-
[pdf]
[supp]
[arXiv]
[bibtex]@InProceedings{Shaham_2021_CVPR, author = {Shaham, Tamar Rott and Gharbi, Michael and Zhang, Richard and Shechtman, Eli and Michaeli, Tomer}, title = {Spatially-Adaptive Pixelwise Networks for Fast Image Translation}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2021}, pages = {14882-14891} }
Spatially-Adaptive Pixelwise Networks for Fast Image Translation
Abstract
We introduce a new generator architecture, aimed at fast and efficient high-resolution image-to-image translation. We design the generator to be an extremely lightweight function of the full-resolution image. In fact, we use pixel-wise networks; that is, each pixel is processed independently of others, through a composition of simple affine transformations and nonlinearities. We take three important steps to equip such a seemingly simple function with adequate expressivity. First, the parameters of the pixel-wise networks are spatially varying so they can represent a broader function class than simple 1x1 convolutions. Second, these parameters are predicted by a fast convolutional network that processes an aggressively low-resolution representation of the input. Third, we augment the input image with a sinusoidal encoding of spatial coordinates, which provides an effective inductive bias for generating realistic novel high-frequency image content. As a result, our model is up to 18x faster than state-of-the-art baselines. We achieve this speedup while generating comparable visual quality across different image resolutions and translation domains.
Related Material