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Abstract

Most modern smartphones are now equipped with two

rear-facing cameras – a main camera for standard imaging

and an additional camera to provide wide-angle or tele-

photo zoom capabilities. In this paper, we leverage the

availability of these two cameras for the task of illumination

estimation using a small neural network to perform the il-

lumination prediction. Specifically, if the two cameras’ sen-

sors have different spectral sensitivities, the two images pro-

vide different spectral measurements of the physical scene.

A linear 3×3 color transform that maps between these two

observations – and that is unique to a given scene illumi-

nant – can be used to train a lightweight neural network

comprising no more than 1460 parameters to predict the

scene illumination. We demonstrate that this two-camera

approach with a lightweight network provides results on par

or better than much more complicated illuminant estima-

tion methods operating on a single image. We validate our

method’s effectiveness through extensive experiments on ra-

diometric data, a quasi-real two-camera dataset we gen-

erated from an existing single camera dataset, as well as

a new real image dataset that we captured using a smart-

phone with two rear-facing cameras.

1. Introduction

An overwhelming percentage of consumer photographs

are currently captured using smartphone cameras. A recent

trend in smartphone imaging system design is to employ

two (or more) rear-facing cameras to ameliorate the lim-

itations imposed by the smartphone compact form factor.

In most cases, the two rear-facing cameras have different

focal lengths and lens configurations to allow the smart-

phone to deliver DSLR-like optical capabilities (i.e., wide-

angle and telephoto). In addition, the two-camera setup has

been leveraged for applications such as synthetic bokeh ef-

fect [48] and reflection removal [40]. Given the utility of the

two-camera configuration, this design trend is likely to con-

tinue for the foreseeable future. In this work, we show that

the two-camera setup has another benefit, that of improving
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Figure 1: (A) Most modern smartphones use two rear-

facing cameras. Typically, the spectral characteristics of

these two cameras’ sensors are slightly different. (B) Thus,

a two-camera system furnishes two different measurements

of the scene being imaged. Our proposed two-camera al-

gorithm harnesses this extra information for more accurate

and efficient illuminant estimation.

the accuracy of illuminant estimation.

Illuminant estimation is the most critical step for com-

putational color constancy. Color constancy refers to the

ability of the human visual system to perceive scene col-

ors as being the same even when observed under different

illuminations [39]. Cameras do not innately possess this il-

lumination adaptation ability; the raw-RGB image recorded

by the camera sensor has significant color cast due to the

scene’s illumination. As a result, computational color con-

stancy is applied to the camera’s raw-RGB sensor image as

one of the first steps in the in-camera imaging pipeline to

remove this undesirable color cast. The main goal of the

camera’s auto-white-balance (AWB) module, which is mo-

tivated by the concept of computational color constancy, is

illuminant estimation. AWB involves estimating the scene

illumination in the sensor’s raw-RGB color space and then

applying a simple 3×3 diagonal matrix computed directly
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from the estimated illumination parameters to perform the

white-balance correction. Thus, accurate estimation of the

scene illumination is crucial to ensuring correct scene col-

ors in the camera image.

We demonstrate that two-camera systems have the po-

tential to provide more accurate illuminant estimation com-

pared to existing single-camera methods. A key insight is

that the spectral characteristics of the main camera’s sen-

sor are typically different from that of the second camera’s.

This is due to a variety of reasons. For example, the pitch

of the photodiodes and overall resolution of the two sensors

are often different to accommodate the different optics as-

sociated with each sensor. These differences impact which

color filter arrays (CFA) manufacturers can use in the sen-

sor’s production process. This results in the two CFAs hav-

ing different spectral sensitivities to incoming light. While

on the surface this may appear to be a disadvantage, differ-

ences in the CFA between the two cameras can be corrected

for by the later stages of the camera imaging pipeline to en-

sure the final output colors appear the same (e.g., see [36]).

However, for our purpose, the sensors’ unprocessed raw im-

ages effectively provide different spectral measurements of

the underlying scene. It is this complementary information

that allows us to design a two-camera illumination estima-

tion algorithm as shown in Fig. 1.

Contribution We propose to train a neural network for il-

luminant estimation that receives as input a 3× 3 matrix

computed between the two cameras’ raw sensor images si-

multaneously capturing the same scene. Prior work [21] has

shown that the color transformation between different spec-

tral samples of the same scene has a unique signature that

is related to the scene illumination. This allows the color

transformation itself to be used as the feature for illumina-

tion estimation. Thus, in contrast to existing single-camera

illumination estimation methods that train their deep net-

works directly on image data, or on image histograms, our

network needs to examine only nine parameters in the color

transformation matrix. As a result, we can train a very

lightweight neural network comprising just 1460 parame-

ters that can be efficiently run on-device in real time. We

test our proposed approach extensively with experiments

on radiometric data, a quasi-real two-camera dataset we

generated from an existing single-camera color constancy

dataset [16], and finally on a real two-camera dataset that we

captured using a Samsung S20 Ultra smartphone. We com-

pare our technique against several state-of-the-art single-

image illuminant estimation methods and demonstrate on

par or even improved performance.

2. Related work

We survey works on computational color constancy.

These algorithms can be broadly categorized into (1)

statistics-based and (2) learning-based methods. While

early learning-based approaches used hand-crafted features,

more recent works employ deep neural networks.

Statistics-based methods operate using statistics from an

image’s color distribution and spatial layout to estimate the

scene illuminant. Representative examples include gray

world [15], general gray world [6], gray edges [46], shades

of gray [24], white patch [14], bright pixels [35], and

PCA [16]. These methods are fast and easy to implement;

however, they make very strong assumptions about scene

content and fail in cases where these assumptions do not

hold.

Learning-based methods use labelled training data where

the ground truth illumination corresponding to each input

image is known from physical color charts placed in the

scene. In general, learning-based approaches are shown

to be more accurate than statistical-based methods. How-

ever, learning-based methods usually include many more

parameters than statistics-based ones; their number could

reach up to tens of millions in some models (e.g., [10])

and they typically have relatively longer training time.

Representative learning-based approaches include Bayesian

methods [13, 26, 44], gamut-based methods [23, 25, 28],

exemplar-based methods [5, 27, 34], and bias-correction

methods [4, 18, 19]. While early learning-based meth-

ods used hand-crafted features, more recently, deep neu-

ral networks (DNN) have demonstrated superior perfor-

mance [32, 38, 41, 45, 11, 12, 43, 10, 31, 47, 3, 8, 9]. It

is important to note that the aforementioned methods are

designed to work with a single image captured using three

channel sensor. Work by [42] explored the idea of adding

an additional color channel, but in the context of resolving

scene metamerism. The approach in this paper is based on

a pair of images of the same scene captured using a two-

camera system.

Our approach is inspired by the chromagenic color con-

stancy technique of Finlayson et al. [22, 21, 17]. The chro-

magenic approach showed that the parameters of a 3 × 3
linear transform that relates the color values of a scene cap-

tured with different spectral sensitivities are correlated with

the scene’s illumination. The chromagenic approach used

two images captured from the same sensor, but with a color

filter applied between image capture; however, two sen-

sors with different spectral sensitivities could also be used.

Classification of the scene illumination was performed us-

ing a set of pre-selected illuminants via a nearest-neighbour

search operation. We build on this method and integrate it

into a modern smartphone design with two cameras with

different fields of view. Furthermore, we combine it with

the power of neural networks to regress over the space of

illuminations.
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Figure 2: An overview of our proposed two-camera illuminant estimation algorithm. We compute a linear 3×3 transform

matrix T that maps the downsampled raw-RGB image from the main camera to the corresponding aligned and downsampled

raw-RGB image from the second camera. For a particular scene illuminant, this color transformation T is unique [21]. We

feed this mapping T as input to a small lightweight neural network. The network predicts a 2D [R/G B/G] chromaticity value

that corresponds to the illuminant estimate of the main camera.

3. Two-camera illuminant estimation

In this section, we describe the various steps of our two-

camera illuminant estimation algorithm – spatially aligning

the image pairs (Section 3.1); computing color transforms

between them (Section 3.2); constructing our two-camera

illuminant estimation network (Section 3.3); and augment-

ing our training data (Section 3.4).

3.1. Image spatial alignment

Our method is based on computing a color transform be-

tween a pair of images captured using a two-camera system.

These two images usually have different views and need to

be registered before computing the color transform. In our

experiments on real images, we found that a global homog-

raphy is sufficient for image alignment. We downsample

the images by a factor of six prior to computing the color

transform, and this makes our method robust to any small

misalignments and slight parallax in the two views. More-

over, since the hardware arrangement of the two cameras

does not change for a given device, the homography can be

pre-computed and remains fixed for all image pairs from the

same device.

3.2. Color transforms for image pairs

Given two raw-RGB images I1 ∈ R
n×3 and I2 ∈ R

n×3

with n pixels of the same scene captured by two different

sensors or cameras, under the same illumination L ∈ R
3,

there exists a linear transformation T ∈ R
3×3 between the

color values of the two images as

I2 ≈ I1 T, (1)

such that T is unique to the scene illumination L [22, 21].

Despite Equation 1 being an approximation, for simplicity,

we will use the equality sign instead. We first spatially align

the two images using the pre-computed homography, down-

sample them, and then compute T using the pseudo inverse

as follows:

T = (I1
T I1)

−1 I1
T I2. (2)

3.3. Two­camera illuminant estimation network

Given a dataset of M image pairs

I = {(I11, I21) , . . . , (I1M , I2M )}, (3)

we compute the corresponding color transformations be-

tween each pair of images using Equation 2:

T = {T1, . . . , TM}. (4)

Given the set of corresponding target ground truth illumi-

nants of I1i (i.e., as measured by the first camera) from each

pair

L = {L1, . . . , LM}, (5)

we can train a neural network fθ : T → L, with parameters

θ, to model the mapping between the color transforms T
and scene illuminations L. Then, fθ can be used to predict

the scene illumination for the main camera given the color

transform between the two images

L̂ = fθ (T ) . (6)

Without loss of generality, our method can be trained to

predict the illuminant for the second camera as well, using

the same color transforms; however, for simplicity, we fo-

cus on estimating the illumination for the main camera only.

We train our network by minimizing the L1 loss between

the predicted illuminants and the ground truth:

min
θ

1

M

M
∑

i=1

∣

∣

∣
L̂i − Li

∣

∣

∣
. (7)

Our network of choice is lightweight, consisting of a

small number (e.g., 2, 5, or 16) of dense layers; each layer

has nine neurons only. The total number of parameters
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Figure 3: Our image illumination augmentation method.

Given a pair of images, we re-illuminate them by each

other’s illumination based on 3× 3 color transformations

between their color chart values. This figure shows aug-

mentation of an image pair from one camera only. The cor-

responding pair of images from the second camera is aug-

mented in the same way. The images shown are in demo-

saiced raw-RGB format with gamma correction for better

visualization.

ranges from 200 for the 2-layer architecture up to 1460 pa-

rameters for the 16-layer network. The input to the network

is the flattened nine values of the color transform T and the

output is two values corresponding to the illumination esti-

mation in the 2D [R/G B/G] chromaticity color space where

the green channel’s value is always set to 1. An overview of

our method is provided in Fig. 2.

3.4. Data augmentation

Due to the lack of large datasets of image pairs captured

with two cameras under the same illumination, and to in-

crease the number of training samples and the generaliz-

ability of our model, we propose to augment the training

images as follows. Given a small dataset of raw-RGB im-

age pairs captured with two cameras and including color

rendition charts, we extract the color values of the 24 color

chart patches, C ∈ R
24×3, from each image. Then, we

compute an accurate color transformation, TC ∈ R
3×3, be-

tween each pair of images from the main camera
(

I1i, I1j
)

based only on the color chart values from the two images as

T
1i→1j
C =

(

I1
T
i I1i

)

−1

I1
T
i I1j , (8)

and similarly, for image pairs from the second camera
(

I2i, I2j
)

as

T
2i→2j
C =

(

I2
T
i I2i

)

−1

I2
T
i I2j . (9)

Figure 4: Three samples from our radiometric dataset. Each

pair shows images from the main (left) and second (right)

cameras. The ground truth illumination colors are presented

in the bottom row.

Next, we use this bank of color transformations to augment

our images by re-illuminating any given pair of images from

the two cameras (I1i, I2i) to match their colors to any target

pair of images
(

I1j , I2j
)

, as follows:

I1i→j = I1i T
1i→1j
C , (10)

I2i→j = I2i T
2i→2j
C , (11)

where i → j means re-illuminating image i to match

the colors of image j. Using this illuminant augmenta-

tion method, we can increase the number of training image

pairs from M to M2. Fig. 3 illustrates an example of re-

illuminating a pair of images given another target pair of

images.

4. Experiments

To train our two-camera illuminant estimation network,

we need a dataset of image pairs of the same scene cap-

tured with two different cameras under the same illumi-

nation. To our knowledge, there are no publicly available

image datasets for color constancy captured using a two-

camera system containing labelled ground truth illumina-

tion. To validate our method, we first present a synthetic

radiometric dataset in Section 4.1. Next, in Section 4.2, we

describe how to generate a quasi-real two-camera dataset

from an existing single-camera color constancy dataset. Fi-

nally, we evaluate our method on a real two-camera image

dataset that we captured using a Samsung S20 Ultra smart-

phone, in Section 4.3.

4.1. Radiometric dataset

To evaluate our method, we generate a synthetic dataset

from radiometric data. According to the image formation

model, the sensor response is the product of the scene il-

lumination, the surface reflectance, and the sensor’s spec-

tral sensitivity, integrated over the visible spectrum. For

data generation, we adopt the experimental procedure pro-

posed in [6]. In particular, a scene illuminant and a random

set of surface reflectances are selected from a hyperspectral

dataset of lights and surfaces [7]. Two different camera sen-

sors with different spectral sensitivity functions are chosen

from the camera spectral sensitivity dataset of [33]. The

RGB responses for both sensors can then be calculated by
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Figure 5: Plots of ground truth illuminants for the two cameras for our (A) radiometric dataset, (B) quasi-real NUS dataset,

and (C) real dataset.

simple numerical integration. The response induced by a

pure reflector is treated as the corresponding ground truth.

The advantage of this procedure is that it is easy to gen-

erate a large amount of labelled data to evaluate color con-

stancy algorithms, and arrive at statistically meaningful per-

formance measures.

The reflectance set of [7] consists of 1995 hyperspec-

tral surface reflectance measurements of various natural ob-

jects, color charts, and so forth. The dataset of [7] also con-

tains 87 different measured or synthesized illuminant spec-

tra. The camera spectral sensitivity dataset of [33] contains

the spectral sensitivity functions for 28 cameras, including

mobile phone cameras. We select two sensors from this set

to serve as our main camera and the second camera. To gen-

erate images, we choose a scene illumination and 24 differ-

ent surfaces at random, and synthesize the raw-RGB sensor

responses for both cameras. We generate thumbnail images

of size 32×48 pixels. A few representative examples with

associated ground truth are shown in Fig. 4. In total, we

generate 18,000 pairs; 10,800 (60%) for training, and 3,600

Method Mean Med B25% W25% Q1 Q3

GW [15] 4.09 3.68 1.36 7.51 2.21 5.56

SoG [24] 4.56 4.11 1.51 8.41 2.43 6.21

GE-1 [46] 5.20 4.64 1.65 9.62 2.76 7.18

GE-2 [46] 5.41 4.69 1.72 10.25 2.83 7.37

WGE [29] 4.14 3.25 1.13 8.72 1.82 5.41

PCA [16] 4.55 3.09 1.03 10.67 1.68 5.85

WP [14] 5.49 4.96 1.83 10.02 2.94 7.48

Gamut Pixel [28] 3.68 3.07 1.05 7.30 1.70 5.10

Gamut Edge [28] 6.09 5.34 1.95 11.49 3.15 8.42

Ours (200 params) 2.80 2.20 0.72 5.87 1.19 3.81

Ours (470 params) 2.65 2.00 0.64 5.72 1.07 3.61

Table 1: Angular errors (degrees) on our radiometric

dataset. B and W stand for best and worst, while Q1 and

Q3 denote the first and third quantile, respectively. Best re-

sults are in bold.

(20%) each for validation and testing. A plot of the distri-

bution of ground truth illuminants corresponding to the two

cameras for 200 random samples is shown in Fig. 5(A). It is

evident from the separation between the scatter points cor-

responding to the two cameras that the same illumination

induces very different raw responses in the two sensors ow-

ing to the difference in their spectral sensitivity functions.

For this experiment, we skip the alignment and down-

sampling steps of Section 3.1 since there is no misalign-

ment, and compute our color transform for each pair from

the 24 correspondences. We also omit the data augmenta-

tion procedure described in Section 3.4 since we have suf-

ficient training examples. We use the Adam [37] optimizer

with a learning rate of 10−4. We train our network for 1

million epochs. The training process takes about 10 hours

on a 32 GB nVidia Tesla V100 GPU. Table 1 reports statis-

tics of the angular errors [20] obtained by our method, along

with comparisons. The results of comparison methods were

computed using open source codes downloaded from [1]

or from the authors’ webpages. Note that all comparison

algorithms are single-image methods, and therefore were

given the image from the main camera alone as input. For

this experiment, we omit comparisons against deep learn-

ing methods since they are typically trained on natural im-

ages, whereas our images resemble color checker patches

only. From Table 1, we can observe that our method per-

forms better than well-established single-image illuminant

estimation methods. Note that although we show illuminant

estimation results only for the main camera for simplicity of

comparison, our method, without loss of generality, can be

used to predict the scene illuminant for the other camera.

Please see the supplementary material for more details.

4.2. Quasi­real NUS dataset

In this section, we go a step further beyond synthetic data

towards a more real dataset. In particular, we describe a

procedure to generate a quasi-real two-camera dataset from

an existing single-camera color constancy dataset. Towards

this goal, we select the NUS [16] dataset, which has images
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Figure 6: Sample matched pairs from the NUS dataset that we use to generate our quasi-real dataset.
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Figure 7: Our method for generating spatially-aligned two-

camera image pairs from the NUS dataset. A color trans-

form is used to map the image’s colors from one camera to

the other.

of the same scene mostly under the same illumination cap-

tured using different cameras. We choose the Nikon D5200

as the main camera while the Canon 1Ds Mark III serves as

the second camera. We select only those images where the

two cameras are observing the same scene with no visible

changes in the illumination. After filtering, we obtain 195

matched pairs from the two cameras. All images in the NUS

dataset have a Macbeth color chart placed in the scene. The

ground truth scene illumination can be obtained from the

achromatic patches in the color chart. A plot of the ground

truth illuminants for the 195 images from the two cameras

is shown in the plot of Fig. 5(B), and it can be observed that

the two sensors record different measurements for the same

illumination. A few representative examples of matched im-

age pairs from the two cameras are shown in Fig. 6. Notice

that some pairs have a significant change in viewpoint al-

though the scene is the same. Therefore, we preprocess the

data to generate our quasi-real dataset, as described next.

For each image pair (I1i, I2i) from the two cameras, we

first compute an accurate 3×3 transform T 1i→2i
M that maps

the raw-RGB image from the main camera to the second

camera using only the 24 correspondences from the color

checker patches. Next, we apply this color transform on the

main camera image to synthesize a new second camera im-

age. This procedure is shown in Fig. 7. These two spatially

aligned images constitute a pair in our quasi-real dataset.

We use a standard three-fold cross validation protocol

to evaluate performance. For learning-based methods, in-

cluding our own approach, we augment the training folds

using the procedure described in Section 3.4. Testing is

performed on the original unaugmented set. In particular,

for each image pair, we generate another 99 randomly re-

illuminated image pairs to obtain a total of 19500 pairs. The

color chart is then masked out in all training, validation, and

testing images. The results of our method, along with com-

parisons, are presented in Table 2. In addition to several

classical methods, we also test against the recent learning

approaches of [3, 10, 32, 9]. For all four learning methods,

publicly available implementations provided by the authors

were used to report results. The method of [3] is sensor-

independent, and does not require re-training. The quasi un-

supervised color constancy algorithm of [10], while inher-

ently sensor-agnostic, can be fine-tuned if annotated train-

ing data is available. In Table 2, we report results both with-

out and with fine-tuning, using the pre-trained models made

available by the authors. For the fine-tuned result, we se-

lected the appropriate pre-trained model for testing based on

the three-fold partitioning indices of the NUS dataset used

by the authors. For FC4 [32], we trained the model from

Method Mean Med B25% W25% Q1 Q3

GW [15] 4.43 3.42 0.90 9.82 1.54 6.11

SoG [24] 3.31 2.63 0.70 7.20 1.18 4.17

GE-1 [46] 4.49 3.03 0.87 10.38 1.40 6.34

GE-2 [46] 4.99 3.28 0.94 11.83 1.54 6.65

WGE [29] 5.77 3.11 0.77 14.75 1.38 7.89

PCA [16] 4.01 2.68 0.69 9.20 1.22 6.07

WP [14] 4.49 3.47 0.93 9.99 1.42 6.09

Gamut Pixel [28] 5.99 3.70 0.90 14.95 1.41 8.65

Gamut Edge [28] 4.99 3.38 0.85 11.63 1.72 7.22

CM [18] 2.80 2.09 0.66 6.12 1.21 3.67

Homography [19] (SoG) 2.70 1.95 0.69 5.88 1.06 3.71

Homography [19] (PCA) 2.97 2.16 0.72 6.47 1.14 4.22

APAP [4] (GW) 2.64 2.00 0.60 5.99 1.02 3.26

APAP [4] (SoG) 2.49 1.75 0.60 5.61 0.88 3.14

APAP [4] (PCA) 2.77 1.83 0.60 6.45 0.94 3.49

SIIE [3] 2.04 1.55 0.51 4.41 0.80 2.80

Quasi U CC [10] 3.57 2.77 0.62 8.04 1.09 5.06

Quasi U CC finetuned [10] 2.68 1.72 0.57 6.25 0.98 3.67

FC4 [32] 2.65 2.06 0.67 5.69 1.12 3.49

FFCC [9] 2.44 1.50 0.40 5.87 0.75 3.19

Ours (200 params) 2.39 1.44 0.46 5.95 0.81 2.81

Ours (470 params) 1.91 1.24 0.36 4.78 0.62 2.22

Ours (1460 params) 1.69 1.09 0.37 4.02 0.59 2.02

Table 2: Angular errors (degrees) on the main camera from

our quasi-real NUS [16] dataset. Best results are in bold.
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Sample image pairs from our real dataset

(Left) Our imaging rig with the color chart at a fixed position relative to 

the camera. (Right) An outdoor scene being imaged using our setup.

Figure 8: Our data capture setup and representative examples from our dataset. Note that while illuminant estimation is

performed on the raw-RGB sensor image, we show here the corresponding sRGB images to aid visualization.

scratch using the hyperparameters recommended by the au-

thors. For FFCC [9], the hyperparameters were carefully

tuned to achieve the best performance. In the literature,

FC4 and FFCC are currently the best-performing methods

across all color constancy datasets, including NUS. It can be

observed that our model with 1460 parameters outperforms

both FC4 and FFCC, as well as other competitors.

4.3. S20 real­image dataset

The final step in our evaluation is to collect and test on

a real dataset of image pairs captured using a two-camera

system. Towards this goal, we examined various recent

Method Mean Med B25% W25% Q1 Q3

GW [15] 3.25 2.55 0.90 6.94 1.46 3.73

SoG [24] 3.07 2.03 0.62 7.33 0.98 4.16

GE-1 [46] 4.79 3.91 0.94 10.72 1.49 6.35

GE-2 [46] 5.23 3.96 0.95 11.74 1.57 7.76

WGE [29] 6.17 4.76 0.85 14.17 1.50 9.79

PCA [16] 4.56 3.35 0.85 10.50 1.32 6.42

WP [14] 3.24 2.30 0.56 7.48 1.03 4.16

Gamut Pixel [28] 6.81 5.62 0.97 14.20 1.61 10.29

Gamut Edge [28] 5.00 3.60 0.94 11.20 1.46 6.58

CM [18] 3.51 2.64 0.66 7.64 1.25 4.83

Homography [19] (SoG) 3.43 2.38 0.46 7.93 1.13 4.90

Homography [19] (PCA) 4.35 3.12 0.58 10.09 1.05 6.35

APAP [4] (GW) 4.21 2.32 0.53 11.34 0.88 4.81

APAP [4] (SoG) 3.46 2.29 0.39 8.53 0.73 5.18

APAP [4] (PCA) 3.96 2.77 0.47 9.14 0.88 6.06

Linear regression 2.49 1.79 0.80 4.94 1.02 3.29

SIIE [3] 4.71 3.37 0.99 9.98 1.55 7.50

Quasi U CC [10] 3.94 2.66 0.71 9.16 1.21 5.71

Quasi U CC finetuned [10] 2.55 1.55 0.56 6.15 0.84 3.03

FC4 [32] 2.14 1.64 0.69 4.38 1.15 2.67

FFCC [9] 2.51 2.05 0.80 4.95 1.20 3.20

Ours (200 params) 1.73 1.29 0.37 3.75 0.70 2.32

Ours (470 params) 0.94 0.69 0.17 2.14 0.31 1.24

Ours (1460 params) 1.08 0.71 0.16 2.57 0.27 1.47

Table 3: Angular errors on the main camera from our S20

two-camera dataset. Best results are in bold.

smartphones with two rear-facing cameras. Our method re-

quires access to the raw-RGB images from both cameras.

The Samsung S20 Ultra is one smartphone we found that

has the desired camera configuration and allows saving to

the raw format. The S20 Ultra is equipped with a wide-

angle rear-facing camera that provides a larger field of view

than the main camera. The two camera sensors are differ-

ent: the main camera is a Samsung HM1 sensor (108 MP,

3x3 Nonacell, 0.8µm pitch), while the second camera is a

Samsung S5K2L3SX sensor (12 MP, 1.4µm pitch). While

we do not have access to the sensors’ CFA spectral sensitiv-

ities, it is easy to verify the CFAs are different by observing

a color checker chart under the same controlled illumination

and plotting the responses. See Fig. S1 of supplemental for

more details on how we validate that the spectral sensitivi-

ties of the two cameras are different. We used image pairs

from the main camera and the wide-angle camera for our

experiments. We developed a simple Android application

with the aid of the Camera2 API [30] to save the raw-DNG

files from both cameras with a single button press. To obtain

the ground truth, a Macbeth color chart was placed in every

scene. For ease of ground truth labelling, we used a custom

rig (see Fig. 8) that allows the color chart to be placed at a

fixed position relative to the camera. This ensures that the

color chart always occupies a fixed spatial location in the

captured images. We collected a total of 156 image pairs,

spanning a diverse range of lighting conditions and scene

content. Some representative examples from our dataset are

shown in Fig. 8. Fig. 5(C) shows a plot of the distribu-

tion of the ground truth illuminants for the two cameras. It

is clear from the spread in the distribution that our working

assumption of two-camera systems having different spectral

profiles can likely hold true on real data.

As a preprocessing step, the raw-DNG images from our

dataset were demosaiced and the black level was adjusted.

The ground truth illumination was also extracted from the

color chart. Since the field of view is different between the

two cameras, before downsampling, we registered the im-

ages using a fixed pre-computed homography as described
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(A) Raw-RGB input (B) SIIE [3] (C) Quasi U CC tuned [10] (D) FC4 [32] (F) Ours (G) Ground truth
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0.16°

AE

8.87°
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6.74°
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9.50°

AE

6.00°

(E) FFCC [9]

Figure 9: Qualitative results from our real dataset. (A) Input raw-RGB image. (B-F) Results of [3, 10, 32, 9], and our method,

respectively, after correcting the input images using the estimated illuminants. (G) Result of correcting using the ground truth

illuminant. A gamma has been applied to the raw-RGB images in (A) for illustration. The results in the remaining columns

have been rendered to the sRGB color space using [2] to aid visualization. Black boxes are used to mask out the color charts.

in Section 3.1. We then computed the transformation for

each image pair. Data augmentation was performed as be-

fore to generate a total of 15600 image pairs.

The results on our real dataset are presented in Table 3.

Three-fold cross validation was used as before, and train-

ing data was augmented for all learning-based methods.

As a baseline comparison, we applied a linear regression

model in place of our trained network. As seen from Ta-

ble 3, linear regression yields good results, but our small

network performs better because of non-linearities. Results

for [3, 32, 9] were computed in the same manner as in Sec-

tion 4.2. For [10], we fine-tuned the model for each fold

using the parameters recommended by the authors. It can

be observed that our model with just 200 parameters out-

performs all competitors, including FC4 and FFCC. A few

qualitative results, along with comparisons, are presented

Dataset Method Mean Med B25% W25%

Real
Ours w/o 2.11 1.46 0.61 4.65

Ours 1.73 1.29 0.37 3.75

NUS
Ours w/o 4.74 2.61 0.66 12.47

Ours 2.39 1.44 0.46 5.95

Table 4: The results of our method with and without (w/o)

data augmentation. All models shown have 200 parameters

and were trained with a learning rate of 10−3. Best results

are in bold.

in Fig. 9. Table 4 reports results of training without and

with our data augmentation technique. It is evident from

the results that our augmentation framework improves per-

formance.

5. Conclusion

In this work, we take advantage of the availability of

two rear-facing cameras, commonly used in modern smart-

phone design, to perform illumination estimation. Our ap-

proach leverages the differences in the sensor’s spectral pro-

file between these two cameras. In particular, we trained a

lightweight neural network to estimate the scene illumina-

tion based on a 3×3 linear color transform that maps be-

tween the two cameras’ colors. We demonstrated state-of-

the-art illuminant estimation performance over contempo-

rary single-image methods through extensive experiments

on radiometric data, a quasi-real two-camera dataset gen-

erated from an existing single-camera dataset, and a real

dataset that we captured using a two-camera smartphone.

We believe our work may lead to design changes regarding

how current camera devices perform illuminant estimation,

leveraging the ubiquity of multi-camera devices. Our code,

datasets involving radiometric, quasi-real, and real images

from the S20 smartphone, and our trained models will be

publicly released to the community. We hope our findings

will spur further innovation in smartphone imaging through

ideas that leverage multiple cameras.
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