction aims at high percep-
tual quality, and the multi-scale intermediate features provide complementary
fidelity details to the reconstruction. Such details should NOT be ignored for
applications like compression. Therefore, we focus on how to obtain effective
and transmission-friendly fidelity information to balance bitrate and quality.

Our work is inspired by the success of ControlNet [38] where conditioning
controls are used to guide image generation. We view the multi-scale interme-
diate features as fidelity-preserving control signals that guide the conditioned
reconstruction in the decoder. As control conditions, such signals do NOT have
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to come from the original input. Instead, we draw these control signals from an
LQ alternative of the original input in decoder. This LQ alternative is computed
in decoder based on highly compressed easy-to-transmit fidelity-preserving in-
formation, which is generated by fidelity-preserving methods like the previous
NN-based or traditional image and video compression methods.

Based on this idea, we propose a framework (Fig. 2) that combines gen-
erative SVR-based restoration with fidelity-preserving compression. A highly
compressed LQ alternative is transmitted with efficient bits, from which LQ
control conditions are extracted to guide the reconstruction process. A condi-
tioned generation network with weighted feature modulation is used to combine
the SVR-based latent features with the LQ control features. The quality of the
LQ control features is determined by the bitrate of the LQ alternative. The
strength of the LQ control features in the conditioned generation process bal-
ances the importance between the HQ codebook and LQ fidelity details, which
can be tuned based on the current reconstruction target to pursue high percep-
tual quality or high fidelity. As shown in Fig. 4, with our LQ control features,
the restored results have largely improved fidelity with rich details.

In addition, we extend the SVR-based LIC framework into an effective LVC
framework. Since SVR is robust against input degradation and small perturba-
tions, a substantial amount of codeword indices between adjacent frames can be
the same (47% in our experiments). We only need to transfer different indices
for most frames. No motion estimation or motion compensation is involved and
there is no error propagation. Comparing to previous LIC and LVC, our SVR-
based LIC and LVC share a similar processing pipeline, which makes it possible
to simplify industrial productive optimization.

We evaluate our approach using benchmark datasets for image and video
standardization. Specifically, SVR-based LIC is tested over the JPEG-AI dataset
[2]. SVR-base LVC is tested over a combined dataset comprising of video se-
quences from AOM [1], MPEG [17], JVET [34], and AVS [15]. Also, we evaluate
the performance of different SVR-based restoration methods, based on a single
codebook [8] or multiple codebooks [25]. Experimental results demonstrate the
effectiveness of our method.

2 Related Works

2.1 Sparse Visual Representation Learning

Discrete generative priors have shown impressive performance in image restora-
tion tasks like super-resolution [8], denoising [11] etc. By embedding images
into a discrete latent space spanned by learned visual codebooks, SVR improves
robustness to various degradations. For instance, VQ-VAE [28] learns a highly
compressed codebook by a vector-quantized VAE. VQGAN [11] further improves
restoration quality by using GAN with adversarial and perceptual loss. In gen-
eral, natural images have very complicated content, and it is difficult to learn a
single class-agnostic codebook for all image categories. Therefore, most methods
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focus on specific categories. In particular, great success has been achieved in face
generation due to the highly structured characteristics of human faces [37,42].

For general images, the recent AdaCode [25] uses image-adaptive codebook
learning. Instead of learning a single codebook for all categories of images, a set
of basis codebooks are learned, each corresponding to a semantic partition of the
latent space. A weight map to combine such basis codebooks is adaptively deter-
mined for each input image. By learning the semantic-class-guided codebooks,
the semantic-class-agnostic restoration performance can be largely improved.

2.2 Learned Image Compression

There are two main research topics for LIC: how to learn a latent representation,
and how to quantize and encode the latent representation. One most popular
framework is based on hyperpriors [3], where the image is transformed into
a dense latent feature, and an entropy model encodes/decodes the quantized
latent feature for efficient transmission. Many improvements have been made
to improve the transformation for computing the latent [9, 27, 43], the entropy
model [13,27,29], or the quantization strategy [30,40].

One vital issue of the hyperprior framework is the extreme sensitivity to
small differences between the encoder and decoder in calculating the hyperpri-
ors [4]. Most works simply assume homogeneous platforms and deterministic
CPU calculation. Some work uses integer NN to prevent non-deterministic GPU
computation [4] or designs special NN module that is computational friendly to
CPU [41]. However, such solutions cannot be easily generalized to arbitrary net-
work architectures. Also, it is well known that there are complex relations among
bitrate, distortion, and perceptual quality [5,6], and it is difficult to pursue high
perceptual quality and high pixel-level fidelity at the same time.

2.3 Learned Video Compression

Existing LVC methods [14,26,31,33] follow the traditional video coding pipeline
by replacing processing modules like motion estimation, motion compensation,
post-enhancement by NNs. Generally the independent (I) frames in a GoP (group
of pictures) are compressed as images, and the predictive (P) frames and the
bidirectional predictive (B) frames are compressed based on motion estimation
and residue coding. This pipeline is not designed for LVC, resulting in error
accumulation from different modules. Also the computation cost is generally
very high due to the complicated framework.

2.4 SVR-based Compression

SVR is intuitively suitable for compression, since the integer codeword indices are
easy to transfer and are robust to small computation differences in heterogeneous
hardware and software platforms. However, HQ SVR-based restoration relies
on direct links of multi-scale features between the encoder and decoder. Such
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features are too expensive to transfer, which often cost more bits than the original
input. To make SVR-based compression feasible, previous approaches remove
such feature connections. For example, when applied to specific categories like
aligned human faces [20,36,42], it is possible to predict a cohesive code sequence
for HQ restoration without direct feature links. However, for general images the
reconstruction quality is severely impacted without such features. As a result,
most methods focus on very low-bitrate scenarios [10], where reconstruction with
low fidelity yet good perceptual quality is tolerated. The recent M-AdaCode
[25] compensates the performance loss of the removed feature links by using
data-adaptive weights to combine multiple semantic-class-dependent codebooks
and trades off bitrate and distortion by weight masking to reduce transmitted
weight parameters. Unfortunately, for general image content, without the feature
connections the restoration quality is overall unsatisfactory.

3 SVR-based Compression with Conditional Controls

The general framework of SVR-based restoration can be summarized in Fig. 1.
An input image X ∈Rw×h×c is embedded into a latent space as latent feature
Y ∈ Ru×v×d by an embedding network Eemb. Using a learned codebook C =
{cl∈Rd}, the latent Y is further mapped into a discrete quantized latent feature
Y q ∈ Ru×v×d. Each super-pixel yq(l) (l = 1, . . . ,u ×v) in Y q corresponds to a
codeword cl∈C that is closest to the corresponding latent feature y(l) in Y :

yq(l) = cl = argminci∈CD(ci, y(l))).

yq(l) can be represented by the index zl of codeword cl, and the entire Y q can
be mapped to an n-dim vector Z of integers, n=u×v. Based on indices Z, the
quantized feature Y q can be retrieved from the codebook C. Also, multi-scale
features F are computed from several downsampling blocks in Eemb, which are
fed to the corresponding upsampling blocks in a reconstruction network Erec

as residual inputs. Erec then reconstructs the output image x̂ based on the
quantized latent Y q and features F .

To improve the performance for general image restoration, instead of us-
ing one codebook as in [24, 42], AdaCode [25] learns a set of basis codebooks
C1, . . . , CK , each corresponding to a semantic partition of the latent space. A
weight map W ∈Ru×v×K is computed to combine the basis codebooks for adap-
tive restoration. The quantized latent Y q is a weight combination of individual
quantized latents Y q

1 , . . . , Y
q
K using each of the basis codebooks:

yq(l) =
∑K

j=1
wj(l)y

q
j (l), (1)

and wj(l) is the weight of the j-th codebook for the l-th super-pixel in W .
For the purpose of compression, previous methods [20,21] remove the direct

skip connections of the multi-scale features F that are too heavy to transfer. Only
the indices Z1, . . . , ZK are sent to the decoder to retrieve the quantized latent
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Y q for reconstruction. However, the multi-scale features F provide important
fidelity details of the input, and without F the reconstructed result may lack
details and may not be consistent with the original input.

Fig. 1: The general workflow of SVR-based restoration. Discarding the multi-scale
features F will sacrifice restoration quality significantly.

3.1 SVR-based Compression using LQ Control Conditions

In the realm of image generation, ControlNet [38] has been developed to enable
different levels of control over generated results. The key idea is to provide data-
specific conditions to a pre-trained generative model to control the generation
process. This is analogous to SVR-based compression, where the reconstruction
network Erec generates the output based on quantized feature Y q, and the multi-
scale features F provide additional control conditions drawn from the current
input. This perspective motivates our compression framework in Fig. 2. When
used as control conditions, the multi-scale features do not have to come from the
original input, and therefore we can avoid transmitting the heavy F . Instead,
they can be drawn from an LQ substitute of the input xLQ in the decoder,
and the LQ substitute can be computed in decoder based on fidelity-preserving
information calculated by existing compression methods like [19, 22] with high
compression rates and low bitrate. With the help of additional controls, this
framework not only improves the restoration fidelity and quality, but also enables
flexible quality control. By tuning the bitrate of the LQ substitute, we can tune
the quality of the LQ substitute and change the quality of the control condition.

SVR-based LIC As shown in Fig. 2 (a), in the encoder, the input image x is
embedded into the latent space as latent feature Y , which is further quantized
into Y q

1 , . . . , Y
q
K with associated codeword indices Z1, . . . , ZK , by using code-

books C1, . . . , CK , respectively. At the same time, x is encoded into a highly
compressed string with low bitrate using a fidelity-preserving image compres-
sion method (e.g., an existing LIC method [10]), which is transferred to the
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(a) Image compression pipeline

(b)Video compression pipeline

Fig. 2: The proposed SVR-based compression framework using LQ control conditions.

decoder together with indices Z1, . . . , ZK . Then in the decoder, the quantized
latents Y q

1 , . . . , Y
q
K are retrieved from the corresponding codebooks using the

codeword indices, and the LQ substitute xLQ is decoded from the corresponding
image compression method. Albeit low quality, xLQ carries important fidelity
information about the original x to guide reconstruction.

In the decoder, xLQ is fed into an LQ embedding network ELQ to compute
the multi-scale LQ features FLQ from the multiple downsampling blocks in ELQ,
where FLQ has the same size as the original multi-scale features F (if computed
from the original Eemb). When K > 1, an LQ weight map WLQ ∈ Ru×v×K

is also computed by an LQ weight predictor. Both FLQ and WLQ are control
conditions drawn from the fidelity-preserving LQ substitute xLQ, which are used
by the reconstruction network Erec to guide the reconstruction process. Since
FLQ and WLQ are calculated in decoder using xLQ, they do not increase bitrate.

In detail, to reconstruct the output, when K> 1, the final quantized latent
Y q is a weighted combination of Y q

1 , . . . , Y
q
K similar to Eqn. (1), using LQ weight
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WLQ. When K =1, Y q
1 = Y q. Then the multi-scale LQ feature FLQ is used as

modulating conditions to the multiple upsampling blocks in Erec to guide the
reconstruction from Y q. In this work, we use the Controllable Feature Transfor-
mation (CFT) module from [42] to apply modulating conditions. Let Θc denote
the parameters of the CFT module CFTcode to combine the codebook-based
quantized feature Y q and the LQ control feature FLQ. FLQ tunes Y q into a
modulated Y mod = Y q+αc ∗ (βc ∗Y q+γc), where βc, γc are affine parameters
βc, γc =Θc(concat(Y

q, FLQ)), and concat(·) is the concatenation operation. αc

determines the strength of the control feature FLQ in conditioning the codebook-
based feature Y q, which can be flexibly set according to the actual compression
needs, i.e., to pursue high perceptual quality or high fidelity.

One advantage of our SVR-based LIC method is the flexibility in accommo-
dating different scenarios. For homogeneous computing platforms, our method
combines the strength of the fidelity cue from existing fidelity-preserving im-
age compression methods (classic or learning-based) and the perceptual cue
from SVR-based restoration, enables bitrate control by tuning the bitrate of
the LQ substitute, and allows tradeoff between perceptual quality and fidelity.
For heterogeneous computing platforms where previous LIC methods may have
difficulty to apply, our method can still give a decent low-bitrate baseline recon-
struction with good perceptual quality using SVR-based restoration alone, or
can pair with classic compression methods for improved reconstruction.

SVR-based LVC The above SVR-based LIC method can be easily extended
to an effective SVR-based LVC method, whose workflow is shown in Fig. 2 (b).
Since SVR is robust to input degradation and perturbations, for most frames in a
video, a large portion of the codeword indices can be the same between adjacent
frames. Therefore, for a video frame xt at time stamp t > 1, only the different
indices ∆Zt,1, . . . ,∆Zt,K from the previous frame need to be transmitted for the
decoder to restore the quantized latent Y q

t for SVR-based reconstruction. Actu-
ally our experiments show that 47% of the codeword indices remain unchanged
on average, leading to effective bit reduction for LVC. The remaining processing
modules are similar to the LIC method, with the difference that the LQ substi-
tute xLQ

t of frame xt comes from a fidelity-preserving video compression method
(e.g., classic VVC [19] or learning based DVC [26]) or a fidelity-preserving image
compression method.

Similar to SVR-based LIC, our SVR-based LVC method provides flexibility
to accommodate different scenarios, where we can choose different methods to
generate the LQ substitutes by considering different factors like computation
and transmission requirements, reconstruction targets, etc. In addition, there
is no error propagation in recovering the codeword-based quantized feature for
every frame, and a decent low-bitrate baseline with good perceptual quality can
be mostly guaranteed. Furthermore, in comparison to previous LIC and LVC
methods that usually have completely different processing pipelines, the SVR-
based LIC and LVC have a similar workflow with similar processing modules,
making it possible to simplify industrial productive optimization.
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It is worth mentioning that in our implementation the reconstruction network
Erec has the same architecture for both LIC and LVC. A video-oriented network
like C3D [35] can be used for LVC to better ensure temporal consistency. We
found it unnecessary in experiments as the result is quite consistent temporally
due to the deterministic generation and temporal-consistent fidelity control.

Complexity Our approach is very efficient in computation. For SVR-based
LIC, our encoding time includes inference through Eemb with time T (Eemb)
and compressing for XLQ with time T (Enc(XLQ)). In comparison, previous
LIC methods compress for the original X, and the encoding time T (Enc(X))
includes both the embedding inference T (Eemb) and the hyperprior coding time
T (Enc(Xhyper)). Usually T (Enc(Xhyper)) is much larger than T (Eemb) due to
the expensive autoregressive process using CPU. Since our XLQ can be highly
compressed, our T (Enc(XLQ)) is much less than T (Enc(Xhyper)) (e.g., by using
a much smaller embedding latent and hyperprior to encode to largely reduce
bitrate and computation).

Similarly, our decoding time mainly includes inference through Erec with
T (Erec), decoding for XLQ with T (Dec(XLQ)), and inference through ELQ

with T (ELQ). In comparison, previous LIC methods needs to decode for the
original X where the decoding time includes T (Erec) and T (Dec(X)). Again,
due to the expensive hyperprior decoding process, T (Dec(X)) is usually much
larger than T (Dec(XLQ)) and T (ELQ) combined.

For SVR-based LVC, our computation is basically a linear extension of the
computation for SVR-based LIC according to the number of frames. This is
much more efficient than previous LVC methods, which not only require mul-
tiple inference processes through multiple networks, but also require the entire
decoding computation in the encoder to obtain residues.

3.2 Training strategy

Stage 1: Pretrain The embedding network Eemb, codebooks C1, . . . , CK , re-
construction network Erec, and weight predictor (for K> 1) are pretrained for
single-codebook-based restoration [8] or multi-codebook-based restoration [25].
Stage 2: Train SVR-based LIC The embedding network Eemb and code-
books C1, . . . , CK are fixed, and we train the LQ embedding network ELQ, the
CFT module CFTcode, the LQ weight predictor (for K>1), the reconstruction
network Erec, and the GAN discriminator for the LIC pipeline. The training loss
comprises of pixel-level L1 loss and SSIM, the perceptual loss [23], LPIPS [39],
and the GAN adversarial loss [12]. The straight-through gradient estimation
is used for back-propagation through the non-differentiable vector quantization
process during training. The strength of control is set as αc=1 for all inputs.
Stage 3: Train SVR-based LVC The embedding network Eemb, the code-
books C1, . . . , CK , and the reconstruction network Erec are fixed, and we train
the LQ embedding network ELQ, the CFT module CFTcode, the LQ weight
predictor (when K>1), and the GAN discriminator by finetuning from the cor-
responding LIC version in the previous stage. One benefit of funetuning from
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the LIC counterparts is to benefit from the large variety of image training con-
tent to avoid overfitting, due to the limited amount of training videos from the
standardization community.

3.3 Bit reduction for integer codeword indices

To transfer codeword indices, naively we need b(Zk)= u×v×floor(log2 nk) bits
for each codebook Ck of size nk. This number can be further reduced to save
bit consumption of the whole system. We propose an effective arithmetic coding
method that can losslessly compress the integer indices by 5× on average. For
natural images, codewords normally show up with different frequencies. For in-
stance, codewords of natural scenes may be used more frequently than those of
human faces. We can assign less bits to more frequently used indices to reduce
the total bitrate. Specifically, we first calculate the frequency of codewords’ us-
age in training data and reorder the codewords in descending order. Then for
each particular indices string of each datum, we convert each odd index ix to a
negative integer as ix∗=−(ix+1)/2 and rescale even indices by 1/2. Such oper-
ations transform the indices distribution to a Gaussian style bell shape, which
can be efficiently encoded by Gaussian Mixture-based arithmetic coding [32].

4 Experiments

Datasets We tested the proposed SVR-based LIC and LVC method, respec-
tively, over the JPEG-AI dataset [2,18] and a mixed video dataset combining test
video sequences from several video compression standards including AOM [1],
MPEG [17], JVET [34], and AVS [15]. The JPEG-AI dataset had 5664 images
with a large variety of visual content and resolutions up to 8K. The training, val-
idation, and test set had 5264, 350, and 50 images, respectively. The mixed video
set contained 150 videos, which were used as test sequences by the standardiza-
tion community. We removed the duplicate sequences, e.g., the same sequences
used by different standards, or the same sequences resized to different resolu-
tions, where we kept videos with different resolutions ranging from 240×400 to
4K. 134 and 16 video sequences were used for training and test respectively.

The training patches was 256×256, randomly cropped from randomly resized
training images or video frames, augmented by random flipping and rotation. For
evaluation, the maximum inference tiles was 1080×1080. For training SVR-based
LVC modules, video frames were randomly sampled from videos, and were used
as images in the same way as training SVR-based LIC modules. For all tested
methods, each training stage had 500K iterations with Adam optimizer and a
batch size of 32, using 8 NVIDIA Tesla V100 GPUs. The learning rate for the
generator and discriminator were fixed as 1e-4 and 4e-4, respectively.

Evaluation Metrics For reconstruction distortion, we measured PSNR and
SSIM, as well as the perceptual LPIPS [39]. The bitrate was measured by bpp
(bit-per-pixel): bpp=B/(h×w), and the overall bits B=bc+bLQ consisted of bc for
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Fig. 3: Rate-distortion performance for image compression.

sending codebook indices and bLQ for sending the encoded string to compute the
LQ substitute xLQ using previous image/video compression methods. In detail,
for LIC bc =

∑K
k=1 b(Zk), and for LVC bc =

∑K
k=1[b(Z1,k) +

∑T
t=2 b(∆Zt,k)]/T .

b(Zk) is computed based on the indices reduction method described in Sec. 3.3.
In terms of bLQ, it determined the quality of the LQ substitute xLQ. We chose
a low bLQ (< 0.1 bpp) to roughly match bc.

Evaluated Methods We evaluated two configurations for our approach using
SOTA SVR-based restoration algorithms: the single-codebook-based FeMaSR [8]
and the multi-codebook-based AdaCode [25]. With only a single codebook, Fe-
MaSR gave very low bitrate. Using multiple codebooks, AdaCode gave improved
restoration quality but consumed more bits.

To generate fidelity-preserving LQ substitute xLQ, for SVR-based LIC we
used previous SOTA LIC method MLIC [22]. The pre-trained MLIC model with
the lowest available bitrate setting was used, which corresponded to the quality-
1 model in [22]. In order to get lower bitrate for bLQ to match bc, we first
downsampled the input x by 2× or 4×, and then used MLIC to encode the
downsampled input and then upsampled the decoded xLQ back to the original
size. The bicubic filter was used for downsampling/upsampling. For SVR-based
LVC we used the SOTA VVC video compression method [19] with qp= 42 to
generate xLQ, which gave reasonable low-bitrate reconstruction in general.

4.1 LIC Results

Fig. 3 gives the rate-distortion performance for image compression. For our SVR-
based LIC, we tested 3 different settings: single-codebook SVR with 2× and 4×
downsampled-upsampled xLQ as “SVRs(LQ↓ 2×)” and “SVRs(LQ↓ 4×)”, and
multi-codebook SVR with xLQ without downsampling-upsampling SVRm(LQ).
We also compared with M-AdaCode without xLQ with the 1-codebook setting
[21] (“M-AdaCodes(no LQ)”) and compared with MLIC [22] generated xLQ.
From the figures, “SVRs(LQ↓4×)” outperformed M-AdaCode with 1dB, 2.3%
and 8.9% improvements over PSNR, SSIM and LPIPS, respectively, using only

599
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a 0.013bpp increase. Compared to MLIC, “SVRs(LQ↓4×)” improved LPIPS and
SSIM by 74.8%, and 10.1% respectively. Among methods having < 0.1bpp, our
SVR-based LIC gave balanced results with good fidelity and perceptual quality.

Fig. 4 gives some restoration examples, which clearly show the strength of
our method. With the help of xLQ, our SVR-based LIC largely improved the
reconstruction fidelity and perceptual quality with rich visually pleasing details,
compared to M-AdaCodes(no LQ)”. Also, our framework can be flexibly config-
ured to different settings to tradeoff bitrate and reconstruction quality.

4.2 LVC Results

For video compression, we tested the single-codebook SVRs. The LQ substitute
xLQ was generated by the VVC standard [19] using qp=42 over the original res-
olution. This is basically the lowest bpp configuration of VVC (bpp=0.06) with a
reasonable reconstruction quality for xLQ. Tab. 1 gives the rate-distortion perfor-
mance, and Fig. 5 gives some restoration examples. Our “SVRs(LQ)" achieved
much better perceptual quality with a 64.8% improvement over LPIPS given
only 0.035bpp increase. As expected, improvements over PSNR and SSIM are
less significant as VVC is tailored to optimize such pixel-level distortions. With
overall bpp<0.1, the SVR-based LVC can generate rich visually pleasing details
compared to the overly smoothed results from VVC. On average, 47% of code-
word indices remain unchanged, verifying the effectiveness of using the similar
pipeline for both SVR-based LIC and LVC.

Table 1: SVR-based LVC performance

PSNR SSIM LPIPS bpp

SVRs(LQ) 28.15 0.812 0.109 0.095
VVC (xLQ) 28.09 0.806 0.310 0.06

5 Conclusions

We proposed a general SVR-based compression framework for both LIC and
LVC. Based on the idea of guided image generation with conditional controls,
our method drew fidelity cues as control signals from a low-bitrate LQ version of
the original input to guide reconstruction. Compared with previous approaches
that relied on SVR-based generation alone, the fidelity cues largely improved the
reconstruction quality. By tuning the bitrate of the LQ input, we could trade off
bitrate, reconstruction fidelity and perceptual quality. By transferring the differ-
ence of codeword indices between adjacent frames, a similar processing pipeline
was used for both SVR-based LIC and LVC. Experimental results showed im-
proved performance over SOTA image and video compression methods.

600



LIC and LVC with Generative SVR 13

g5566×3569g

0.413|

g M-AdaCodesg

0.323|22.4|0.673

g SVRs(LQ↓4×)g

0.196|22.3|0.628

g SVRm(LQ ↓2×)g

0.212|25.3|0.753

g SVRm(LQ)g

0.141|28.6|0.839

g GT g

0.413|

g3680×2456g

0.413|

g g

0.282|24.4|0.782

g g

0.115|24.6|0.722

g g

0.149|27.0|0.816

g g

0.105|30.4|0.861

g g

0.413|

g2144×1424g

0.413|

g g

0.372|23.3|0.671

g g

0.153|23.3|0.594

g g

0.208|24.9|0.685

g g

0.141|28.4|0.748

g g

0.413|

g1472×976g

0.413|

g g

0.356|21.4|0.631

g g

0.099|24.8|0.739

g g

0.089|27.5|0.831

g g

0.049|31.2|0.878

g g

0.413|

g1192×832g

0.413|

g g

0.245|20.8|0.719

g g

0.127|20.3|0.675

g g

0.111|23.4|0.798

g g

0.049|28.8|0.907

g g

0.413|

Fig. 4: “LPIPS|PSNR|SSIM” under each result. “SVRm”/ “SVRs”: multi-codebook-
based/single-codebook-based SVR. “LQ”/“LQ↓2×”/“LQ↓4×”: xLQ of original size/xLQ

with 2× downsampling-upsampling /xLQ with 4× downsampling-upsampling.

601



14 L. Zhou et al.

g3840×2160g

g72% index change

g VVC LQ (t=1) g

0.383|30.02|0.827

g SVRs(t=1)g

0.133|30.57|0.825

g SVRs(t=2))g

0.133|30.48|0.826

g SVRs(t=3)g

0.132|30.70|0.830

g GT (t=1)g

0.413|

g4096×2160g

g86% index change

g g

0.534|30.51|0.825

g g

0.149|32.48|0.858

g g

0.152|32.02|0.857

g g

0.160|29.79|0.834

g g

0.413|

g1920×1080g

g87% index change

g g

0.304|28.26|0.812

g g

0.100|28.34|0.834

g g

0.103|28.17|0.840

g g

0.100|27.80|0.825

g g

0.413|

g1280×720g

g61% index change

g g

0.385|26.69|0.759

g g

0.111|26.75|0.782

g g

0.116|26.37|0.777

g g

0.124|26.51|0.770

g g

0.413|

g704×480g

g43% index change

g g

0.249|20.86|0.713

g g

0.120|19.8|0.678

g g

0.119|19.9|0.692

g g

0.120|19.9|0.688

g g

0.413|

Fig. 5: “LPIPS|PSNR|SSIM” under each result. Single-codebook SVR was used. xLQ

was computed by VVC with qp = 42. The average bLQ = 0.06 and bc = 0.035. Our
SVR-based LVC can largely improve reconstruction fidelity and perceptual quality.
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