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Abstract

We propose a framework for sequence-to-sequence con-

trastive learning (SeqCLR) of visual representations, which

we apply to text recognition. To account for the sequence-

to-sequence structure, each feature map is divided into dif-

ferent instances over which the contrastive loss is com-

puted. This operation enables us to contrast in a sub-word

level, where from each image we extract several positive

pairs and multiple negative examples. To yield effective vi-

sual representations for text recognition, we further suggest

novel augmentation heuristics, different encoder architec-

tures and custom projection heads. Experiments on hand-

written text and on scene text show that when a text decoder

is trained on the learned representations, our method out-

performs non-sequential contrastive methods. In addition,

when the amount of supervision is reduced, SeqCLR sig-

nificantly improves performance compared with supervised

training, and when fine-tuned with 100% of the labels, our

method achieves state-of-the-art results on standard hand-

written text recognition benchmarks.

1. Introduction

Contrastive learning techniques for self-supervised rep-

resentation learning have recently demonstrated significant

improvements on several semi-supervised computer vision

applications, including image classification, object detec-

tion, and segmentation [9, 27, 18, 8, 26, 52, 10, 60, 49]. As

illustrated in Fig. 1(a) contrastive learning is performed by

maximizing agreement between representations of differ-

ently augmented views of the same image and distinguish-

ing them from representations of other dataset images.

Despite obvious advantages, unsupervised and semi-

supervised schemes have hardly been explored for text

∗Authors contribute equally and are listed in alphabetical order.
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Figure 1: Sequence contrastive learning. (a) Current con-

trastive methods compare representations computed from

whole images. (b) We propose a sequence-to-sequence ap-

proach, by viewing the feature map as a sequence of sep-

arate representations. This is useful in text recognition,

where words are composed of sequences of characters.

recognition ([25, 68, 34]). For example, currently, most

handwritten text recognition approaches still rely on fully

supervised learning, requiring large amounts of annotated

data. The reason for this is simple: current contrastive

schemes for visual representation learning are tailored to-
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wards tasks such as object recognition or classification,

where images are atomic input elements. For example, in

image classification, positive examples are created by aug-

menting each image while all other images in the dataset are

assumed to be negative (Fig. 1(a)). On the other hand, for

sequential prediction as used in text recognition, a word is

viewed as a sequence of characters, and thus the image of a

word is best modeled as a sequence of adjacent image slices

(frames), each one of which may represent a different class

as depicted in Fig. 1(b). Thus, the standard ‘whole image’

contrastive learning approach is inadequate for this task.

We propose an approach that extends existing contrastive

learning methods to sequential prediction tasks such as text

recognition. The key idea is to apply contrastive learning

to the individual elements of the sequence, while main-

taining information about their order. To do so, we intro-

duce an instance-mapping function that yields an instance

from every few consecutive frames in a sequence feature

map. The instance is the atomic element that will be used

in contrastive learning. A given image, depending on its

width, may produce an arbitrary number of instances. This

enlarges the number of negative examples in every batch

without requiring a memory bank [27] or architecture mod-

ifications [2]. Individual instances are part of a sequence,

thus we design an augmentation procedure that ensures a

sequence-level alignment, which is crucial for yielding ef-

fective representations (Fig. 2).

We validate our method experimentally, comparing its

performance with non-sequential contrastive approaches on

several handwritten and scene text datasets. To evaluate the

quality of the learned visual representation, we lay out a de-

coder evaluation protocol that extends the widely-used lin-

ear evaluation criteria [67, 37] for encoder-decoder based

networks. Utilizing this evaluation, we demonstrate sig-

nificant improvements over current contrastive learning ap-

proaches. Furthermore, we find that our method outper-

forms supervised training methods with limited amounts of

labeled training data, and it achieves state-of-the-art results

on standard handwritten datasets, reducing the word error

rate by 9.5% on IAM and by 20.8% on RIMES.

To summarize, the key contributions of our work are:

• A contrastive learning approach for visual sequence-

to-sequence recognition.

• Viewing each feature map as a sequence of individual

instances, leading to contrastive learning in a sub-word

level, such that each image yields several positive pairs

and multiple negative examples.

• Defining sequence preserving augmentation proce-

dures, and custom projection heads.

• Extensive experimental validation showing state-of-

the-art performance on handwritten text.

Vertical
Crop

f(·)
Flip

Input
Image , , ,f(·) , , ,f(·) , , ,

Figure 2: Sequence preserving augmentations. We pro-

pose an augmentation procedure which meets the sequential

structure of the feature map. For example, as opposed to

vertical cropping, horizontal flipping results in a sequence-

level misalignment which leads to poor positive pairing.

2. Related Work

Visual representation learning Unsupervised represen-

tation learning has recently achieved success, not only in

natural language processing [48, 44, 16, 50, 51] and speech

recognition [4, 32, 63], but also in computer vision. The

first methods suggested learning visual representations by

training the network on an artificially designed pretext task,

such as denoising auto-encoders [61], patch ordering [17],

colorizing an image [67], and others [46, 20].

In this paper, we focus on the contrastive learning ap-

proach, which has recently shown promising results on sev-

eral tasks [30, 29, 2, 9, 18, 27, 10, 8, 52]. In this method, we

maximize agreement between representations of differently

augmented views of the same data and contrast between

representations coming from different images [2]. This pro-

cess may be viewed as a classification task where each im-

age is assumed to be its own class.

Several papers explored this approach, introducing sev-

eral advances over the base contrastive scheme. The authors

in [9] proposed an augmentation pipeline and an additional

projection head which maps the representations into space

where the contrastive loss is applied. In [27] a momentum-

based contrastive scheme was suggested, and [10] included

a teacher-student distillation phase. Additional papers [26,

52, 60, 49] introduced contrastive learning schemes for ac-

tion classification of sequential inputs and non-sequential

outputs. Motivated by these papers, we expand the con-

trastive learning framework to visual sequence-to-sequence

predictions as in text recognition.

Un- and semi-supervised learning for text recognition

Despite clear advantages, currently, most text recognition

methods do not utilize unlabeled real-world text images.

Specifically, handwritten recognition usually relies on fully-

supervised training [64, 59], while scene text models are

trained mostly on synthetic data [3, 38]. That said, [68]

and [34] have recently suggested domain adaptation tech-

niques to utilize an unlabeled dataset along with labeled

data. Using adversarial training, these methods align the
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Figure 3: Typical text recognition architecture. Visualization of an example flow of a text recognition architecture (a), as

described in Section 3. After the input text image is normalized, we extract a sequence of visual features from it, where each

frame is associated with a different receptive field of the input image (b). Then, these visual representations go through a

sequence modeling (LSTM scheme), and finally are decoded using a CTC (c) or an attention (d) decoder.

feature map distributions of both datasets.

For images of printed text, [25] recently proposed a com-

pletely unsupervised scheme in which a discriminator en-

forces the predictions to align with a distribution of a given

text corpus. Nevertheless, this method requires restricting

the recognizer architecture to use only local predictions.

To our best knowledge, our method is the first self-

supervised representation learning for text recognition, and

it further leads to state-of-the-art results on handwritten text.

3. Text Recognition Background

Several architectures have been proposed over the years

for recognition of scene text [40, 12, 53] and handwritten

text [58, 43]. Throughout this work, we focus on a general

text recognition framework, which was proposed by [3].

This framework describes the building blocks of many text

recognizers, including [54, 57, 55, 56, 39, 62, 13, 14, 7, 68,

38, 19, 64]. As shown in Fig. 3, this architecture consists of

the following four stages (see more details in Appendix A):

1. Transformation: A normalization of the input text

image using a Thin Plate Spline (TPS) transforma-

tion [56, 39], which is a variant of the spatial trans-

former network [31]. This stage is optional yet impor-

tant for images of text in diverse shapes.

2. Feature extraction: A convolutional neural network

(CNN) that extracts features from the normalized im-

age, followed by a map-to-sequence operation that re-

shapes the features into a sequence of frames, denoted

by V = [v1,v2, . . . ,vT ]. As illustrated in Fig. 3(b),

the resulting frames correspond to different receptive

fields in the image. Note that the sequence length de-

pends on the width of the input image.

3. Sequence modeling: An optional Bidirectional LSTM

(BiLSTM) scheme which aims to capture the contex-

tual information within the visual feature sequence.

This network yields the contextual features H =
[h1,h2, . . . ,hT ], which in turn, are concatenated to

the feature map V, as suggested in [38].

4. Prediction: A text decoder using (i) a connection-

ist temporal classification (CTC) decoder [21] that de-

codes separately each frame, and then deletes repeated

characters and blanks (Fig. 3(c)); or (ii) an attention

decoder [14, 56], which linearly combines the frames

to feed them into a one-layer LSTM (Fig. 3(d)).

4. Sequence-to-Sequence Contrastive Learning

Inspired by self-supervised methods for visual represen-

tation learning [9, 18, 27, 10, 8], we propose a contrastive

learning framework for sequence-to-sequence visual recog-

nition. To do so, we introduce a novel instance-mapping

stage that yields a separate instance from every few consec-

utive frames in the sequential feature map. These instances

then serve as the atomic elements in the contrastive loss. We

further design an augmentation procedure that maintains the

sequential structure (Fig. 2) which, as demonstrated in Sec-

tion 5, is crucial for yielding effective representations.

As depicted in Fig. 4, we suggest a framework consisting

of the following five building-blocks:

1. A stochastic data augmentation module that is de-

signed to ensure a sequence-level alignment. This

operation transforms any given image Xi in a batch

of N images, into two augmented images X
a
i
,Xb

i
∈

R
C×H×Wi , where C denotes the number of input

channels, H the image height, and Wi the width of

each image which may vary.

2. A base encoder f(·) consisting of several blocks of

the recognizer scheme (Fig. 3(a)). For each pair of

augmented images, this component extracts a pair of

sequential representations, Ra
i
,Rb

i
∈ R

F×Ti , where
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Figure 4: SeqCLR block diagram. Each image in a batch is augmented twice, and then fed separately into a base encoder and

projection head, to create pairs of representation maps. Next, to account for the sequential structure of these representations,

we apply an instance-mapping function (see also Fig. 5) that transforms them into several instances and thus allows us to

apply contrastive learning at a sub-word level.

(c) Frame-to-instance (b) Window-to-instance (a) All-to-instance

m(·) = Avg(·) m(·) = AdaptiveAvgPooling(·) m(·) = identity(·)

, , , ,, , ,

P
Figure 5: Instance-mapping function. This function

yields separate instances for the contrastive loss out of each

(possibly projected) feature map. The all-to-instance map-

ping (a) averages all the frames and thus improves robust-

ness to sequence-level misalignment. On the other hand,

the frame-to-instance alternative (c) maps each frame to a

separate instance, which enlarges the number of negative

examples. The window-to-instance mapping (b) represents

a trade-off between these options.

F is the feature dimension, and Ti is the number of

frames (columns) that depends on the image width.

3. An optional projection head g(·), that transforms the

representations using a small auxiliary network, as

in [9]. We suggest new projection head types that can

handle varying sequence sizes, and denote this stage

output by P
a
i
,Pb

i
∈ R

F
′×Ti , where F ′ is the feature

dimension after the projection.

4. A novel instance-mapping function m(·) is utilized be-

fore the contrastive loss to yield T ′
i

instances out of Ti

projected frames, as illustrated in Fig. 5. These in-

stances are then used as the atomic elements in the

contrastive loss. Next, we collect all the instances in

the batch into two aligned sets Za,Zb, each of size
∑N

i=1 T
′
i
, such that corresponding indices refer to cor-

responding frames of the same input image.

5. A contrastive loss function as in [9, 27, 18], that aims

to pull closer together representations of correspond-

ing indices of Za,Zb, i.e. positive pairs, and to push

all the others, i.e. negative examples, farther apart:

L(Za,Zb) =
∑

r∈|Za|

ℓNCE

(

z
a

r , z
b

r; Z
a ∪ Zb

)

+
∑

r∈|Zb|

ℓNCE

(

z
b

r, z
a

r ; Z
a ∪ Zb

)

, (1)

where ℓNCE is the noise contrastive estimation (NCE)

loss function [47] with a temperature parameter τ :

ℓNCE(u
a,ub;U) = − log

exp
(

sim(ua,ub)/τ
)

∑

u∈U\ua exp (sim(ua,u)/τ)
.

As in [9], for the similarity operator we use the cosine

distance, sim(v,u) = v
T
u/ ‖v‖ ‖u‖.

We now detail each of these components.

Data augmentation As pointed out in [10, 11, 2], the

augmentation pipeline plays a key part in the final qual-

ity of the learned visual representations. Current stochastic

augmentation schemes [9] are mostly based on aggressive

cropping, flipping, color distortions, and blurring. These

schemes cannot properly serve the task of text recogni-

tion, as they often render the text in the image unreadable.

For example, we should refrain from aggressive horizontal

cropping as this might cut out complete characters.

In addition, these augmentation compositions were tai-

lored for tasks as object recognition or classification, where

images are atomic input elements in the contrastive loss.

However, since in our framework individual instances are

part of a sequence, we design an augmentation procedure

that ensures sequence-level alignment. Therefore, we avoid

transformations such as flipping, aggressive rotations, and

substantial horizontal translations. Figure 6 depicts differ-

ent augmentation types considered in this work, including

vertical cropping, blurring, random noise, and different per-

spective transformations.

Base encoder The encoder extracts sequential represen-

tations from the augmented images Xa
i
,Xb

i
. While in most
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Input Image
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Linear Contrast Gaussian Blur Vertical Crop Horizontal CropAffine TransformationNoise Vertical Gradient

(a) Light augmentations 

Flip Left-Right Flip Up-DownSharpen

(b) Mild augmentation (c) Severe augmentations

Figure 6: Considered augmentations. Examples of different augmentation types considered in this work, illustrated on

three datasets: (1)-IIT5k, (2)-IAM and, (3)-RIMES. As discussed in Section 4, while flipping and aggressive horizontal

cropping are fundamental augmentations in learning visual representations for classification, they should be avoided for text

recognition training as they cause sequence-level misalignment which leads to poor contrastive learning.

contrastive learning schemes the identity of the representa-

tion layer is pretty clear – usually the visual backbone out-

put [9, 18], in text recognition there are different options. In

particular, we consider two candidates as the sequential rep-

resentations Ri ∈ R
F×Ti , where each option defines f(·)

as the text recognizer scheme (Fig. 3) up to this stage:

1. The visual features, Ri = Vi.

2. The contextual feature map, Ri = Hi, which better

captures contextual information within the sequence.

Projection head The representations are optionally trans-

formed by a projection head, Pi = g(Ri), which is a small

auxiliary neural network that is discarded entirely after the

pre-training stage. As indicated in [9, 10], this mapping im-

proves the quality of the learned representations.

Currently, a commonly used projection head is the mul-

tilayer perceptron (MLP) [9, 10]; however, it can only ac-

commodate fixed-size inputs and thus cannot serve text im-

ages. Therefore, we propose two new projection heads in

light of the instance-mapping functions defined below: an

MLP projection head that operates on each frame indepen-

dently as the frame-to-instance mapping (Fig. 5(c)), and a

BiLSTM projection head for improving contextual informa-

tion in the others mappings (Fig. 5(a,b)).

Instance-mapping Previous work [9, 18, 27, 2] consid-

ered images as atomic input elements in the contrastive loss.

Therefore, each projected map was vectorized to a single in-

stance, zi = flatten(Pi). However, the inputs and the fea-

ture maps in text recognition are of varying sizes and thus

cannot be handled by the flatten operator. More importantly,

in text recognition the feature maps have a sequential struc-

ture and thus do not represent a single class. Therefore, we

propose to view every few consecutive frames in the feature

map as an atomic input element for the contrastive loss.

We propose two approaches for creating individual in-

stances out of sequential feature maps of varying sizes.

In the first approach, we transform every fixed number of

frames into separate instances, for example, by averaging

each W consecutive frames. In the second approach, we

fix the number of instances created out of each image, for

example, by using adaptive average pooling.

In particular, as depicted in Fig. 5, we consider three

instance-mapping functions as specifications of these ap-

proaches, which extract T ′
i

instances out of Ti given frames:

1. All-to-instance: All the frames in a sequential fea-

ture map are averaged to a single instance, m(P) =
Avg(P), resulting in sets Za,Zb of N instances each.

2. Window-to-instance: Create an instance out of every

few consecutive frames. We choose to fix the number

of instances and use adaptive average pooling to ob-

tain T ′ instances. Thus, this operation results in sets

Za,Zb of size N · T ′ each.

3. Frame-to-instance: Each frame is considered as a

separate instance, T ′
i
= Ti, resulting in sets of size

∑N

i=1 Ti, which depend on the input sizes.

Averaging over frames compensates for sequence-level

misalignment, which is especially needed for dealing with

text written in arbitrary shapes as in scene text images

(see Section 5.1 below). On the other hand, this opera-

tion reduces the number of negative examples in each batch,

which, as demonstrated in [9, 27], can deteriorate the qual-

ity of the learned representation. In this vein, the window-

to-instance mapping represents the trade-off between mis-

alignment robustness and sample efficiency. Note, however,

that there are other components in our framework that can

also handle this misalignment, such as the BiLSTM projec-

tion head and the sequence modeling in the base encoder.

5. Experiments

In this section, we experimentally examine our method,

comparing its performance with the non-sequential SimCLR

method [9] on several handwritten and scene text datasets.

For this goal, we first consider a decoder evaluation proto-

col, which is an analog to the linear evaluation procedure

([67, 37]) for encoder-decoder based networks. Then, we

test our models in semi-supervised settings in which we

fine-tune a pre-trained model with limited amounts of la-

beled training data. Finally, we find that when fine-tuned
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Method Decoder

Handwritten Dataset Scene-Text Dataset

IAM RIMES CVL IIT5K IC03 IC13

Acc ED1 Acc ED1 Acc ED1 Acc ED1 Acc ED1 Acc ED1

SimCLR [9]

CTC

4.0 16.0 10.0 20.3 1.8 11.1 0.3 3.1 0.0 1.0 0.3 5.0

SimCLR Contextual 6.0 17.2 13.4 25.8 7.1 17.8 1.1 4.0 2.0 2.9 1.5 6.3

SeqCLR All-to-instance 34.4 60.9 59.0 80.0 55.2 73.4 20.4 42.8 24.2 49.7 24.4 51.3

SeqCLR Frame-to-instance 29.4 53.1 57.5 77.5 64.3 76.0 3.0 11.4 4.6 12.3 4.9 17.5

SeqCLR Window-to-instance 39.7 63.3 63.8 81.8 66.7 77.0 35.7 62.0 43.6 71.2 43.5 67.9

SimCLR [9]

Attention

16.0 21.2 22.0 28.3 26.7 30.6 2.4 3.6 3.7 4.3 3.1 4.9

SimCLR Contextual 17.8 23.1 34.3 40.6 34.3 38.0 3.6 5.0 4.4 5.4 3.9 6.7

SeqCLR All-to-instance 51.6 65.0 77.9 85.8 73.1 75.3 37.3 51.8 48.0 62.2 45.8 60.4

SeqCLR Frame-to-instance 46.6 56.6 76.6 84.5 73.5 75.9 15.3 23.7 20.8 28.7 21.4 30.6

SeqCLR Window-to-instance 51.9 63.6 79.5 86.7 74.5 77.1 49.2 68.6 63.9 79.6 59.3 77.1

Table 1: Representation quality. Accuracy (Acc) and single edit distance (ED1) of the decoder evaluation – an analog of the

linear evaluation for encoder-decoder networks, in which we train a decoder with labeled data on top of a frozen encoder that

was pre-trained on unlabeled images. We compare our SeqCLR method of different instance-mapping functions (Fig. 5) with

the non-sequential method SimCLR [9]. Averaging frames in the feature map, as in all-to-instance and window-to-instance

mappings, is especially important in scene-text recognition. Table 2 below presents semi-supervised performance, while

Table 3 shows state-of-the-art results in handwritten datasets.

on the entire labeled data, our method achieves state-of-the-

art results on standard handwritten datasets.

Datasets We conduct our experiments on several public

datasets of handwritten and scene text recognition. For

handwriting we consider the English datasets IAM [42] and

CVL [36], and the French dataset RIMES [23]. For scene

text, we train on the synthetic dataset SyntText [24], and

test on three real world datasets: IIT5K [45], IC03 [41] and

IC13 [35]. We present samples from each dataset and in-

clude more details on the datasets in Appendix C.

Metrics To evaluate performance, we adopt the metrics of

word-level accuracy (Acc) and word-level accuracy up to

a single edit distance (ED1). For the state-of-the-art com-

parison in handwriting in Table 3, we employ the Character

Error Rate (CER) and the Word Error Rate (WER) [59, 68].

Contrastive learning configurations While in Section 6

we examine each component in our framework, in this sec-

tion we limit ourselves to the best configuration found for

each instance-mapping function (Fig. 5): all-to-instance,

frame-to-instance and window-to-instance with T ′ = 5.

In all of these schemes, the augmentation pipeline consists

of linear contrasting, blurring, sharpening, horizontal crop-

ping and light affine transformations, as further detailed in

Appendix B, including examples and pseudo-code. The

base encoder contains a sequential modeling, i.e. R = H,

and τ = 0.5. Since in such a base encoder the projec-

tion head might be redundant (see Section 6), we maximize

over having and discarding a projection head. To compare

our method to non-sequential contrastive learning, we re-

implement the SimCLR scheme [9] where the visual fea-

tures are the representation layer (R = V). For a fair

comparison, we consider also SimCLR Contextual where

the representation layer is the contextual features (R = H).

Additional implementation details are described in Ap-

pendix D, including the recognizer settings and the proce-

dures for pre-training, decoder evaluation and fine-tuning.

5.1. Decoder evaluation

We start our experimental study by evaluating the qual-

ity of the learned visual representation. To this end, we

establish a decoder evaluation protocol that extends the

widely-used linear evaluation protocol [67, 37] to encoder-

decoder based networks. In this protocol, we first train a

base-encoder f(·) on the unlabeled data, using some self-

supervised method. Then, we freeze the encoder weights

and train on top of it a CTC or an attention decoder

(Fig. 3(c,d)) with all the labeled data. Since we keep the

encoder untouched, this test can be seen as a proxy to the

representation learning efficiency.

Table 1 shows the results of our proposed SeqCLR

method, compared with vanilla SimCLR [9] and SimCLR

Contextual, over public datasets of handwritten and scene

text benchmarks, with either a CTC or an attention decoder

(Fig. 3(c,d)). As discussed, current contrastive methods for

visual representations are designed for tasks such as classi-

fication and object detection, where images are atomic input

elements. However, in text recognition, a word is viewed as

a sequence of characters, and therefore, the standard ’whole

image’ concept leads to poor performance. Specifically,

the augmentation procedure considered in [9, 27] usually

breaks the sequential structure of the input text image. In

addition, in these prior papers, the feature map is treated

as a single representation, whereas in text recognition, it is

eventually decoded as a sequence of representations.

The comparison between the different instance-mapping

functions demonstrates that the best results are achieved by

the window-to-instance mapping (Fig. 5(b)). As can be

seen, the frame-to-instance mapping, which does not av-
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Method Decoder

Handwritten Dataset Scene-Text Dataset

IAM RIMES CVL IIT5K IC03 IC13

Label fraction Label fraction

5% 10% 100% 5% 10% 100% 5% 10% 100% 100% 100% 100%

Supervised Baseline

CTC

21.4 33.6 75.2 35.9 59.7 86.9 48.7 63.6 75.6 76.1 87.9 84.3

SimCLR [9] 15.4 21.8 65.0 36.5 52.9 84.5 52.1 62.0 74.1 69.1 83.4 79.4

SimCLR Contextual 20.4 27.8 63.7 48.6 55.6 84.4 51.8 62.3 74.1 64.5 81.7 78.1

SeqCLR All-to-instance 27.5 44.8 76.7 50.4 66.4 89.1 60.1 69.4 76.9 74.7 88.2 83.2

SeqCLR Frame-to-instance 31.2 44.9 75.1 61.8 71.9 90.1 66.0 71.0 77.0 69.8 84.2 81.8

SeqCLR Window-to-instance 26.2 42.1 76.7 56.6 62.5 89.6 61.2 69.7 76.9 80.9 89.8 86.3

Supervised Baseline

Attention

25.7 42.5 77.8 57.0 67.7 89.3 64.0 72.1 77.2 83.8 91.1 88.1

SimCLR [9] 22.7 32.2 70.7 49.9 60.9 87.8 59.0 65.6 75.7 77.8 88.8 84.9

SimCLR Contextual 24.6 32.9 70.2 51.9 63.0 87.3 59.7 66.2 75.2 72.2 87.0 82.3

SeqCLR All-to-instance 40.3 51.6 79.8 69.7 76.9 92.5 69.5 73.2 77.6 80.9 90.0 87.0

SeqCLR Frame-to-instance 37.2 48.5 78.2 68.8 75.9 92.3 69.7 73.4 77.5 76.3 90.2 85.8

SeqCLR Window-to-instance 38.1 52.3 79.9 70.9 77.0 92.4 73.1 74.8 77.8 82.9 92.2 87.9

Table 2: Semi-supervised results. Accuracy of fine-tuning a pre-trained model with 5%, 10% and 100% of the labeled data.

For scene-text datasets we test only for 100% as the data is anyhow synthetic. As presented in Table 3, our method achieves

state-of-the-art results on handwritten datasets.

Dataset Method WER CER Average

IAM

Bluche et al. [5] 24.7 7.3 16.00

Bluche et al. [6] 24.6 7.9 16.25

Sueiras et al. [59] 23.8 8.8 16.30

ScrabbleGAN [19] 23.6 - -

SSDAN* [68] 22.2 8.5 15.35

SeqCLR 20.1 9.5 14.80

RIMES

Alonso et al. [1] 11.9 4.0 7.95

ScrabbleGAN [19] 11.3 - -

Chowdhury et al. [15] 9.6 3.4 6.55

SeqCLR 7.6 2.6 5.5

Table 3: SOTA error rates. Word and character error rates

(WER and CER) of our method compared to current state-

of-the-art word-level methods on IAM and RIMES datasets.

’*’ indicates using the unlabeled test set for training.

erage consecutive frames, performs poorly on scene text

images. These images are prone to sequence-level mis-

alignment by even mild augmentations, as they contain text

that already comes in diverse shapes. On the other hand,

the all-to-instance mapping, which averages all the frames,

significantly reduces the number of negative examples in

each batch, which in turn, also affects performance. The

window-to-instance mapping succeeds in balancing these

concerns and therefore leads to better performance.

5.2. Fine­tuning

We further evaluate our method by considering semi-

supervised settings. We use the same encoders as before,

which were pre-trained on the unlabeled data, but now let

the whole network be fine-tuned using 5% or 10% of the

labeled dataset. Contrary to prior work [66, 9], which con-

sider class-balanced datasets, we simply use the same ran-

domly selected data for all the experiments. We also test for

fine-tuning on the entire labeled data, as suggested in [9].

Note that this is the only evaluation we examine for scene

text recognition, as the training dataset is anyhow synthetic

in this case.

As opposed to the decoder evaluation, here, the goal is to

achieve the best results and not just qualify the learned rep-

resentations. Therefore, contrary to the decoder evaluation,

in the fine-tuning phase, one can attach additional layers

besides the decoder on top of the encoder. That said, we

only attach a text decoder (CTC or attention), as the base

encoder in the following experiments already contains a se-

quence modeling.

Table 2 compares our method with SimCLR [9], Sim-

CLR Contextual and supervised baseline training. As can

be seen, in the case of text recognition, pre-training us-

ing non-sequential contrastive learning schemes often leads

to deterioration in performance compared to the supervised

baseline. SeqCLR, on the other hand, achieves better per-

formance for every semi-supervised scenario and on every

handwritten dataset. In particular, the window-to-instance

mapping performs the best for the attention decoder, while

the frame-to-instance alternative is superior when using the

CTC decoder. This is an interesting result that might indi-

cate that frame-to-instance better fits the CTC decoder as

they both operate on individual frames of the feature map.

In the case of fine-tuning on 100% of the labeled data, al-

though our method does not use any additional data, it still

succeeds in significantly improving the results of the fully

supervised baseline training on handwritten datasets. In

particular, our method gains an improvement of +1.9% on

average for the CTC decoder and +1.7% on average for the

attention decoder. In scene text datasets, SeqCLR achieves

an improvement of 2.9% on average for the CTC decoder;

however, it performs the same on average as the supervised

baseline for the attention decoder. The mixed performance

in scene text might be a result of utilizing only synthetic
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Projection head Mapping m(·)
Visual feat. Contextual feat.

CTC Attn CTC Attn

None

All-to-instance

2.0 55.8 55.4 77.9

MLP per frame 29.9 70.3 50.4 72.5

BiLSTM 35.5 70.9 59.0 74.8

None

Frame-to-instance

27.4 56.9 49.9 75.8

MLP per frame 39.9 69.8 57.5 76.6

BiLSTM 37.4 69.9 43.5 64.3

None

Window-to-instance

27.9 67.6 59.9 79.5

MLP per frame 29.9 70.3 50.4 72.5

BiLSTM 35.8 74.0 63.8 75.9

Table 4: Matching projection heads to mappings. Repre-

sentation qualities (decoder evaluation accuracy) of com-

bining different projection heads with instance-mapping

functions (Fig. 5). While BiLSTM head fits the all-to-

instance and window-to-instance mappings, the MLP per

frame performs better with the frame-to-instance mapping.

Figure 7: Horizontal cropping. The effect of horizontal

cropping on the representation learning. This augmentation

affects learning when the representation layer is chosen to

be the visual features (a); however, a light version of it can

help in encoders that contain sequence modeling (b).

data in the representation learning phase.

Notably, as presented in Table 3, SeqCLR using window-

to-instance mapping outperforms the current word-level

state-of-the-art performance on both IAM and RIMES

datasets, even when compared to methods which used the

test-set in their unsupervised training. Note that for a fair

comparison, we only include results that considered the

same test-set and that did not attach a language model.

6. Ablation Study

After studying the effect of the instance-mapping func-

tions, our goal in this section is two-fold. First, to match the

components in our framework, and second, to demonstrate

the importance of maintaining sequence-level alignment by

applying different augmentation procedures.

For evaluating the representation learning in this section,

we adopt the decoder evaluation protocol (Section 5.1) on

the RIMES dataset, considering representation layers of vi-

sual features (R = V) and contextual features (R = H).

Matching the components As shown in Table 4, includ-

ing a sequence modeling in the base encoder (R = H) sig-

nificantly improves the quality of the learned representation

for both CTC and attention decoders. In general, incorpo-

rating a projection head also improves representation effec-

tiveness; however, when utilizing a sequence modeling and

an attention decoder, each containing BiLSTM layers, then

the BiLSTM projection head appears as a redundant com-

ponent. The key message from these experiments is that the

SeqCLR components should be selected dependently.

Sequence-level alignment In text recognition, individual

instances are part of a sequence, and thus, the augmenta-

tion procedure needs to maintain a sequence-level align-

ment (Fig. 2). On the other hand, as suggested in [9, 11],

strong data augmentations contribute to contrastive learn-

ing. The following experiments aim to study this trade-off

and to identify components in our framework that improve

the robustness to sequence-level misalignment.

Figure 7 demonstrates the effect of horizontal cropping

on the representation learning. As observed, having a base

encoder with sequence modeling is crucial for handling

sequence-level misalignment caused by even mild horizon-

tal cropping. Note that such cropping might cut out com-

plete characters from the input text images. This indicates

that during the representation learning, the sequence model-

ing successfully captures contextual information within the

visual features, which compensates for missing visual in-

formation and sequence-level misalignment.

7. Discussion and conclusions

We presented SeqCLR, a contrastive learning algorithm

for self-supervised learning of sequence-to-sequence visual

recognition that divides each feature map into a sequence

of individual elements for the contrastive loss. In order to

take full-advantage of self-supervision, we proposed a num-

ber of sequence-specific augmentation techniques that dif-

fer from whole-image equivalents.

The main take-home lesson is that paying attention to

the task’s structure, i.e. treating an image as a sequence

of frames, pays off. Our experiments show that Seq-

CLR largely outperforms current non-sequential contrastive

learning methods in recognizing handwritten and scene text

images when the amount of supervised training is limited.

Furthermore, our method achieves state-of-the-art perfor-

mance on handwriting – compared with the best methods in

the literature SeqCLR reduces the word error rate by 9.5%

and 20.8% on IAM and RIMES, the standard benchmark

datasets. SeqCLR is the result of careful experimental eval-

uation of different design options, including different aug-

mentation compositions, encoder architectures, projection

heads, instance-mapping functions, and decoder types.

The success of SeqCLR will hopefully encourage other

researchers to explore semi-supervised and self-supervised

schemes for text recognition, as well as contrastive learning

algorithms for different sequence-to-sequence predictions.
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[23] Emmanuèle Grosicki and Haikal El Abed. Icdar 2009 hand-

writing recognition competition. In 2009 10th International

Conference on Document Analysis and Recognition, pages

1398–1402. IEEE, 2009. 6, 13
[24] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.

Synthetic data for text localisation in natural images. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 2315–2324, 2016. 6, 13
[25] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.

Learning to read by spelling: Towards unsupervised text

recognition. In Proceedings of the 11th Indian Conference

on Computer Vision, Graphics and Image Processing, pages

1–10, 2018. 1, 3
[26] Tengda Han, Weidi Xie, and Andrew Zisserman. Self-

supervised co-training for video representation learning. In

Neurips, 2020. 1, 2
[27] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

9729–9738, 2020. 1, 2, 3, 4, 5, 6
[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

15310



recognition, pages 770–778, 2016. 14
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