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Abstract. In recent years, the combined use of Vision Transformer
(ViT) and Convolutional Neural Network (CNN) has shown promising
results in tasks related to satellite imagery. In our study, we propose
a 3D-CmT (3D-CNN meets Transformer) model for Hyperspectral Im-
age Classification. This model leverages the unique capabilities of both
3D-CNN and ViT to effectively classify images captured by hyperspec-
tral imaging. To learn the local features of the narrow and contiguous
electromagnetic spectrum of the hyperspectral images, we utilize a 3D-
CNN under the spectral feature extraction (SFE) module. Subsequently,
a transformer encoder (TE) module is applied on top of the 3D-CNN
to incorporate global attention and model long-range dependencies for
spatial information in the images. We conducted experiments using com-
monly used hyperspectral image datasets and performed various ablation
studies, such as evaluating the impact of image patch size and different
percentages of training samples. The performance of our proposed model
is comparable to that of other CNN-based, transformer-based, and hy-
brid CNN-Transformer-based models in terms of model parameters and
accuracy. In addition, we conducted quantitative and qualitative analyses
to assess the performance of our model.

Keywords: Remote Sensing · Hyperspectral Image (HSI) Classification
· 3D Convolutional Neural Network (CNN) · Vision Transformer (ViT)

1 Introduction

Hyperspectral image (HSI) acquired using space-borne or air-borne instruments
plays a very significant role in geological studies, mineral mapping, and other
applications that use its unique capability of narrow spectral bands in the elec-
tromagnetic spectrum. With its rich spatial and spectral information, an HSI can
be used for various applications, such as mineral studies [18], precision agricul-
ture [19], food safety [20], biomedical imaging [21], and military applications [22].

Along with computer vision and natural language processing, rapid advances
in deep learning approaches have pushed the development of signal and image
processing techniques in a range of domains [28]. Deep learning-based models
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2 S. Arya et al.

have been widely used for many HSI applications [29] [34], including HSI classifi-
cation [30] [35] and image fusion [31]. To process the abundant spatial and spec-
tral information of HSI, architectures based on the convolutional neural network
(CNN) [33] and transformer [32] have been extensively utilized for HSI analysis
and processing. Among these, land use and land cover information classification
have attracted much attention using the HSI dataset [43]. Accurate identification
and classification of considered targets opens a new field of studies for accurate
mapping of minerals and other geological targets. For HSI classification, various
works have been done using CNN and transformer-based networks. In addition
to that, many researchers have effectively used hybrid models to leverage the
use of CNN and transformer features together for HSI classification.

Most transformer-based models use small patches of input image before pass-
ing it to the encoder of the transformer network but inspired by the performance
of CMT: convolution neural network meets vision transformers [1] model for
image classification of Red-Green-Blue (RGB) images. We grounded the trans-
former model of our proposed model using one of the stages of the CMT trans-
former. CMT architecture is currently suitable for images with three channels
only. Therefore, we proposed a hybrid network of a 3D convolution neural net-
work and a CMT block as a transformer for the classification of hyperspectral
images.

The main contributions of this paper are summarized as follows:

1. A simple 3D-CNN and ViT-based hybrid module is proposed in our 3D-
CmT network for handling hyperspectral images’ spatial and spectral data
effectively for pixel-level classification.

2. We devise two simple but effective modules in 3D-CmT, i.e., the 3D-CNN
module assisted by Principal Component Analysis (PCA) [17] to extract the
most relevant band information through extraction and learning of spectral
features, and the second module is the Transformer Encoder which is based
on the CMT network [1], to learn global spatial representations using the
self-attention mechanism of the vision transformer. Using PCA, we have
reduced the dimensionality of hyperspectral data for a shorter computation
time before using the 3D-CNN module.

3. We quantitatively and qualitatively evaluate the classification efficacy of
the proposed 3D-CmT model on three representative hyperspectral (HS)
datasets, i.e., Salinas Scene, Indian Pines, and Pavia University.

The remainder of this paper is structured as follows. The Related Work
is discussed in Section 2. Section 3 introduces the proposed 3D-CmT model
together with the experimental data sets used for this work. The experimental
setting and the results are discussed in Section 4. The conclusion is presented in
Section 5.

2 Related Work

This section gives an overview of the work done using CNN and Transformer
models for hyperspectral image classification.
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3D-CmT: 3D-CNN meets Transformer for Hyperspectral Image Classification 3

2.1 CNN Based

In the last decade, deep learning has produced significant technological advance-
ments for hyperspectral image processing and analysis. For computer vision,
CNNs are a very popular and widely used architecture for automatic feature ex-
traction and learning. In recent years, CNN-based models have been extensively
explored for the HSI classification. In [6], the authors have used 2D-CNN along
with multilayer perceptron to learn the spatial and spectral information of pixels
for the HSI classification. They demonstrated the capability of CNN on different
variants of the support vector machine (SVM). The hierarchical deep spatial
features have been extracted by off-the-shelf CNN architecture in [23] for HSI
classification. A deep feature fusion network (DFFN) has been proposed by [24]
to explore the hierarchical layers of CNN for HSI classification. In [25], a dual-
path network (DPN) based HSI classification model has been proposed. Along
with the wide usage of 2D-CNN, 3D-CNNs have also been utilized by various
researchers to handle the spectral data of HSIs. In [7] [40], a 3D-CNN model has
been proposed to jointly learn the spatial and spectral features of hyperspectral
images. 3D-CNN has also been exploited with 2D-CNN by HybridSN model for
HSI classification [2]. A deep pyramidal residual network spectral and spatial
information of hyperspectral image classification has been proposed in [26].

2.2 Transformer Based

In addition to CNN, in recent years, various vision transformer (ViT) [8] based
architectures have shown impressive performance in computer vision due to its
global attention and model long-range dependencies for spatial information in
the images. There has been abundant work completed to explore transformer-
based models for HSI classification. A SpectralFormer model proposed by [9]
used a transformer to take advantage of hyperspectral data from a sequen-
tial perspective. Two modules are devised in their model, the first module is
capable of learning local sequential information of spectrally correlated hyper-
spectral bands and providing the group-wise spectral embeddings (GSE) and
the second module is cross-layer adaptive fusion (CAF) which carries memory
components from shallow layers to deep layers. In CSiT [12], a multiscale vision
transformer model is proposed. They have fused the two branches of vision trans-
former which are individually learning the pixel-wise features at different scales.
They proposed two modules namely multiscale spectral embedding (MSSE) and
cross-spectral attention fusion (CSAF) module for HSI classification. The spatial-
spectral transformer (SST) model [13] combines CNN, DenseTransformer, and
multilayer perceptron for HSI classification.

2.3 CNN-Transformer Based

The hybrid combination of CNN with the transformer block is performing im-
pressively in HSI classification. Hyperspectral image transformer (HiT) pro-
posed in [4] also comprises both CNN and ViT encoder, in which they pro-
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posed a spectral-adaptive 3D convolution projection (SACP) module and Conv-
Permutator module to capture and learn the spectral-spatial feature information
of hyperspectral images. In the FusionNet [14] model, a fusion of CNN and Trans-
former network for HSI classification is proposed. In [15], authors developed a
convolution and transformer adaptive fusion (CTAFNet) strategy for pixel-wise
classification of hyperspectral images. To capture the local high-frequency in-
formation they have used a convolution module and to handle sequential and
global low-frequency they have used a transformer module. In addition to HSI
data for classification, many researchers have used other modalities data sources
like LiDAR, SAR, and MSI to enhance the capability of a classification model.
In [3], a spectral-spatial feature tokenization transformer (SSFTT) based model
is proposed. The latest work described by DBCTNet [39] also used a hybrid
network of convolutional and transformer based model for hyperspectral classi-
fication, they used double branch convolutional transformer network for parallel
combination convolution and self-attention instead of their serial combination.
In this work, authors proposed three modules for HSI classification the first mod-
ule comprises a spectral-spatial feature extraction module for low-level features,
the second module uses a Gaussian weighted feature tokenizer for feature trans-
formation and lastly the third module comprises a transformer encoder used
for feature learning. As HSI is providing more information through the narrow
bands, various works were done for spectral dimension.

Inspired by the previous work on hyperspectral image classification, we also
investigate and demonstrate the potential of a 3D convolutional layer for spectral
feature extraction and transformer network grounded by the CMT model for
global feature learning with self-attention mechanism.

3 Methodology

3.1 Overall Architecture

We aim to build a hybrid model using the capability of 3D convolution and
transformers for the classification of HSI. Fig. 1 shows the overall framework
of HSI classification using the proposed 3D-CmT model which consists of two
key modules, i.e., HSI spectral feature extraction module (SFE) using the 3D-
convolution and Transformer Encoder (TE) module as illustrated in Fig. 1b.
As most of the transformer-based classification model splits an input image to
nonoverlapping patches, however, this may ignore the intraobject relationship
and representation. Therefore, to handle this limitation, we do not split the
input image into nonoverlapping patches before the transformer encoder module.
However, the spectral dimension of HSI is reduced using PCA transformation and
3D-Convolution for less computation overhead. Each module has been described
in the following subsections.

Spectral Feature Extraction Module The Hyperspectral data denoted as
I ∈ Rm×n×c, where m, n, and c are the height, width, and number of chan-
nels of an input image, respectively. HS imagery comes with an abundance of
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(a) Proposed 3D-CmT architecture with CMT [1] block as Transformer Encoder mod-
ule.

(b) Lightweight MHSA and Inverted Resid-
ual FFN blocks.

Fig. 1: Overall framework of the proposed 3D-CmT model for the HSI classifica-
tion.

spectral data in the form of large spectral channels. To reduce computational
cost and memory consumption during model training, PCA transformation has
been applied before the training process. In addition to that, PCA has been
used to extract the most relevant band information from spectral data. Reduces
c channels to b channels. So, after PCA transformation the data is expressed as
Ipca ∈ Rm×n×b, and then given as input to the model.

Then, the first component of our proposed 3D-CmT is two layers of the 3D
convolutional block, which has given impressive results, especially in handling the
channels of 3D images. To learn the spectral representation, 3D-Conv layers are
the perfect choice as discussed in the literature review Section. 2. Hence, spectral
feature extraction from the input HSI is termed a spectral feature extraction
module. The kernel size of the first 3D-Conv layer is kept as 7 and for the
subsequent second layer, it is chosen as 3. The overall computation of the SFE
module is represented using Eq. 1,

SFE(Ipca) = Conv2(Conv1(Ipca, k1 = 7), k2 = 5). (1)

Transformer Encoder Module The features extracted from the SFE module
that extracts the spectral features from HSI served as input to the TE module
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that learns the high-level spatial representations for input and output mapping.
Our TE component is grounded on the CMT-Tiny block of the CMT network [1],
which consists of a local perceptron unit (LPU) as shown in Fig. 1a, a lightweight
multiheaded self-attention module (LWMHSA) and an inverted residual feedfor-
ward network (IRFFN) as presented in Fig. 1b.

LPU : In the LPU block, depthwise convolution (DWConv) is used to keep
the local relation and structural information with less computational cost. It is
described using Eq. 2 which is discussed in [1]: where I ∈ Rh×w×d, h × w is the
spatial dimension of the input at the current stage, d represents the dimension
of features, and DWConv indicates the depthwise convolution.

LPU(I) = DWConv(I) + I. (2)

LWMHSA : To decrease the computational overhead of the original self-attention
module, we use a similar light weight multi-head self-attention as mentioned in
[1], where k×k depthwise convolution with stride k is used to reduce the spatial
dimension of key K and value V before the attention step with a relative bias
of B as shown in Fig. 1b. The light-weight attention function is defined as:

LWMHSA(Q,K, V ) = softmax(
QK ’T
√
dk

+B)V ’. (3)

where query Q ∈ Rh×w×dk , key K’ = DWConv(K) ∈ R
h×w

k2
×dk and value

V’ = DWConv(V) ∈ R
h×w

k2
×dv and bias B ∈ R(h×w)×h×w

k2 .

IRFFN : The inverted residual feed-forward network is similar to [1] consisting
of an expansion layer and depth-wise convolution followed by a projection layer.

IRFFN(I) = Conv(DWConv(Conv(I)) + Conv(I)), (4)

The 3D-CmT model can be formulated using the above modules and com-
ponents:

I i = LPU(SFE(I i-1)) (5)

I ’
i = LWMHSA(LN(I i)) + I i (6)

Oi = IRFFN(LN(I ’
i)) + I ’

i (7)

where Ii and I’i represent the output features of SFE followed by LPU and
LWMHSA module for the ith block, respectively. LN denotes the layer normal-
ization [42].

To classify the pixels of the input image, the softmax function is applied to
the output Oi from the TE module. The label with the highest probability value
is the category of the pixel. The reason to combine both 3D-Convolution and
Vision Transformer networks is their capability to learn the representation of
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image spatial data along with its rich spectral information. The main advantage
of HS imageries is their narrow spectrum rich data which tells the unique spectral
signature of the target object. Therefore, initially, 3D-Conv layers extract the
spectral features from HSI data. Then, after extracting and learning the spectral
representation from HSI data, the incorporation of the Transformer module is
used to understand the global spatial features and also to handle the long-range
dependencies.

Table 1: Ground Truth classes of the Salinas Scene, Indian Pines and Uni-
versity of Pavia Datasets with their respective samples number.

Salinas Scene Indian Pines University of Pavia

Class No. Class Name Samples Class Name Samples Class Name Samples

1 Brocol_green_weeds_1 2009 Alfalfa 46 Asphalt 6631
2 Brocoli_green_weeds_1 3726 Corn-notill 1428 Meadows 18649
3 Fallow 1976 Corn-mintill 830 Gravel 2099
4 Fallow_rough_plow 1394 Corn 237 Trees 3064
5 Fallow_smooth 2678 Grass-pasture 483 Painted metal sheets 1345
6 Stubble 3959 Grass-trees 730 Bare Soil 5029
7 Celery 3579 Grass-pasture-mowed 28 Bitumen 1330
8 Grapes_untrained 11271 Hay-windrowed 478 Self-Blocking Bricks 3682
9 Soil_vinyard_develop 6203 Oats 20 Shadows 947
10 Corn_senesced_green 3278 Soybean-notill 972
11 Lettuce_romaine_4wk 1068 Soybean-mintill 2455
12 Lettuce_romaine_5wk 1927 Soybean-clean 593
13 Lettuce_romaine_6wk 916 Wheat 205
14 Lettuce_romaine_7wk 1070 Woods 1265
15 Vinyard_untrained 7268 Building-Grass-Trees-Drives 386
16 Vinyard_vertical 1807 Stone-Steel-Towers 93

4 Experiments and Results

4.1 Dataset Description

In our work, three commonly and widely used openly available HSI datasets
are selected for the experiments, including the Salinas Scene (SA), Indian Pines
(IP), and Pavia University (UP) datasets.

Salinas Scene: The images in the SA dataset have a spatial size of 512 ×
217 and 224 spectral bands that span the electromagnetic wavelength range of
360 to 2500 nm. This dataset consists of a total of 16 classes.

Indian Pines: The IP dataset contains images having 224 spectral bands
with spatial size of 145 × 145 each. This dataset covers the hyperspectral imaging
wavelength range from 400 to 2500 nm. Their ground truth is provided for 16
different classes of vegetation.

University of Pavia: Images with a spatial resolution of 610 × 340 and 103
spectral bands between 430 and 860 nm are included in the UP dataset. There
are nine classifications of urban land cover in the ground truth.
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The publicly available hyperspectral datasets1 are downloaded for the ex-
periments. Table. 1 represents the description of the four datasets taken in our
study including the total number of classes along with the class type and total
number of samples corresponding to each class.

4.2 Evaluation Metrics

To measure the classification accuracy of the proposed model, we used three
commonly used classification evaluation metrics, i.e., Average Accuracy (AA),
Overall Accuracy (OA) and Kappa Coefficient (Kappa). AA is expressed as the
percentage of the average of classwise classification accuracies; OA is represented
as a percentage of the number of precisely classified samples divided by the total
test samples; and Kappa is a statistical measure between the ground samples
map and classification map that gives mutual information about a strong agree-
ment between them. Additionally, the total number of Floating Point Operations
(FLOPs) and model parameters are also considered to compare the classification
accuracy of the proposed model.

4.3 Implementation Details

The 3D-CmT model is implemented on a system with Intel ® Xeon ® Platinum
8180 CPU @2.50GHz, 1TB of RAM, and NVIDIA Tesla V100 GPU, 32GB of
RAM. Python v3.7.4 and PyTorch [5] based environment is used to do all the
experiments.

The Salinas Scene dataset is selected as an example to illustrate the 3D-CmT
model. The Adam [27] optimizer has been chosen as the optimizer taking the
initial learning rate value as 1e-3 and 1e-5 as weight decay. For batch training,
the size of each batch is set to 32 with total training epochs of 100. The number
of PCA components taken is 30 with an image size of 64 × 64 for training. The
overall steps of the proposed 3D-CmT method are shown in Algorithm. 1

To demonstrate the efficacy of the proposed model, several CNN and Trans-
former networks are considered for comparative analysis: CNN-based models
include 2D-CNN [38], 3D-CNN [37] with their original implementations and Hy-
bridSN [2] with same parameters excluding PCA bands which is selected as 30
for fair comparison. Transformer and hybrid model-based networks include ViT
[8], where ViT-Base model configuration is chosen. SpectralFormer [9], the model
is re-trained and the accuracies are similar to the results reported in the original
paper for IP and UP Datasets. But, for Salinas Scene Datasets, all the model
parameters have been set as per the Indian Pines dataset except the number of
epochs and training samples i.e., 100 and 0.3 respectively for a fair comparison.
For SSFTT [3], for a fair comparison we have taken an image with a patch size
of 65 × 65 and the model has been trained for 100 epochs. DBCTNet [40] model
is used as per its original implementation.
1 Openly Available HSI Datasets https://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes
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Algorithm 1 3D-CmT Model
Input: HSI data X ∈ Rm×n×c as input and Y ∈ Rm×n as ground truth with a patch
size of 64 and number of PCA bands of 30.
Output: Predicted classification labels on the test datasets.
1: Set Adam (learning rate: 1e-3) as optimizer, epochs number total_epoch to 100

with batch-size of 32.
2: After PCA transformation, obtain the Ipca components.
3: Divide Ipca into the training dataset and validation dataset and then generate data

loader for training and validation data.
4: for epoch = 1 to total_epoch do
5: Perform 3D convolution of SFE module.
6: Perform Transformer Encoding on TE module.
7: Use the softmax function to identify the class labels.
8: end for
9: Use the test dataset with the trained model to get the predicted class labels.

4.4 Classification Results

Quantitative Analysis This section presents the quantitative results of the
proposed method in terms of metrics mentioned in Section. 4.2. An extensive
comparative analysis is performed for various state-of-the-art models on the SA
dataset in Table. 2, the UP dataset in Table. 3, and the IP dataset in Table. 4.
For the SA dataset, the 3D-CmT model outperforms all other models in terms
of OA, AA, and kappa values. However, in terms of training time, number of
Params, and number of FLOPs, performs satisfactorily. For the IP dataset, in
terms of OA and kappa values, the proposed model is performing second best as
the HybridSN model is performing best in terms of accuracy metrics. Similarly,

Table 2: Comparative Results for Salinas Scene Dataset where training sam-
ples taken as 30% and patch size is 64 × 64. The bold and underlined text shows
the best and second best performance.

Model Training Time #Params #FLOPs OA AA Kappa

2D-CNN[38] 3m37s 1.67M 32.80M 99.99 99.99 99.89
3D-CNN[37] 53s 995K 24.2K 99.34 99.75 99.26
HybridSN[2] 2h44m 51.76M 2.39G 99.99 99.99 99.99
ViT[8] 2h41m 125.16M 967.21K 99.52 99.44 99.47
SpectralFormer[9] 6m14s 378.13K 17.19M 88.41 93.25 87.15
SSFTT[3] 22m39s 153.22K 508.61M 99.92 99.93 99.93
DBCTNet[40] 8m38s 30.88K 12.81M 94.44 97.34 93.82
3D-CmT 1h8m 7.55M 120.68M 100.0 100.0 100.0

for the UP dataset, the proposed model is performing best among all other CNN
and Transformer models in terms of all three accuracy metrics. Based on the
comparative results with CNN and Transformer models, it is worth mentioning
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Table 3: Comparative Results for University of Pavia Dataset where training
samples taken as 30% and patch size is 64 × 64. The bold and underlined text
shows the best and second best performance.

Model Training Time #Params #FLOPs OA AA Kappa

2D-CNN[38] 1m47s 1.61M 19.70M 99.95 99.94 99.94
3D-CNN[37] 39s 994K 24.1K 99.74 99.72 99.66
HybridSN[2] 2h10m 51.76M 2.39G 99.80 99.51 99.74
ViT[8] 1h13m 105.3M 961.84K 97.22 94.52 96.32
SpectralFormer[9] 22m8s 183.65K 4.47M 90.24 89.05 86.89
SSFTT[3] 39m25s 153.22K 508.61M 98.72 96.28 98.30
DBCTNet[40] 2m17s 16.36K 6.37M 98.53 97.79 98.06
3D-CmT 55m57s 7.54M 120.67M 99.98 99.96 99.97

that the 3D-CmT model is outperforming all the models for the SA dataset as
represented in Table. 2 and UP dataset as shown in Table. 3. However, for the IP
dataset, the proposed model is the second best performing as shown in Table. 4.

Table 4: Comparative Results for Indian Pines Dataset where training sam-
ples taken as 30% and patch size is 64 × 64. The bold and underlined text shows
the best and second best performance.

Model Training Time #Params #FLOPs OA AA Kappa

2D-CNN[38] 33s 1.66M 32.28M 84.55 91.36 82.08
3D-CNN[37] 13s 995K 24.2K 98.39 97.76 98.16
HybridSN[2] 31m26s 51.76M 2.39G 99.62 99.61 99.57
ViT[8] 26m09s 124.37M 967.21K 89.86 84.90 88.43
SpectralFormer[9] 3m18s 355.57K 16.53M 76.31 84.48 73.31
SSFTT[3] 8m9s 153.22K 508.61M 97.10 92.09 96.69
DBCTNet[40] 20m38s 30.3K 12.55M 98.14 98.38 97.88
3D-CmT 12m48s 7.55M 120.68M 98.50 95.61 98.29

Qualitative Analysis This section presents the visual results of the proposed
method along with the results of comparative models and their ground-truth
maps. Fig. 3, Fig. 2, and Fig. 4 represent the results of classification maps gen-
erated on the SA, IP, and UP datasets, respectively. By visual comparisons, it is
worth noting that 3D-CmT model-generated labels are very close and accurate
to ground-truth labels compared to the other state-of-the-art models. For the SA
data set, the results of 3D-CNN, ViT, SpectralFormer, and DBCTNet are not
accurate for some classes, as they are misclassified. However, our proposed model
can accurately predict each class, demonstrating its good performance. For the
IP dataset, the visual results of HybridSN are good compared to all other mod-
els. There are misclassifications of pixels for 2D-CNN, ViT, and SpectralFormer
models. However, our proposed model is comparable to HybridSN performance.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2: Classification Results of the UP dataset. (a) Input. (b) Ground Truth. (c)
2D-CNN. (d) 3D-CNN. (e) HybridSN. (f) ViT. (g) SpectralFormer. (h) SSFTT.
(j) DBCTNet. (j) 3D-CmT.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3: Classification Results of the IP dataset. (a) Input. (b) Ground Truth. (c)
2D-CNN. (d) 3D-CNN. (e) HybridSN. (f) ViT. (g) SpectralFormer. (h) SSFTT.
(j) DBCTNet. (j) 3D-CmT.
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12 S. Arya et al.

For the UP dataset, there is slightly lower visual performance of the 3D-CNN
and SpectralFormer model, but all other models including the proposed model
can give good visual results.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4: Classification Results of the SA dataset. (a) Input. (b) Ground Truth. (c)
2D-CNN. (d) 3D-CNN. (e) HybridSN. (f) ViT. (g) SpectralFormer. (h) SSFTT.
(j) DBCTNet. (j) 3D-CmT.

4.5 Ablation Study

We analyze and evaluate the classification performance of the 3D-CmT model
in terms of classification evaluation metrics as discussed in Section. 3. Exten-
sive ablation studies on the Salinas Scene Dataset include experimentation with
different combinations of PCA components, image patch size, and percentage of
training samples. Although our base model is a CMT-Tiny network of [1] that
consists of 4 stages of CMT blocks, therefore, we experimented with different
combinations of CMT blocks in our proposed model.
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Table 5: Classification performance analysis of effect of with and without
PCA in 3D-CmT model for 30% training samples with patch size of 64 × 64 on
Salinas Dataset.

PCA #Params #FLOPs OA AA Kappa

w/o 7.63M 856.19M 99.98 99.98 99.98
10 7.54M 36.13M 99.99 99.98 99.98
20 7.54M 78.41M 99.99 99.99 99.99
30 7.54M 57.27M 100.0 100.0 100.0

Effect of PCA Components on Training Table. 5 represents the accuracy
of the model while we trained the model with and without PCA components. Ex-
tensive experiments with different numbers of PCA components show that there
is very little difference in the accuracies of all the cases, but PCA components
with a value of 30 give the best accuracies in terms of all metrics. Moreover, we
also experiment with the case where PCA is not applied before the training, in
this case, model training time is very high and accuracies are also decreasing.
So, the value of 30 is used as the optimal number of PCA components for our
proposed model in all three datasets.

Effect of Patch Size and Percentage of Training Samples To check the
effects of the patch size of an input image, we experimented with different patch
sizes along with the model training with 30% and 10% training samples. The
results of the 30% training samples are shown in Table. 6, where the patch size
of 64 × 64 gives the best accuracies among all the other cases, but its FLOPs
are higher than those of the other cases. Although patch sizes of 8 × 8, 16 ×
16, and 32 × 32 have fewer FLOPs, their accuracies are slightly lower than the
64 × 64 case. Therefore, we used a large patch size for our experiments, that is,
64 × 64. Similarly, Table. 7 represents the experimental results for 10% training
samples. Patch size of 16 × 16 is the best-performing case in terms of accuracy.
But the 64 × 64 case is second best among all other cases. The results of the
experiment show that a patch size of 64 × 64 is the optimal patch size for our
proposed model.

Table 6: Classification performance
for 30% training samples on Sali-
nas Scene Dataset.

Patch Size #Params #FLOPs OA AA Kappa

8 × 8 7.47M 1.90M 99.93 99.92 99.93
16 × 16 7.47M 7.54M 99.99 99.99 99.99
32 × 32 7.48M 30.13M 99.96 99.95 99.96
64 × 64 7.54M 57.27M 100.0 100.0 100.0

Table 7: Classification performance
for 10% training samples on Sali-
nas Scene Dataset.

Patch Size #Params #FLOPs OA AA Kappa

8 × 8 7.47M 1.90M 99.35 99.67 99.28
16 × 16 7.47M 7.54M 99.88 99.86 99.87
32 × 32 7.48M 30.13M 99.77 99.72 99.75
64 × 64 7.55M 120.68M 99.79 99.76 99.76

Effect of CMT-Stage and 3D-Conv Layer Experiments have been con-
ducted to select an optimal number of CMT stages and 3D-Conv layers. Table 8
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Table 8: Classification performance analysis between different CMT stage in
3D-CmT model for 30% training samples with patch size of 64 × 64 on Salinas
Dataset.

#CMT-Stage #Params #FLOPs OA AA Kappa

4 7.96M 443.47M 100.0 100.0 100.0
3 7.72M 295.67M 100.0 100.0 100.0
2 7.60M 121.98M 99.96 99.92 99.95
1 7.54M 57.27M 100.0 100.0 100.0

Table 9: Classification performance analysis between different 3D-Conv layer
in 3D-CmT model for 30% training samples with patch size of 64 × 64 on Salinas
Dataset.

#3D-Conv Layer #Params #FLOPs OA AA Kappa

1 (k1=(7x1x1)) 7.55M 60.12M 99.99 99.98 99.99
2 (k1=(7x1x1),k2=(5x1x1)) 7.54M 57.27M 100.0 100.0 100.0
3 (k1=(7x1x1),k2=(5x1x1),k3=(3x1x1)) 7.54M 216.62M 99.99 99.99 99.99

shows the experimental results for different numbers of CMT-Stages used. No
major improvement is observed in the performance of the model if we increase
the number of stages. However, CMT-Stage with only one block is performing
best in terms of FLOPs and accuracy. Therefore, we have considered only one
CMT block in the proposed model. The experimental results of different sets of
3D-Conv layers with one CMT block are shown in Table .9, where two 3D-Conv
layers are the best-performing case among all accuracy metrics.

5 Conclusion

A 3D-CNN and Vision Transformer hybrid network named 3D-CmT has been
proposed for hyperspectral image classification. It uses 3D-CNN for local feature
learning along with the narrow spectral information, and Vision Transformer for
global feature representation. Experiments have been carried out for different
patch sizes of images, along with the different percentages of training samples.
The proposed model is comparable with other comparative models in terms of
both quantitative and visual results. From this study, we can conclude that to
handle spatial and spectral HSI information, a hybrid network of 3D-CNN and
ViT can be effectively used for the classification of hyperspectral images. For
future work, we would like to add other image modalities such as Synthetic
Aperture Radar (SAR), Light Detection and Ranging (LiDAR), and Digital
Elevation Model (DEM) data to further verify the efficacy of the model.
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