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Abstract. Urban land use maps at the building instance level are cru-
cial geo-information for many applications, yet they are challenging to
obtain. Land-use classification based on spaceborne or aerial remote sens-
ing images has been extensively studied over the last few decades. Such
classification is usually a patch-wise or pixel-wise labeling over the whole
image. However, for many applications, such as urban population density
estimation or urban utility mapping, a classification map based on in-
dividual buildings (residential, commercial, mixed-type, and religious) is
much more informative. Nonetheless, this type of semantic classification
still poses fundamental challenges, such as retrieving fine boundaries of
individual buildings. Street view images (SVI) are highly suited for pre-
dicting building functions because building facades provide clear hints.
Although SVIs are used in many studies, their application in generating
building usage maps is limited.
Furthermore, their application to Indian cities remains void. In this pa-
per, we propose a comprehensive framework for classifying the function-
ality of individual buildings. Our method leverages the YOLOs model
and utilizes SVIs, including those from Google Street View and Open-
StreetMap. Geographic information is employed to mask individual build-
ings and associate them with the corresponding SVIs. We created our
own dataset in Indian cities for training and evaluating our model.

Keywords: Building usage classification · Object detection · Street view
images · Open street map · Urban planning

1 Introduction

Urban land use classification at the individual level is essential for effective ur-
ban planning and management, influencing a wide range of decisions, including
solar potential analysis [1], damage identification [2], and infrastructure devel-
opment. Accurate classification of building usage types helps urban planners
optimize resources, improve public services, and enhance community well-being.
Traditional methods for building usage classification, such as satellite imagery,
OpenStreetMap (OSM) data, and aerial imagery, have shown promise in various
contexts; however, the application of SVI remains limited, particularly within
the Indian urban landscape, where research is still developing.

This ACCV 2024 workshop paper, provided here by the Computer Vision Foundation, is the author-created
version. The content of this paper is identical to the content of the officially published ACCV 2024
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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This study aims to address the gap in knowledge by developing a robust
framework for urban land use classification using SVI, thereby enhancing our un-
derstanding of building usage types within complex urban environments. By em-
ploying advanced object detection models, specifically YOLOv8s and YOLOv8n
[3], we seek to classify buildings into four distinct categories: residential, commer-
cial, religious, and mixed-use. The inclusion of a mixed-use category is particu-
larly significant, as urban buildings often serve multiple functions—commercial
spaces on the ground floor and residential units above, for instance.

Our methodology aims to capture the multifaceted nature of urban build-
ings and improve classification accuracy in mixed-use areas, which poses signif-
icant challenges in existing classification frameworks. This research contributes
to enhancing urban land use classification methodologies and provides valuable
insights for urban planners and policymakers. By offering a more nuanced under-
standing of urban building types, we facilitate better decision-making in rapidly
growing urban areas, ultimately promoting sustainable development and effec-
tive urban management.

1.1 Contributions

Our major contribution lies in the creation of a novel dataset tailored explicitly
for building detection in Indian cities. This meticulously curated dataset incor-
porates diverse urban scenarios typical of Indian streetscapes, including varying
architectural styles, occlusions by trees and vehicles, and different lighting con-
ditions. Leveraging this dataset, we have developed a pioneering framework for
building detection utilizing SVI. Our approach addresses challenges unique to ur-
ban environments in India, such as densely packed buildings and irregular struc-
tures, ensuring robust and accurate detection. By employing the state-of-the-art
YOLOvs object detection model for facade object detection, our framework sig-
nificantly enhances the precision of building detection. This innovation not only
contributes a valuable resource for future research but also sets a new benchmark
for urban infrastructure analysis using computer vision methodologies. We are
releasing this dataset to support future research and collaboration [4].

1.2 Paper Organization

Our paper is structured as follows. We present the related work in Section 2. Sec-
tion 3 outlines the proposed methodology, while Section 4 provides a detailed
description of the proposed algorithm and implementations. In Section 5, we
assess the performance of the YOLOv8s and YOLOv8n object detection mod-
els. Section 6 discusses the results and its implications. Furthermore, Section 7
presents the limitations of our study, and Section 8 summarizes our findings.
Lastly, Section 9 outlines potential avenues for future research.
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2 Related Work

Spaceborne or aerial remote sensing images have been extensively studied over
the past decades. Typically, classification using these images involves patch-wise
or pixel-wise labeling across the entire image. While aerial remote sensing images
can provide information about building usage types, they often face challenges
in accurately identifying the defined boundaries of building footprints. Figure 1
illustrates building usage classification using aerial remote-sensing images [5–9].
From a top-down view, structures often appear similar, making it difficult to
distinguish between different building types. Figure 2 highlights the challenge of
mixed-use areas, where commercial, residential, and mixed-type buildings may
all appear within the same image patch, complicating the classification process.

Fig. 1: Example of land-use classification using satellite image.

Using OSM data, we can obtain information about building usage types.
However, there are several issues with OSM data [10–15]. The accuracy of build-
ing footprints in OSM is often questionable, with many building footprints either
missing or inaccurately represented. Additionally, there is a lack of labeled data
within OSM, which can limit its usefulness for detailed analysis. Another sig-
nificant concern is the irregularity of updates. OSM data is often updated on a
voluntary basis, meaning it cannot always be relied upon for timely or consis-
tent updates. This inconsistency makes it challenging to use OSM data as a sole
source for accurate and up-to-date information in urban planning and analysis.

SVI has also been used for building classification, but its application is lim-
ited to specific areas. Previous work on building instance classification using SVI
primarily focused on datasets from foreign environments [16]. In these studies,
buildings were classified into eight categories: apartment, church, garage, house,
industrial, office building, retail, and roof. The accuracy of these classifications
was relatively low [17–21]. Researchers tested various convolutional Neural Net-
work (CNN) architectures, including AlexNet [22], VGG16 [23], ResNet18 [24],
and ResNet34 [24]. Despite the potential of CNNs for building classification,
the results indicated significant room for improvement. One of the challenges
is the variability in architectural styles and urban layouts across different re-
gions, which can impact the performance of models trained on foreign datasets
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when applied to local environments. To enhance the accuracy and applicability
of building classification using SVI, it is crucial to develop and train models on
region-specific datasets and explore advanced techniques to handle the diversity
of building types and appearances.

Fig. 2: These buildings do not belong to the same category, even though they are
located in the same land-use area. Furthermore, compared to roof structures, the facade
structures displayed in SVI provide richer and more sufficient information for building
classification using detection methods.

3 Proposed Methodology

In this study, we developed a comprehensive methodology for building detection
using geotagged SVI, leveraging a custom dataset tailored to the complexities of
urban environments. We categorized buildings into four distinct classes: residen-
tial, commercial, religious, and mixed-type, with the mixed-type class represent-
ing buildings with multiple functions, such as commercial spaces on the ground
floor and residential units above. For the detection phase, we employed a range
of object detection models, including YOLOv8s and YOLOv8n, to accurately
identify and locate buildings within the images.

Our building detection model provides a detailed understanding of urban
land use. Geographic information was used to mask individual buildings and
align them with SVIs, ensuring a more precise classification by integrating spa-
tial data with visual features. The effectiveness of this approach was validated
using our custom dataset from Indian cities, demonstrating improvements over
existing methods and offering valuable insights for urban planning and manage-
ment through a nuanced classification of diverse building types.
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Fig. 3: The proposed framework for building usage classification at a level of individual
building.

3.1 Building footprints from GIS map

OSM serves as a valuable resource for obtaining building footprints for a specific
study area. By leveraging OSM data and geofabrik 1, we can access detailed
geographic information, including building footprints, which are essential for
urban planning and spatial analysis. Various tools and platforms are available
to extract building footprints from OSM. In our work, we utilized OSMnx2,
a Python library, to efficiently download and visualize OSM data. Begin by
defining the study area, either by specifying geographical boundaries or using a
location name. OSMnx then queries OSM’s servers, enabling the extraction of
building footprints and other relevant geographic features.

3.2 Collection of Geotagged SVI

We began by identifying the geographical boundaries of the study area. Us-
ing tools like the Google Street View API3, we captured panoramic images at
specified intervals within these boundaries. These panoramic images were then
converted into normal images for easier analysis. Each image is inherently tagged
with latitude and longitude coordinates, ensuring accurate geolocation.

3.3 Façade object detection model

In this work, we utilized various YOLO models for building facade object detec-
tion, including YOLOv8s and YOLOv8n. These models were trained to identify
1 https://www.geofabrik.de/
2 https://osmnx.readthedocs.io/en/stable/
3 https://developers.google.com/maps/documentation/streetview/overview
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four classes of buildings: residential, commercial, mixed-type, and religious. By
employing these models, we aimed to classify and geolocate buildings within the
images accurately. Table 1 provides a brief overview of the different building
classes.

Table 1: Building class descriptions from usage types.

Title Building types

Residential house, apartment, hostel
Commercial shop, restaurant, bank, shopping complex, mall,

vegetable center, Indian coffee house
Religious temple, mosque, church
Mixed-type combination of commercial and residential

4 Proposed Algorithm

Algorithm 1 outlines a systematic framework for detecting buildings in geotagged
SVI. The process begins with Data Acquisition, where a collection of geotagged
SVI, denoted as tIiu

N
i“1, is gathered and preprocessed. This step ensures that

the images are in an optimal format for subsequent analysis. The next phase,
Building Detection, involves applying the YOLO model to each image to identify
buildings. Specifically, for each image Ii, the YOLO model detects buildings and
generates bounding boxes Bi that outline these structures. The outcome of this
step is a set of bounding boxes for all images, tBiu

N
i“1. In the final Output

Results phase, the algorithm displays the detected buildings by presenting these
bounding boxes. This structured approach facilitates the accurate identification
and visualization of buildings in geotagged SVI.

Algorithm 1 Building Detection Framework

1: Input: Geotagged SVI tIiu
N
i“1

2: Output: Detected buildings tBiu
N
i“1

3: Step 1: Data Acquisition
4: Obtain and preprocess geotagged SVI tIiu

N
i“1

5: Step 2: Building Detection
6: Apply the YOLO model to detect buildings in each image:
7: Bi Ð YOLOpIiq
8: where Bi denotes the bounding boxes of detected buildings in Ii
9: Step 3: Output Results

10: Generate and present the detected buildings tBiu
N
i“1
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Fig. 4: In this case study, we used images from Rohtak and Mandi (shown in green
dot) for training and images from the Bhopal (shown in yellow dot) region for testing
purposes.

4.1 Data Collection and Pre-processing

We have selected Mandi in Himachal Pradesh and Rohtak in Haryana as the
study areas for this research. We used SVI from Bhopal in Madhya Pradesh for
testing purposes. The Figure 4 represents the study area, including the testing
and training points. The data collection part is a lengthy and effort-intensive
process. The collected dataset consists of geotagged SVI from both cities. It cov-
ers different types of built-up areas, including residential, commercial, religious,
and mixed-use buildings, as mentioned in Table 1.

During the data preprocessing step, we identified and removed incorrect data,
such as blurred or repetitive images. As a result, we had a total of 512 SVI of
various buildings, which were divided into training, validation, and test sets. We
manually annotated these data in four categories: residential (e.g., apartment,
hostel, bungalow), commercial (e.g., shopping complex, mall, stationery shop,
restaurant, hotel, tea stall), religious (e.g., mosque, temple, church), and mixed-
type buildings (a combination of commercial and residential).

4.2 Detection of Building types from the Data set

The objective of this study is to classify building usage types using geotagged
SVI. Figure 5 shows the various building types in the Indian scenario, catego-
rized into residential, commercial, religious, and mixed-use classes. We utilized
our proposed methodology for building usage classification, employing object
detection techniques to achieve this.
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Fig. 5: A visual representation of SVI with buildings belonging to different cities and
classes from the dataset.
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4.3 Evaluating the Classification Model

In evaluating the performance of our models, we employed several key met-
rics commonly used in object detection tasks. Box Precision (Box(P)) measures
the proportion of true positive bounding boxes out of all predicted bounding
boxes, providing insight into the accuracy of the model’s predictions. Box Recall
(Box(R)) reflects the proportion of true positive bounding boxes out of all ac-
tual bounding boxes, indicating the model’s ability to detect all relevant objects.
To summarize the precision of detections, we used Mean Average Precision at
IoU 0.5 (mAP50), which averages the precision across different recall levels at
an Intersection over Union (IoU) threshold of 0.5. Additionally, Mean Average
Precision across IoU thresholds from 0.5 to 0.95 (mAP50-95) provides a more
comprehensive evaluation by averaging precision over a range of IoU thresholds,
capturing the model’s performance across various levels of detection overlap.
These metrics collectively offer a robust assessment of the model’s detection
capabilities and accuracy.

5 Results

In this research, we developed a framework for building usage classification using
SVI. We employed the YOLOv model for facade object detection. Following this,
we obtained the results.

To detect building usage types, we initially utilized several YOLO models.
These models are well-suited for object detection tasks due to their efficiency and
accuracy. By applying YOLO to SVI, we were able to identify various features
associated with different building usages effectively. This step was fundamen-
tal to ensure that our subsequent classification efforts were based on reliable
detection data.

Figure 6a represents the accurate predictions of the model, while Figure 6b
shows the model’s incorrect predictions. The errors in the model’s predictions are
primarily due to the limited number of training data points and an unbalanced
dataset, which significantly affects its performance.

The YOLOv8n model demonstrates good performance (as shown in Table
2) in classifying commercial buildings, with high precision (0.718) and recall
(0.641). It performs well with mixed-use buildings in terms of recall (0.829)
but has lower precision (0.335). The model struggles with religious buildings,
showing high precision but no detected instances, and shows moderate results
for residential buildings. Overall, YOLOv8n excels in commercial classification
while facing challenges in other categories.
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(a) The predictions from the YOLOv8s model show that it accurately classifies the residential and
commercial classes.

(b) The YOLOv8n model demonstrates accurate classification for residential and commercial classes;
however, it struggles with mixed-type and religious classes, with incorrect predictions in the mixed-
type category and no predictions in the religious class.

Fig. 6: YOLO model performance.

Table 2: Validation Performance Metrics of YOLOv8n.

Class Images Box(P) Box(R) mAP50 mAP50-95

all 145 0.657 0.467 0.466 0.213
commercial 85 0.718 0.641 0.729 0.309
mix 34 0.335 0.829 0.600 0.281
religious 11 1.000 0.000 0.094 0.042
residential 15 0.577 0.400 0.441 0.221

From Table 2 and Table 3, we found that YOLOv8n model performed better
than YOLOv8s across various validation metrics. The YOLOv8n model demon-
strates excellent overall performance, achieving a Box Precision of 0.657, a Box
Recall of 0.467, a mAP50 of 0.466, and a mAP50-95 of 0.213. This strong per-
formance is consistent across individual classes. In the commercial category,
YOLOv8n achieves impressive results with a Box Precision of 0.718, a Box Re-
call of 0.641, an mAP50 of 0.729, and an mAP50-95 of 0.309. The model also
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Table 3: Validation Performance Metrics of YOLOv8s

Class Images Box(P) Box(R) mAP50 mAP50-95

all 145 0.309 0.348 0.113 0.0431
commercial 85 0.155 0.504 0.224 0.0852
mix 34 0.0802 0.886 0.167 0.0677
religious 11 0.000 0.000 0.0145 0.00453
residential 15 1.000 0.000 0.0462 0.0149

performs notably well in the mixed class, with a Box Precision of 0.335 and a
mAP50 of 0.600, although the Box Recall is slightly lower at 0.829. For the re-
ligious class, YOLOv8n achieves a perfect Box Precision of 1.000, with mAP50
and mAP50-95 values of 0.094 and 0.042, respectively. Even in the residential
class, YOLOv8n outperforms with a Box Recall of 0.400, a mAP50 of 0.441,
and a mAP50-95 of 0.221, despite having a lower Box Precision compared to
YOLOv8s. Overall, YOLOv8n’s superior performance across these metrics high-
lights its robustness and effectiveness in handling the validation dataset.

6 Discussion

This work focuses on the classification of building usage at the individual build-
ing level. While various techniques exist for building usage classification, such as
those utilizing satellite imagery and OSM data, there is limited research lever-
aging SVI for this purpose. Some studies have centered on identifying specific
building features, but our work emphasizes detection at the individual build-
ing level. By concentrating on this detection approach, we aim to facilitate the
real-time identification of different building types.

This has significant implications, offering a practical and valuable contribu-
tion to the field of building usage classification research. Real-time detection of
building types can enhance various applications, such as urban planning, naviga-
tion, and smart city development. This method can also improve data accuracy
and provide timely updates, making it an essential tool for researchers and prac-
titioners working with urban environments and infrastructure.

However, this research also faces challenges, primarily due to the limited
availability of geotagged images for building detection. Using geotagged SVI,
we encounter numerous occlusions in the images, such as vehicles, vegetation,
and humans. Additionally, the dataset is unbalanced, which adversely affects the
results. Despite these challenges, our work highlights the potential of using SVI
for building usage classification and the need for more comprehensive datasets
to improve accuracy and reliability.

6.1 Model Comparison

The YOLOv8n model outperforms YOLOv8s across all metrics, including Box
Precision, Box Recall, mAP50, and mAP50-95. Specifically, YOLOv8n shows
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higher overall performance and better results in individual classes, highlighting
its superior capability in detecting buildings in geotagged SVI.

6.2 Implications

The challenges faced in categorizing mixed-use and religious buildings indicate
the importance of diversifying the training data to ensure balanced performance
across all building categories. A more comprehensive dataset will improve the
model’s classification accuracy and enhance its generalizability to different urban
settings. Furthermore, the limitations in retrieving fine boundaries highlight the
need for more precise segmentation techniques, which are crucial for reliable
land-use classification. Semi-supervised learning for the annotation process will
significantly reduce manual efforts and improve label quality, particularly in
large-scale datasets. This approach can accelerate the framework’s scalability,
making it more efficient and applicable to various contexts, including cities in
India. Future model iterations can offer more accurate and globally applicable
insights by addressing these issues, contributing to better urban planning and
decision-making.

7 Limitation

This research work contributes to building usage classification, aiding various ap-
plications in urban planning at the individual building level. Using our method,
we achieved excellent results overall; however, it did not perform accurately for
the mixed-type class. This is because buildings often have commercial use on the
ground floor and residential use on the remaining floors. Another limitation is
the limited number of data points. In future work, we aim to collect more data
points to improve the results. Currently, around 50% of roadside buildings fall
into the mixed-type category, but unfortunately, we have a limited number of
data points for this class.

The performance of the YOLOv model is hindered by an unbalanced dataset
and limited data points in specific classes, such as mixed and religious buildings.
This data imbalance impacts the model’s ability to accurately classify these
less-represented categories. Additionally, the manual labeling process is time-
consuming and costly.

8 Conclusion

The classification of building usage is a crucial tool that serves a wide range of
urban planning applications. Providing detailed insights into how buildings are
utilized across a city enables various agencies and organizations to implement
solutions more effectively. For instance, it can be instrumental in conducting
solar potential analysis, which assesses the feasibility and efficiency of solar panel
installations on different buildings. Additionally, it aids in population estimation
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by offering data on residential building usage, thereby supporting infrastructure
development and resource allocation.

The framework underpinning this work has been delivering promising results.
Its potential extends beyond static analysis; these methods can also be adapted
for real-time building type prediction. Such predictive capabilities are invaluable
for dynamic urban management and emergency response scenarios. The frame-
work exhibits strong performance in categorizing commercial and residential
buildings. However, it encounters challenges when dealing with mixed-use and
religious buildings. This difficulty largely stems from the limited or insufficient
data available for these categories, which hinders the accuracy and reliability of
the predictions.

In addressing these challenges, the YOLOv8n model has demonstrated ex-
ceptional performance, delivering some of the best results observed so far. Its
advanced capabilities in object detection and classification make it a powerful
tool for refining building usage classification. As we continue to enhance the
dataset and model accuracy, the potential applications of this framework in ur-
ban planning and management will only grow, paving the way for smarter, more
efficient cities.

9 Future Work

In future research, we aim to address the limitations encountered in this study
by enhancing our data collection strategy. Specifically, we plan to expand the
dataset to include a more diverse and balanced representation of building types,
mainly focusing on underrepresented categories such as mixed-use and religious
buildings. By collecting more data across varied urban environments, we aim
to improve the model’s robustness and accuracy in categorizing these challeng-
ing types. Additionally, improving the boundary retrieval process is essential
for obtaining precise land-use classification. We plan to explore advanced seg-
mentation techniques to delineate fine boundaries of individual buildings more
effectively, ensuring higher precision in object detection and classification tasks.
Employing techniques like semantic segmentation, alongside integrating semi-
supervised learning methods, will help streamline the annotation process. These
enhancements can facilitate more accurate and scalable data labeling, improv-
ing the model’s performance across diverse building categories. Finally, applying
this framework to Indian cities will be a significant future focus. Extending the
framework’s applicability to diverse geographic and cultural contexts will offer
valuable insights into the global adaptability of the model. This will allow us
to evaluate its efficacy in regions with unique urban patterns, ensuring broader
relevance and utility.
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