
HistoGAN:

Controlling Colors of GAN-Generated and Real Images via Color Histograms

Mahmoud Afifi Marcus A. Brubaker Michael S. Brown

York University

{mafifi,mab,mbrown}@eecs.yorku.ca

Daniel Chodusov Flickr-CC BY-ND 2.0

Target colors GAN-generated images based on specified histogram feature

Input image Auto-recolored input image without the need to manually specify target histogram

Gertrud K. Flickr-CC BY-NC-SA 2.0

Carl Dunn Flickr-CC BY-NC-SA 2.0

Histograms

Figure 1: HistoGAN is a generative adversarial network (GAN) that learns to manipulate image colors based on histogram

features. Top: GAN-generated images with color distributions controlled via target histogram features (left column). Bottom:

Results of ReHistoGAN, an extension of HistoGAN to recolor real images, using sampled target histograms.

Abstract

While generative adversarial networks (GANs) can suc-

cessfully produce high-quality images, they can be chal-

lenging to control. Simplifying GAN-based image gener-

ation is critical for their adoption in graphic design and

artistic work. This goal has led to significant interest in

methods that can intuitively control the appearance of im-

ages generated by GANs. In this paper, we present His-

toGAN, a color histogram-based method for controlling

GAN-generated images’ colors. We focus on color his-

tograms as they provide an intuitive way to describe im-

age color while remaining decoupled from domain-specific

semantics. Specifically, we introduce an effective modifi-

cation of the recent StyleGAN architecture [31] to control

the colors of GAN-generated images specified by a target

color histogram feature. We then describe how to expand

HistoGAN to recolor real images. For image recoloring,

we jointly train an encoder network along with HistoGAN.

The recoloring model, ReHistoGAN, is an unsupervised ap-

proach trained to encourage the network to keep the origi-

nal image’s content while changing the colors based on the

given target histogram. We show that this histogram-based

approach offers a better way to control GAN-generated and

real images’ colors while producing more compelling re-

sults compared to existing alternative strategies.

1. Motivation and Related Work

Color histograms are an expressive and convenient rep-

resentation of an image’s color content. Color histograms

are routinely used by conventional color transfer methods

(e.g., [18, 40, 46, 56]). These color transfer methods aim to

manipulate the colors in an input image to match those of a

target image, such that the images share a similar “look and

feel”. In the color transfer literature, there are various forms

of color histograms used to represent the color distribution

of an image, such as a direct 3D histogram [18, 46, 56], 2D

histogram [4, 6, 10, 11], color palette [7, 12, 58] or color

7941

triad [52]. Despite the effectiveness of color histograms

for color transfer, recent deep learning methods almost ex-

clusively rely on image-based examples to control colors.

While image exemplars impact the final colors of genera-

tive adversarial network (GAN)-generated images and deep

recolored images, these methods – that mostly target image

style transfer – also affect other style attributes, such as tex-

ture information and tonal values [20, 21, 27, 28, 37, 50, 54].

Consequently, the quality of the results produced by these

methods often depends on the semantic similarity between

the input and target images, or between a target image and

a particular domain [25, 50].

In this paper, our attention is focused explicitly on con-

trolling only the color attributes of images—this can be con-

sidered a sub-category of image style transfer. Specifically,

our method does not require shared semantic content be-

tween the input/GAN-generated images and a target image

or guide image. Instead, our method aims to assist the deep

network through color histogram information only1. With

this motivation, we first explore using color histograms to

control the colors of images generated by GANs.

Controlling Color in GAN-Generated Images GANs

are often used as “black boxes” that can transform samples

from a simple distribution to a meaningful domain distri-

bution without an explicit ability to control the details/style

of the generated images [9, 22, 29, 36, 45]. Recently, meth-

ods have been proposed to control the style of the GAN-

generated images. For example, StyleGAN [30, 31] pro-

posed the idea of “style mixing”, where different latent style

vectors are progressively fed to the GAN to control the style

and appearance of the output image. To transfer a specific

style in a target image to GAN-generated images, an opti-

mization process can be used to project the target image to

the generator network’s latent space to generate images that

share some properties with the target image [1, 31]. How-

ever, this process requires expensive computations to find

the latent code of the target image. Another direction is to

jointly train an encoder-generator network to learn this pro-

jection [13,35,43]. More recently, methods have advocated

different approaches to control the output of GANs, such as

using the normalization flow [2], latent-to-domain-specific

mapping [13], deep classification features [51], few-shot

image-to-image translation [48], and a single-image train-

ing strategy [49]. Despite the performance improvements,

most of these methods are limited to work with a single do-

main of both target and GAN-generated images [35, 43].

We seek to control GAN-generated images using color

histograms as our specified representation of image style.

Color histograms enable our method to accept target images

taken from any arbitrary domain. Figure 1-top shows GAN-

generated examples using our method. As shown in Fig. 1,

1Project page: https://github.com/mahmoudnafifi/HistoGAN

our generated images share the same color distribution as

the target images without being restricted to, or influenced

by, the semantic content of the target images.

Recoloring Real Images In addition to controlling the

GAN-generated images, we seek to extend our approach to

perform image recoloring within the GAN framework. In

this context, our method accepts a real input image and a

target histogram to produce an output image with the fine

details of the input image but with the same color distribu-

tion given in the target histogram. Our method is trained

in a fully unsupervised fashion, where no ground-truth re-

colored image is required. Instead, we propose a novel

adversarial-based loss function to train our network to ex-

tract and consider the color information in the given target

histogram while producing realistic recolored images. One

of the key advantages of using the color histogram represen-

tation as our target colors can be shown in Fig. 1-bottom,

where we can automatically recolor an image without di-

rectly having to specify a target color histogram. Auto-

image recoloring is a less explored research area with only

a few attempts in the literature (e.g., [7, 8, 16, 34, 59]).

2. HistoGAN

We begin by describing the histogram feature used by

our method (Sec. 2.1). Afterwards, we discuss the proposed

modification to the second version of StyleGAN [31] to in-

corporate our histogram feature into the generator network

(Sec. 2.2). Lastly, we explain how this method can be ex-

panded to control colors of real input images to perform

image recoloring (Sec. 2.3).

2.1. Histogram feature

The histogram feature used by HistoGAN is borrowed

from the color constancy literature [4–6, 11] and is con-

structed to be a differentiable histogram of colors in the

log-chroma space due to better invariance to illumination

changes [17, 19]. The feature is a 2D histogram of an im-

age’s colors projected into a log-chroma space. This 2D

histogram is parameterized by uv and conveys an image’s

color information while being more compact than a typical

3D histogram defined in RGB space. A log-chroma space is

defined by the intensity of one channel, normalized by the

other two, giving three possible options of how it is defined.

Instead of selecting only one such space, all three options

can be used to construct three different histograms which

are combined together into a histogram feature, H, as an

h×h× 3 tensor [6] .

The histogram is computed from a given input image,

I, by first converting it into the log-chroma space. For in-

stance, selecting the R color channel as primary and nor-

malizing by G and B gives:

IuR(x) = log
(

IR(x)+ǫ
IG(x)+ǫ

)

, IvR(x) = log
(

IR(x)+ǫ
IB(x)+ǫ

)

, (1)

7942

const

mod-demod conv

+

style vec

to latent

noise

GAN’s block #1

conv

to latent

+ to latent

LReLU

upsample

to latent

LReLU

mod-demod

conv

to latent mod

upsample

noise

to style

(A) Simplified version of StyleGAN’s first block (B) Simplified version of StyleGAN’s last block (C) HistoGAN block

mod-demod conv

+

hist projection

to latent

noise

GAN’s block #

conv

to latent

+ to latent

LReLU

to latent

LReLU

mod-demod

conv

to latent mod+

………

mod-demod conv

+

style vec

to latent

noise

GAN’s block #

conv

to latent

+ to latent

LReLU

to latent

LReLU

mod-demod

conv

to latent mod+

…

Figure 2: We inject our histogram into StyleGAN [31] to control the generated image colors. (A) and (B) are simplified

versions of the StyleGAN’s first and last blocks. We modified the last two blocks of the StyleGAN by projecting our

histogram feature into each block’s latent space, as shown in (C). The parameter m controls the capacity of the model.

where the R,G,B subscripts refer to the color channels

of the image I, ǫ is a small constant added for numeri-

cal stability, x is the pixel index, and (uR, vR) are the

uv coordinates based on using R as the primary chan-

nel. The other components IuG, IvG, IuB , IvB are com-

puted similarly by projecting the G and B color channels

to the log-chroma space. In [6], the RGB-uv histogram

is computed by thresholding colors to a bin and comput-

ing the contribution of each pixel based on the intensity

Iy(x) =
√

I2R(x) + I2G(x) + I2B(x). In order to make the

representation differentiable, [4] replaced the thresholding

operator with a kernel weighted contribution to each bin.

The final unnormalized histogram is computed as:

H(u, v, c) ∝
∑

x

k(Iuc(x), Ivc(x), u, v)Iy(x), (2)

where c ∈ {R,G,B} and k(·) is a pre-defined kernel. While

a Gaussian kernel was originally used in [4], we found that

the inverse-quadratic kernel significantly improved training

stability. The inverse-quadratic kernel is defined as:

k(Iuc, Ivc, u, v) =
(

1 + (|Iuc − u| /τ)2
)−1

×
(

1 + (|Ivc − v| /τ)2
)−1

, (3)

where τ is a fall-off parameter to control the smoothness

of the histogram’s bins. Finally, the histogram feature is

normalized to sum to one, i.e.,
∑

u,v,c H(u, v, c) = 1.

2.2. Colorcontrolled Image Generation

Our histogram feature is incorporated into an architec-

ture based on StyleGAN [31]. Specifically, we modified

the original design of StyleGAN (Fig. 2-[A] and [B]) such

that we can “inject” the histogram feature into the progres-

sive construction of the output image. The last two blocks

of the StyleGAN (Fig. 2-[B]) are modified by replacing the

fine-style vector with the color histogram feature. The his-

togram feature is then projected into a lower-dimensional

Target image

Target image

Target color histogram

Target color histogram

Generated images from

the first blocks

RGB-uv

histogram

RGB-uv

histogram
Generated images from the last two blocks of

HistoGAN

+

+ =

=

Final generated

images

torbakhopper

Flickr-CC BY-ND 2.0

Jeff Hollett

Flickr-Public Domain

Figure 3: Progressively generated images using the Histo-

GAN modifications.

representation by a “histogram projection” network (Fig. 2-

[C]). This network consists of eight fully connected layers

with a leaky ReLU (LReLU) activation function [38]. The

first layer has 1,024 units, while each of the remaining seven

layers has 512. The “to-latent” block, shown in orange in

Fig. 2, maps the projected histogram to the latent space of

each block. This “to-latent” block consists of a single fc

layer with 2nm output neurons, where n is the block num-

ber, and m is a parameter used to control the entire capacity

of the network.

To encourage generated images to match the target color

histogram, a color matching loss is introduced to train the

generator. Because of the differentiability of our histogram

representation, the loss function, C(Hg,Ht), can be any

differentiable metric of similarity between the generated

and target histograms Hg and Ht, respectively. For sim-

plicity, we use the Hellinger distance defined as:

C (Hg,Ht) =
1√
2

∥

∥

∥
H

1/2
g −H

1/2
t

∥

∥

∥

2
, (4)

where ‖ · ‖2 is the standard Euclidean norm and H
1/2 is an

element-wise square root. Note that the Hellinger distance

is closely related to the Bhattacharyya coefficient, B(·),
where C (Hg,Ht) = (1−B (Hg,Ht))

1/2
.

7943

Decoder

H
is
to
G
A
N
’s

H
e
a
d

blocks

noise

Input image Recolored image

latent

Encoder

blocks 2
 b

lo
c
k
s

hist projection

mod-demod conv

to latent

latent

c
o

n
v

maps to the latent dimension of

the HistoGAN’s head

GAN skip

connection

Figure 4: Our Recoloring-HistoGAN (ReHistoGAN) net-

work. We map the input image into the HistoGAN’s la-

tent space using an encoder-decoder network with skip con-

nections between each encoder and decoder blocks. Addi-

tionally, we pass the latent feature of the first two encoder

blocks to our GAN’s head after processing it with the his-

togram’s latent feature.

This color-matching histogram loss function is combined

with the discriminator to give the generator network loss:

Lg = D (Ig) + αC (Hg,Ht) , (5)

where Ig is the GAN-generated image, D (·) is our discrim-

inator network that produces a scalar feature given an im-

age (see supp. materials for more details), Ht is the target

histogram feature (injected into the generator network), Hg

is the histogram feature of Ig , C (·) is our histogram loss

function, and α is a scale factor to control the strength of

the histogram loss term.

As our histogram feature is computed by a set of differ-

entiable operations, our loss function (Eqs. 4 and 5) can

be optimized using SGD. During training, different target

histograms Ht are required. To generate these for each

generated image, we randomly select two images from the

training set, compute their histograms H1 and H2, and then

randomly interpolate between them. Specifically, for each

generated image during training, we generate a random tar-

get histogram as follows:

Ht = δH1 + (1− δ)H2, (6)

where δ ∼ U(0, 1) is sampled uniformly. The motivation

behind this interpolation process is to expand the variety of

histograms during training. This is a form of data augmen-

tation for the histograms with the implicit assumption of the

convexity of the histogram distribution in the target domain

(e.g., face images). We found this augmentation helped re-

duce overfitting to the histograms of the training images and

ensured robustness at test time. We note that this assump-

tion does not hold true for target domains with high diver-

sity where the target histograms span a broad range in the

log-chroma space and can be multimodal (e.g., landscape

images). Nonetheless, we found that even in those cases the

augmentation was still beneficial to the training.

With this modification to the original StyleGAN archi-

tecture, our method can control the colors of generated im-

Pili Rubio Flickr-CC BY-NC 2.0 Hiroyuki Takeda Flickr-CC BY-ND 2.0

w/o variance loss w/ variance lossInput image Target colors

Figure 5: Results of training ReHistoGAN with and without

the variance loss term described in Eq. 9.

ages using our color histogram features. Figure 3 shows the

progressive construction of the generated image by Histo-

GAN. As can be seen, the outputs of the last two blocks are

adjusted to consider the information conveyed by the tar-

get histogram to produce output images with the same color

distribution represented in the target histogram.

2.3. Image Recoloring

We can also extend HistoGAN to recolor an input image,

as shown in Fig. 1-bottom. Recoloring an existing input im-

age, Ii, is not straightforward because the randomly sam-

pled noise and style vectors are not available as they are in

a GAN-generated scenario. As shown in Fig. 3, the head of

HistoGAN (i.e., the last two blocks) are responsible for con-

trolling the colors of the output image. Instead of optimiz-

ing for noise and style vectors that could be used to generate

a given image Ii, we propose to train an encoding network

that maps the input image into the necessary inputs of the

head of HistoGAN. With this approach, the head block can

be given different histogram inputs to produce a wide vari-

ety of recolored versions of the input image. We dub this

extension the “Recoloring-HistoGAN” or ReHistoGAN for

short. The architecture of ReHistoGAN is shown in Fig.

4. The “encoder” has a U-Net-like structure [47] with skip

connections. To ensure that fine details are preserved in the

recolored image, Ir, the early latent feature produced by

the first two U-Net blocks are further provided as input into

the HistoGAN’s head through skip connections. The target

color information is passed to the HistoGAN head blocks

Input image Target colors w/o skip connection ReHistoGAN

Figure 6: Results of image recoloring using the encoder-

GAN reconstruction without skip connections and our Re-

HistoGAN using our proposed loss function.

7944

Target colors Our generated images

Figure 7: Images generated by HistoGAN. For each input image (the left column), we computed the corresponding target

histogram (the upper left corner of the left column) and used it to control colors of the generated images in each row.

as described in Sec. 2.2. Additionally, we allow the target

color information to influence through the skip connections

to go from the first two U-Net-encoder blocks to the His-

toGAN’s head. We add an additional histogram projection

network, along with a “to-latent” block, to project our target

histogram to a latent representation. This latent code of the

histogram is processed by weight modulation-demodulation

operations [31] and is then convolved over the skipped la-

tent of the U-Net-encoder’s first two blocks.

We modified the HistoGAN block, described in Fig. 2,

to accept this passed information (see supp. materials for

more information). The leakage of the target color informa-

tion helps ReHistoGAN to consider information from both

the input image content and the target histogram in the re-

coloring process.

We initialize our encoder-decoder network using He’s

initialization [23], while the weights of the HistoGAN head

are initialized based on a previously trained HistoGAN

model (trained in Sec. 2.2). The entire ReHistoGAN is then

jointly trained to minimize the following loss function:

Lr = βR (Ii, Ir) + γD (Ir) + αC (Hr,Ht) (7)

where R (·) is a reconstruction term, which encourages the

preservation of image structure and α, β, and γ are hyperpa-

rameters used to control the strength of each loss term (see

supp. materials for associated ablation study). The recon-

7945

struction loss term, R (·), computes the L1 norm between

the second order derivative of our input and recolored im-

ages as:

R (Ii, Ir) = ‖Ii ∗ L− Ir ∗ L‖1 (8)

where ∗L denotes the application of the Laplacian opera-

tor. The idea of employing the image derivative was used

initially to achieve image seamless cloning [42], where

this Laplacian operator suppressed image color information

while keeping the most significant perceptual details. In-

tuitively, ReHistoGAN is trained to consider the following

aspects in the output image: (i) having a similar color distri-

bution to the one represented in the target histogram, this is

considered by C (·), (ii) being realistic, which is the goal of

D (·), and (iii) having the same content of the input image,

which is the goal of R (·).
Our model trained using the loss function described in

Eq. 7 produces reasonable recoloring results. However, we

noticed that, in some cases, our model tends to only apply

a global color cast (i.e., shifting the recolored image’s his-

togram) to minimize C (·). To mitigate this behavior, we

added variance loss term to Eq. 7. The variance loss can be

described as:

V (Ii, Ir) = −w
∑

c∈{R,G,B}

|σ (Iic ∗G)− σ (Irc ∗G)|,

(9)

where σ (·) computes the standard deviation of its input (in

this case the blurred versions of Ii and Ir using a Gaus-

sian blur kernel, G, with a scale parameter of 15), and

w = ‖Ht − Hi‖1 is a weighting factor that increases as

the target histogram and the input image’s histogram, Ht

and Hi, become dissimilar and the global shift solution be-

comes more problematic. The variance loss encourages the

network to avoid the global shifting solution by increasing

the differences between the color variance in the input and

recolored images. The reason behind using a blurred ver-

sion of each image is to avoid having a contradiction be-

tween the variance loss and the reconstruction loss—the for-

mer aims to increase the differences between the variance of

the smoothed colors in each image, while the latter aims to

retain the similarity between the fine details of the input and

recolored images. Figure 5 shows recoloring results of our

trained models with and without the variance loss term.

We train ReHistoGAN with target histograms sampled

from the target domain dataset, as described earlier in Sec.

2.2 (Eq. 6). A simpler architecture was experimented ini-

tially, which did not make use of the skip connections and

the end-to-end fine tuning (i.e., the weights of the Histo-

GAN head were fixed). However, this approach gave unsat-

isfactory result, and generally failed to retain fine details of

the input image. A comparison between this approach and

the above ReHistoGAN architecture can be seen in Fig. 6.

Target colors
(Input shape & background

for MixNMatch)

MixNMatch Ours

RGB: KL Div. = 1.37, H dis. = 0.93

RGB-uv: KL Div. = 2.86, H dis. = 0.64

RGB: KL Div. = 0.38, H dis. = 0.66

RGB-uv: KL Div. = 0.42, H dis. = 0.31

RGB: KL Div. = 2.62, H dis. = 0.77

RGB-uv: KL Div. = 0.35, H dis. = 0.27

RGB: KL Div. = 2.23, H dis. = 0.76

RGB-uv: KL Div. = 0.35, H dis. = 0.27

Figure 8: Comparison with the MixNMatch method [35]. In

the shown results, the target images are used as input shape

and background images for the MixNMatch method [35].

3. Results and Discussion

This section discusses our results and comparisons with

alternative methods proposed in the literature for con-

trolling color. Due to hardware limitations, we used a

lightweight version of the original StyleGAN [31] by set-

ting m to 16, shown in Fig. 2. We begin by presenting our

image generation results, followed by our results on image

recoloring. Additional results, comparisons, and discussion

are also available in the supp. materials.

Image Generation Figure 7 shows examples of our

HistoGAN-generated images. Each row shows samples

generated from different domains using the corresponding

input target colors. For each domain, we fixed the style

vectors responsible for the coarse and middle styles to

show our HistoGAN’s response to changes in the target his-

tograms. Qualitative comparisons with the recent MixN-

Match method [35] are provided in Fig. 8.

To evaluate the potential improvement/degradation of

the generated-image diversity and quality caused by our

modification to StyleGAN, we trained StyleGAN [31] with

m = 16 (i.e., the same as our model capacity) without our

histogram modification. We evaluated both models on dif-

ferent datasets, including our collected set of landscape im-

ages. For each dataset, we generated 10,000 256×256 im-

ages using the StyleGAN and our HistoGAN. We evaluated

the generated-image quality and diversity using the Frechét

inception distance (FID) metric [26] using the second max-

pooling features of the Inception model [53].

We further evaluated the ability of StyleGAN to control

colors of GAN-generated images by training a regression

deep neural network (ResNet [24]) to transform generated

7946

Recolored imagesInput image

T
a
rg

e
t

c
o
lo

rs

PaoloJetLag Flickr-CC BY-NC 2.0 Arlene Janner Flickr-Public Domain

Andrea Maria Cannata Flickr-CC BY-NC 2.0

Franklin Samir Dattein Flickr-CC BY-NC 2.0

Andrea Maria Cannata Flickr-CC BY-NC 2.0

Figure 9: Results of our ReHistoGAN. The shown results are after recoloring input images (shown in the left column) using

the target colors (shown in the top row).

Table 1: Comparison with StyleGAN [31]. The term ‘w/ proj.’ refers to projecting the target image colors into the latent

space of StyleGAN. We computed the similarity between the target and generated histograms in RGB and projected RGB-uv
color spaces. For each dataset, we report the number of training images. Note that StyleGAN results shown here do not

represent the actual output of [31], as the used model here has less capacity (m = 16).

Dataset

StyleGAN [31] HistoGAN (ours)

FID RGB hist. (w/ proj.) RGB-uv hist. (w/ proj.)
FID

RGB hist. (w/ proj.) RGB-uv hist. (w/ proj.)

w/o proj. w/ proj. KL Div. H dis. KL Div. H dis. KL Div. H dis. KL Div. H dis.

Faces (69,822) [30] 9.5018 14.194 1.3124 0.9710 1.2125 0.6724 8.9387 0.9810 0.7487 0.4470 0.3088

Flowers (8,189) [41] 10.876 15.502 1.0304 0.9614 2.7110 0.7038 4.9572 0.8986 0.7353 0.3837 0.2957

Cats (9,992) [15] 14.366 21.826 1.6659 0.9740 1.4051 0.5303 17.068 1.0054 0.7278 0.3461 0.2639

Dogs (20,579) [32] 16.706 30.403 1.9042 0.9703 1.4856 0.5658 20.336 1.3565 0.7405 0.4321 0.3058

Birds (9,053) [55] 3.5539 12.564 1.9035 0.9706 1.9134 0.6091 3.2251 1.4976 0.7819 0.4261 0.3064

Anime (63,565) [14] 2.5002 9.8890 0.9747 0.9869 1.4323 0.5929 5.3757 0.8547 0.6211 0.1352 0.1798

Hands (11,076) [3] 2.6853 2.7826 0.9387 0.9942 0.3654 0.3709 2.2438 0.3317 0.3655 0.0533 0.1085

Landscape (4,316) 24.216 29.248 0.8811 0.9741 1.9492 0.6265 23.549 0.8315 0.8169 0.5445 0.3346

Bedrooms (303,116) [57] 10.599 14.673 1.5709 0.9703 1.2690 0.5363 4.5320 1.3774 0.7278 0.2547 0.2464

Cars (16,185) [33] 21.485 25.496 1.6871 0.9749 0.7364 0.4231 14.408 1.0743 0.7028 0.2923 0.2431

Aerial Scenes (36,000) [39] 11.413 14.498 2.1142 0.9798 1.1462 0.5158 12.602 0.9889 0.5887 0.1757 0.1890

images back to the corresponding fine-style vectors. These

fine-style vectors are used by the last two blocks of Style-

GAN and are responsible for controlling delicate styles,

such as colors and lights [30, 31].

The training was performed for each domain separately

using 100,000 training StyleGAN-generated images and

their corresponding “ground-truth” fine-style vectors. In the

testing phase, we used the trained ResNet to predict the cor-

responding fine-style vectors of the target image—these tar-

get images were used to generate the target color histograms

for HistoGAN’s experiments. We then generated output im-

ages based on the predicted fine-style vectors of each target

image. In the evaluation of StyleGAN and HistoGAN, we

used randomly selected target images from the same do-

main.

Input image

David Kaczmarek Flickr-CC BY-NC-SA 2.0

Target colors/style HiDT Ours

Figure 10: Comparison with the high-resolution daytime

translation (HiDT) method [8].

The Hellinger distance and KL divergence were used to

measure the color errors between the histograms of the gen-

erated images and the target histogram; see Table 1.

Image Recoloring Figure 9 shows examples of image re-

coloring using our ReHistoGAN. A comparison with the re-

7947

Input image Reinhard et al. Xiao et al. Pitié and Kokaram Nguyen et al. Gatys et al. Sheng et al.

Alyson Hurt Flickr-CC BY-NC 2.0

Christopher Mitchell Flickr-CC BY-NC 2.0

Target colors

JillyAnnaJoy Flickr-CC BY-NC 2.0

raymondclarkeimages Flickr-CC BY-NC 2.0

Ours

Figure 11: Comparisons between our ReHistoGAN and other image color/style transfer methods, which are: Reinhard et

al., [46], Xiao et al., [56], Pitié and Kokaram [44], Nguyen et al., [40], Gatys et al., [21], and Sheng et al., [50].

Input image Afifi et al. Ours

Figure 12: Automatic recoloring comparison with the re-

cent method by Afifi et al., [7].

Input image Colorized images

Ian Livesey Flickr-Public Domain

Figure 13: Results of using our ReHistoGAN for a diverse

image colorization.

cent high-resolution daytime translation (HiDT) method [8]

is shown in Fig. 10. Additional comparisons with image

recoloring and style transfer methods are shown in Fig. 11.

Arguably, our ReHistoGAN produces image recoloring re-

sults that are visually more compelling than the results of

other methods for image color/style transfer. As shown in

Fig. 11, our ReHistoGAN produces realistic recoloring even

when the target image is from a different domain than the

input image, compared to other image style transfer meth-

ods (e.g., [21, 50]).

Lastly, we provide a qualitative comparison with the re-

cent auto-recoloring method proposed by Afifi et al., [7] in

Fig. 12. In the shown example, our target histograms were

dynamically generated by sampling from a pre-defined set

of histograms and applying a linear interpolation between

the sampled histograms (see Eq. 6).

What is Learned? Our method learns to map color in-

formation, represented by the target color histogram, to an

output image’s colors with a realism consideration in the

recolored image. Maintaining realistic results is achieved

by learning proper matching between the target colors and

the input image’s semantic objects (e.g., grass can be green,

but not blue). To demonstrate this, we examine a trained

ReHistoGAN model for an image colorization task, where

the input image is grayscale. The input of a grayscale im-

age means that our ReHistoGAN model has no informa-

tion regarding objects’ colors in the input image. Figure 13

shows outputs where the input has been “colorized”. As can

be seen, the output images have been colorized with good

semantic-color matching based on the image’s content.

4. Conclusion

We have presented HistoGAN, a simple, yet effective,
method for controlling colors of GAN-generated images.
Our HistoGAN framework learns how to transfer the color
information encapsulated in a target histogram feature to
the colors of a generated output image. To the best of
our knowledge, this is the first work to control the color
of GAN-generated images directly from color histograms.
Color histograms provide an abstract representation of im-
age color that is decoupled from spatial information. This
allows the histogram representation to be less restrictive and
suitable for GAN-generation across arbitrary domains. We
have shown that HistoGAN can be extended to control col-
ors of real images in the form of the ReHistoGAN model.
Our recoloring results are visually more compelling than
currently available solutions for image recoloring. Our im-
age recoloring also enables “auto-recoloring” by sampling
from a pre-defined set of histograms. This allows an image
to be recolored to a wide range of visually plausible varia-
tions. HistoGAN can serve as a step towards intuitive color
control for GAN-based graphic design and artistic endeav-
ors.

7948

References

[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2StyleGAN: How to embed images into the stylegan la-

tent space? In ICCV, 2019. 2

[2] Rameen Abdal, Peihao Zhu, Niloy Mitra, and Peter Wonka.

StyleFlow: Attribute-conditioned exploration of StyleGAN-

generated images using conditional continuous normalizing

flows. arXiv preprint arXiv:2008.02401, 2020. 2

[3] Mahmoud Afifi. 11K hands: Gender recognition and biomet-

ric identification using a large dataset of hand images. Mul-

timedia Tools and Applications, 78(15):20835–20854, 2019.

7

[4] Mahmoud Afifi and Michael S Brown. Sensor-independent

illumination estimation for dnn models. In BMVC, 2019. 1,

2, 3

[5] Mahmoud Afifi and Michael S Brown. What else can fool

deep learning? addressing color constancy errors on deep

neural network performance. In ICCV, 2019. 2

[6] Mahmoud Afifi, Brian Price, Scott Cohen, and Michael S

Brown. When color constancy goes wrong: Correcting im-

properly white-balanced images. In CVPR, 2019. 1, 2, 3

[7] Mahmoud Afifi, Brian L Price, Scott Cohen, and Michael S

Brown. Image recoloring based on object color distributions.

In Eurographics 2019 (short papers), 2019. 1, 2, 8

[8] Ivan Anokhin, Pavel Solovev, Denis Korzhenkov, Alexey

Kharlamov, Taras Khakhulin, Aleksei Silvestrov, Sergey

Nikolenko, Victor Lempitsky, and Gleb Sterkin. High-

resolution daytime translation without domain labels. In

CVPR, 2020. 2, 7, 8

[9] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein GAN. arXiv preprint arXiv:1701.07875, 2017.

2

[10] Mor Avi-Aharon, Assaf Arbelle, and Tammy Riklin Ra-

viv. Deephist: Differentiable joint and color histogram

layers for image-to-image translation. arXiv preprint

arXiv:2005.03995, 2020. 1

[11] Jonathan T Barron. Convolutional color constancy. In ICCV,

2015. 1, 2

[12] Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi,

and Adam Finkelstein. Palette-based photo recoloring. ACM

Transactions on Graphics (TOG), 34(4):139–1, 2015. 1

[13] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.

StarGAN V2: Diverse image synthesis for multiple domains.

In CVPR, 2020. 2

[14] Spencer Churchill. Anime face dataset. https://www.

kaggle.com/splcher/animefacedataset. [On-

line; accessed October 27, 2020]. 7

[15] Chris Crawford and NAIN. Cat dataset. https://www.

kaggle.com/crawford/cat-dataset. [Online; ac-

cessed October 27, 2020]. 7

[16] Aditya Deshpande, Jiajun Lu, Mao-Chuang Yeh, Min

Jin Chong, and David Forsyth. Learning diverse image col-

orization. In CVPR, 2017. 2

[17] Eva Eibenberger and Elli Angelopoulou. The importance of

the normalizing channel in log-chromaticity space. In CIP,

2012. 2

[18] H Sheikh Faridul, Tania Pouli, Christel Chamaret, Jürgen

Stauder, Erik Reinhard, Dmitry Kuzovkin, and Alain

Trémeau. Colour mapping: A review of recent methods,

extensions and applications. In Computer Graphics Forum,

2016. 1

[19] Graham D Finlayson and Steven D Hordley. Color constancy

at a pixel. JOSA A, 2001. 2

[20] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.

A neural algorithm of artistic style. arXiv preprint

arXiv:1508.06576, 2015. 2

[21] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In

CVPR, 2016. 2, 8

[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NeurIPS,

2014. 2

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on ImageNet classification. In ICCV, 2015. 5

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 6

[25] Mingming He, Jing Liao, Dongdong Chen, Lu Yuan, and Pe-

dro V Sander. Progressive color transfer with dense seman-

tic correspondences. ACM Transactions on Graphics (TOG),

38(2):1–18, 2019. 2

[26] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. GANs trained by

a two time-scale update rule converge to a local nash equi-

librium. In NeurIPS, 2017. 6

[27] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In CVPR, 2017. 2

[28] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016. 2

[29] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of GANs for improved quality, stability,

and variation. arXiv preprint arXiv:1710.10196, 2017. 2

[30] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

CVPR, 2019. 2, 7

[31] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improving

the image quality of StyleGAN. In CVPR, 2020. 1, 2, 3, 5,

6, 7

[32] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng

Yao, and Fei-Fei Li. Novel dataset for fine-grained image

categorization: Stanford dogs. In CVPR Workshops, 2011. 7

[33] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3D object representations for fine-grained categorization. In

ICCV Workshops, 2013. 7

[34] Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, Chao Qian,

and James Hays. Transient attributes for high-level under-

standing and editing of outdoor scenes. ACM Transactions

on graphics (TOG), 33(4):1–11, 2014. 2

7949

[35] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, and

Yong Jae Lee. MixNMatch: Multifactor disentanglement

and encoding for conditional image generation. In CVPR,

2020. 2, 6

[36] Huidong Liu, Xianfeng Gu, and Dimitris Samaras. Wasser-

stein GAN with quadratic transport cost. In ICCV, 2019. 2

[37] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala.

Deep photo style transfer. In CVPR, 2017. 2

[38] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-

fier nonlinearities improve neural network acoustic models.

In ICML, 2013. 3

[39] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat,

and Pierre Alliez. Can semantic labeling methods general-

ize to any city? The inria aerial image labeling benchmark.

In International Geoscience and Remote Sensing Symposium

(IGARSS), 2017. 7

[40] Rang MH Nguyen, Seon Joo Kim, and Michael S Brown.

Illuminant aware gamut-based color transfer. In Computer

Graphics Forum, 2014. 1, 8

[41] Maria-Elena Nilsback and Andrew Zisserman. Automated

flower classification over a large number of classes. In Indian

Conference on Computer Vision, Graphics & Image Process-

ing, 2008. 7

[42] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson

image editing. In SIGGRAPH. 2003. 6

[43] Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco

Doretto. Adversarial latent autoencoders. In CVPR, 2020.

2

[44] F. Pitie and A. Kokaram. The linear Monge-Kantorovitch

linear colour mapping for example-based colour transfer. In

European Conference on Visual Media Production, 2007. 8

[45] Alec Radford, Luke Metz, and Soumith Chintala. Un-

supervised representation learning with deep convolu-

tional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015. 2

[46] Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter

Shirley. Color transfer between images. IEEE Computer

graphics and applications, 21(5):34–41, 2001. 1, 8

[47] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

Net: Convolutional networks for biomedical image segmen-

tation. In MICCAI, 2015. 4

[48] Kuniaki Saito, Kate Saenko, and Ming-Yu Liu. COCO-

FUNIT: Few-shot unsupervised image translation with a

content conditioned style encoder. In ECCV, 2020. 2

[49] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Sin-

GAN: Learning a generative model from a single natural im-

age. In ICCV, 2019. 2

[50] Lu Sheng, Ziyi Lin, Jing Shao, and Xiaogang Wang. Avatar-

Net: Multi-scale zero-shot style transfer by feature decora-

tion. In CVPR, 2018. 2, 8

[51] Assaf Shocher, Yossi Gandelsman, Inbar Mosseri, Michal

Yarom, Michal Irani, William T Freeman, and Tali Dekel.

Semantic pyramid for image generation. In CVPR, 2020. 2

[52] Maria Shugrina, Amlan Kar, Sanja Fidler, and Karan Singh.

Nonlinear color triads for approximation, learning and direct

manipulation of color distributions. ACM Transactions on

Graphics (TOG), 39(4):97–1, 2020. 2

[53] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015. 6

[54] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance normalization: The missing ingredient for fast styliza-

tion. arXiv preprint arXiv:1607.08022, 2016. 2

[55] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The Caltech-UCSD birds-200-

2011 dataset. 2011. 7

[56] Xuezhong Xiao and Lizhuang Ma. Color transfer in cor-

related color space. In International conference on Virtual

reality continuum and its applications, 2006. 1, 8

[57] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas

Funkhouser, and Jianxiong Xiao. LSUN: Construction of

a large-scale image dataset using deep learning with humans

in the loop. arXiv preprint arXiv:1506.03365, 2015. 7

[58] Qing Zhang, Chunxia Xiao, Hanqiu Sun, and Feng Tang.

Palette-based image recoloring using color decomposition

optimization. IEEE Transactions on Image Processing,

26(4):1952–1964, 2017. 1

[59] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng,

Angela S. Lin, Tianhe Yu, and Alexei A. Efros. Real-time

user-guided image colorization with learned deep priors.

ACM Transactions on graphics (TOG), 36(4):1–11, 2017. 2

7950

