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Table 3: Proportion of Latent Discriminator’s Training set, the top three correspond
to the real images set while the bottom five correspond to the fake images set

Image Type Proportion
Instance Image 30%
Colored Background 18% 50%
Colored Background + resize 2%
Preservation/Class Image 17,50%
Negative Foreground (Instance Image) 9,75%
Masked Foreground (Instance Image) 3,25% 50%
Colored Background + Negative Foreground (Instance Image) 4,88%
Colored Background + Masked Foreground (Instance Image) 14,63%

A Preliminary

In this supplementary document, we provide implementation details to ensure
reproducibility (written in Appendix B), which includes in-depth strategy and
intuition of our approach. Within this section, we include the additional details
on the proposed supervision mechanism (Appendix B.1) and configurations on
our model architecture (Appendix B.2) according to the main paper’s references.
Additionally, to elaborate further on our methodology, we present additional vi-
sualizations and a detailed discussion of the dataset and the inverse Gaussian
function (written in Appendix C and Appendix D). Finally, to offer a compre-
hensive overview of Hypnos, we include further ablation studies and an analysis
on failure cases (written in Appendix E and Appendix F).

B Implementation Details

To train the models we utilize L4 GPU with 22 GB VRAM, however we also
had tested that V100 GPU with 16 GB VRAM is sufficient.

All of the models that are used in Sec. 4.1 are trained for 800 steps except
for Textual Inversion, which we trained for 1500 steps. We picked 1500 steps for
Textual Inversion [6] because it took approximately the same training time as
the 800 steps Dreambooth [21]. These models are also trained on 8-bit Adam and
quantized VAE. Importantly, to ensure reproducibility, we have set all random
seeds to 42. Our code is written in the Pytorch framework.

B.1 Perceptual Loss

As mentioned on Sec. 3.4, to ensure foreground consistency, we opt to set larger
weight for the shallow activations, which in detail are 0.35 for the second
block activations, 0.45 for the third block activations, and 0.2 for the
fourth block activations. Note that this weight number is mostly arbitrary.
We advise adjusting the weight to adapt based on the given object and use cases.
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Fig. 6: Instance Images, from left to right, top to bottom, Funko figurine, Rattan chair,
and Lego Robot.

B.2 Latent Discriminator

As seen on Fig. 3a, the images are firstly encoded into latent space using VAE en-
coder (E) and then fed through a classic inverted bottleneck convolutional layer,
which yields a higher level feature extraction. The output then gets concatenated
with the original latent image. It then split into 8x8 patches and summed with
positional embeddings. The transformer consists of 3 blocks with 3 MLP heads
for the [CLS] output embedding.

To prepare the Latent Discriminator with enough knowledge, we pretrained
the model for 600 steps. We prepared a dataloader with diverse sampled image
types as seen on Tab. 3. These image types are utilized to ensure that the discrim-
inator has a good understanding of foreground distinction, color, and structure.
These image types are divided into real images and fake images. The procedure
to generate the real images is identical to the one used on the main training loop
as mentioned on Sec. 3.3. On the other hand, the fake image extraction proce-
dure introduces a more diverse approach; the most intuitive method is to include
preservation images as the fake samples; this addition is meant to enforce the
model’s understanding of structures and differentiate one object from another.
Besides using the preservation images, we also used the altered foreground ver-
sion of the instance images. The first modification is the usage of negative colors
with the same background; this approach ensures the latent discriminator un-
derstands color consistency. Second, the masked foreground strategy is applied
to teach the model to avoid relying on the background region to distinguish real
or fake images. Note that we aim to ensure the discriminator has a clear focus
on the foreground region. Hence, we opt to label images with foreground and
background modification as fake and real data, respectively.

B.3 Evaluation

To evaluate metrics on both Prompt Invariant and Varying, we calculate the
mean and standard deviations of each metric across 50 generated images. For
each image that is generated by Hypnos, we compared it with each instance-
images, as shown in Fig. 6. For example, in a dataset that is comprised of 4
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(a) Inverse Gaussian comparisons (b) Learning Curve

Fig. 7: (a) shows varying � affects Inverse Gaussian function ((1/gaussian(x)) � 1)
in partial loss space compared to quadratic MSE function, (b) shows the stability of
learning curve.

images, by this approach, the metrics will be calculated across 200 different
evaluations (4⇥ 50 evaluations).

C Dataset Images

Fig. 6 shows the instance images that we utilized for evaluation purposes on
Sec. 4.1. In the case of Funko figurine and Lego Robot, we use personal images
taken using mobile phones to show that using amateur photos is already sufficient
to make Hypnos generate visually pleasing image quality. Note that poor lighting
and shadows, as seen in Fig. 6, might still cause color distortions.

D Inverse Gaussian

As seen in fig Fig. 7a, employing Eq. (2) allows for the flexible adjustment
of the steepness of the curve. This loss is an exponential function; hence, it
exhibits a far larger loss for high deviations compared to MSE. Usually, this
approach is avoided because of the possible training instability. Fortunately,
Hypnos finetunes a pretrained network; therefore, the loss is often already very
close to 0 and rarely exceeds 1, resulting in a stable training cycle as seen on the
learning curve (Fig. 7b).

E Supplementary Ablation Study

E.1 Variation of Generated Images

Throughout our observations throughout the evaluation process on both qualita-
tive and quantitative metrics, we observed that Dreambooth family techniques,
which include our proposed method, have high variations in generated images.
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Fig. 8: Examples of Failure Cases. (left) shows an image that fails to adapt to the
given prompt, (right) shows an altered object with one arm missing

We observed that even with the same trained model, by reevaluating the eval-
uation prochedure, it is possible to acquire a score more than one standard de-
viation away from the previous measurement. Qualitatively, Dreambooth often
generates a high noised image, and on the other generated images, it is possible
to stumble across neat images output as shown in Fig. 9, Fig. 10, and Fig. 11.
On the other hand, Hypnos exhibit a more consistent image quality throughout
the generation process. Based on this understanding, we recommend sampling
several images and conducting a manual assessment prior to their utilization in
downstream tasks.

E.2 Perceptual Loss and Latent Discriminator Loss

Fig. 12 shows the visualization of ablation study experiments mentioned on
Sec. 4.2. As shown in figure Fig. 12, Perceptual Loss and Latent Discriminator
are complementary losses. In other words, the absence of one results in a dete-
rioration of the quality of the generated images. This is reasonable as both loss
works in different spaces and perspectives as explained on Sec. 3.4.

Both losses are also unsuitable to replace reconstruction loss to guide the
optimization process (shown by the increase of weight on the first and fourth
columns of Fig. 12). This is supported by the solid mathematical derivation of
reconstruction loss and the nature of Perceptual Loss and Latent Discriminator
Loss that may vary based on the reliability of the corresponding neural network
models (e.g., EfficientNetB1, ViT).

F Failure Cases Analysis

Throughout our evaluation, we also assessed some failure cases to better under-
stand the behavior and limitations of Hypnos. Fig. 8 shows examples of failure
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cases generated by Hypnos. The first shows a blank background when given a
complex prompt. We suspect this is partly due to the base model limitation,
we justify this by confirming that the base model still fails to generate the
same prompt even with a normal chair. We also observed that Hypnos tends
to be more conservative in generating foreground variations with a trade off in
foreground consistency. This phenomenon can be minimized by decreasing the
changed background ratio and decreasing the perceptual and latent discrimina-
tor strength.

We observed that the provided preservation dataset also influenced back-
ground and scene generation capability. Supplying several preservation images
with a specific background can enable the model to generate similar backgrounds.
We anticipate that this effect may be less significant for larger base models, as
they typically possess broader text-to-image (T2I) capabilities. However, further
justification and experiments on this matter are beyond the scope of this work
and may be addressed in future research.

The second image from the left (Fig. 8) showed a less similar foreground
with the absence of one forearm. This is due to the limitation of the background
remover model, which accidentally removes the arm. This issue can be overcome
by excluding the problematic image, reducing the change in background ratio, or
even replacing the background remover model. On the other hand, the underfit-
ting can be explained by the complexity of the object. Hence, this can be trivially
overcome by increasing the learning rate. Hypnos shows to be compatible with
a high learning rate as it is still able to generate noiseless images.

In other cases where generating a better foreground is more favorable than
training efficiency, we advise incorporating a stronger and deeper discrimina-
tor as it may increase the image quality. Despite the limitations above, Hyp-
nos proves that the proposed finetuning strategy can accommodate the cur-
rent prominent T2I model in handling foreground-focused generative task in a
straightforward manner.
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Fig. 9: Lego Robot comparison (electronic screen viewing is advised)
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Fig. 10: Funko Figurine comparison (electronic screen viewing is advised)
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Fig. 11: Rattan Chair comparison (electronic screen viewing is advised)
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Fig. 12: Funko Figurine ablation study (electronic screen viewing is advised)
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