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Figure 1: Example videos in our dataset. Each sample is a video annotated with the object’s 3D bounding box.

Abstract

3D object detection has recently become popular due

to many applications in robotics, augmented reality, au-

tonomy, and image retrieval. We introduce the Objectron

dataset to advance the state of the art in 3D object detec-

tion and foster new research and applications, such as 3D

object tracking, view synthesis, and improved 3D shape rep-

resentation. The dataset contains object-centric short videos

with pose annotations for nine categories and includes 4

million annotated images in 14, 819 annotated videos. We

also propose a new evaluation metric, 3D Intersection over

Union, for 3D object detection. We demonstrate the use-

fulness of our dataset in 3D object detection and novel

view synthesis tasks by providing baseline models trained

on this dataset. Our dataset and evaluation source code are

available online at Github.com/google-research-

datasets/Objectron.

1. Introduction

The state of the art in machine learning has achieved ex-

ceptional accuracy on many computer vision tasks solely by

training models on images. Building upon these successes

and advancing 3D object understanding has great potential

to power a wider range of applications, such as augmented

reality, robotics, autonomy, and image retrieval. Yet, under-

standing objects in 3D remains a challenging task due to the

lack of large real-world datasets compared to 2D tasks (e.g.,

ImageNet [8], COCO [22], and Open Images [20]). To em-

power the research community for continued advancement

in 3D object understanding, there is a strong need for the

release of object-centric video datasets, which capture more

of the 3D structure of an object, while matching the data

format used for many down-stream vision tasks (i.e., video

or camera streams), to aid in the training and benchmarking

of machine learning models. The object-centric approach is

consistent with how our brains perceive new objects too. For
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Figure 2: Our dataset consists of object-centric videos, which capture different views of the same objects from different angles.

example, when a child wants to learn the shape of a chair,

they’ll walk around and look at the chair from different an-

gles to pick up information. In other words, "We must also

move in order to perceive" [12][37].

We present the Objectron dataset, a collection of short,

object-centric video clips capturing a larger set of common

objects from different angles. Each video clip is accompa-

nied by augmented reality (AR) session metadata that in-

cludes camera poses, sparse point-clouds, and surface planes.

The data also contains manually annotated 3D bounding

boxes for each object, which describe the object’s position,

orientation, and dimensions. The dataset consists of 14, 819
annotated video clips and 4M annotated images collected

from a geo-diverse sample (covering ten countries across

five continents). Figure 2 shows an example video in our

dataset.

There are several advantages of using Objectron dataset

over existing works:

• Videos contain multiple views of the same object, en-

abling many applications well beyond 3D object detec-

tion. This includes multi-view geometric understanding,

view synthesis, 3D shape reconstruction, etc.

• The 3D bounding box is present in the entire video

and is temporally consistent, thus enabling 3D tracking

applications.

• Our dataset is collected in the wild to provide better

generalization for real-world scenarios in contrast to

datasets that are collected in a controlled environment

[13][4].

• Each instance’s translation and size are stored in metric

scale, thanks to accurate on-device AR tracking and

provides sparse point clouds in 3D, enabling sparse

depth estimation techniques. The images are calibrated

and the camera parameters are provided, enabling the

recovery of the object’s true scale.

• Our annotations are dense and continuous, unlike some

of the previous work [30] where viewpoints have been

discretized to fit into bins.

• Each object category contains hundreds of instances,

collected from different locations across different coun-

tries in different lighting conditions.

We have conducted experiments for 3D object detection

and novel view synthesis tasks using our dataset. We pro-

posed a novel method to compute the precise 3D IoU of

oriented 3D bounding boxes. These experiments can be used

as baselines for future research.

2. Previous Work

In this section, we review several commonly used datasets

for 3D object detection and compare them with Objectron.

BOP challenge [14] consists of a set of benchmark for

3D object detection and combines many of these smaller

datasets into a larger one. Most of the images in the dataset

are taken in a very controlled environment and feature clutter

and heavy occlusion that apppear in industrialized setups.

T-LESS [15] features industrialized objects that lack texture

or color. Rutgers APC [27] contains 14 textured objects from

the Amazon picking challenge. LineMOD [13] is the most

commonly used dataset for object pose estimation. Similar

to LineMOD, IC-BIN dataset [9] adds a few more categories.

YCB [4] dataset contains videos of objects and their poses

in a controlled environment. In comparison to these datasets,

Objectron has a larger scale and contains high-resolution

videos of common objects in the wild.

ObjectNet3D [38] is dataset that contains 3D object poses

from images. Similarly, Pascal3D+ [39] adds 3D pose anno-

tations to the Pascal VOC and a few images from the Ima-

geNet dataset. In comparison to Objectron, these datasets

contain more categories and instances but they only include

images. Furthermore, the objects are annotated with a 2D-

to-3D alignment process, so their pose is annotated up to

6-DoF (instead of nine) and camera intrinsics are not avail-

able. So it is not possible to recover the object’s scale from

these datasets. Pix3D [32] contains pixel-level 2D-3D pose

alignment. Similarly, 3DObject[30] provides discretized

viewpoint annotations for 10 everyday object categories.

Another type of dataset used for 3D object detection tasks

is scene datasets. In these datasets, a video of a scene is

recorded with an RGBD camera or LIDAR. ScanNet [6] is
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a large scale video dataset of indoor scenes with semantic

annotations. The dataset contains over 1500 scenes recorded

in RGBD videos. The dataset does not contain 3D pose

information, however, Scan2CAD [3] annotates the original

scans with ShapeNetCore [5] models to label each object’s

pose. Rio [35] is another dataset that contains indoor scans

annotated with an object’s 3D pose. In comparison Objectron

videos are object-centric, and we have an order of magnitude

more samples in our dataset.

Another approach is to use synthetic data. ShapeNet [5]

includes CAD models for many objects and has been widely

used [34][31], However, the sample’s visual quality is lim-

ited and it does not generalize well to real-world applications.

Synthetic datasets offer valuable data for training and bench-

marking, but the ability to generalize to the real-world is

unknown. HyperSim[28] generates photo-realistic scenes

with object pose annotation, but reproducibility is challeng-

ing since they have not released any of the dataset’s assets.

3. Data Collection and Annotation

3.1. Object Categories

In Objectron dataset, the aim was to select meaningful

categories of common objects that form a representative

set of all categories that are practically relevant and techni-

cally challenging. Our goal was to capture these objects in

their common environment, and in relative context whether

it would be in store, indoor or outdoor environment. We

also included objects of various sizes, ranging from a few

centimeters (e.g. cups) to as large as chairs and bikes.

The object categories in the dataset contain both rigid,

and non-rigid objects. We included non-rigid categories such

as bikes and laptops specifically since we expect techniques

using CAD models or strong priors will face challenges

estimating the pose of these object categories. We should

mention non-rigid objects remain stationary during the pe-

riod of each video.

Many 3D object detection models are known to exhibit

difficulties in estimating rotations of symmetric objects [21].

Symmetric objects have ambiguity in their one, two, or even

three degrees of rotation. Therefore we added categories like

"cups" and "bottles" specifically to test it.

It has been shown that vision models pay special attention

to texts in the images [11]. Re-producing texts and labels

correctly are important in generative models too. Therefore

we added categories of objects with very distinct texts in

their labels such as "books" and "cereal boxes". Since our

dataset is collected from a geo-diverse set of countries, mul-

tiple different languages are present in the videos as well.

We should report these categories, despite having relatively

simple box-shaped geometry, have very different texture pat-

terns. So our baseline experiments have difficulty estimating

their poses accurately.

Figure 3: Countries where we collected data from.

Since we strive for real-time perception we included a

few categories (shoes and chairs) that enable exciting appli-

cations, such as augmented reality and image retrieval.

3.2. Data Collection

Our data collection consists of the video recording when

the camera moves around the object and looks at it from

different angles. We also capture camera poses, point-clouds,

and surface planes through an AR session (e.g. ARKit [2]

or ARCore [1]). AR solutions track a set of features through

the video and estimate their 3D coordinates on-device in real-

time. Meanwhile, they estimate camera poses using bundle-

adjustment and filtering. We emphasize all the translation

and scale reported in our dataset are on the metric scale. We

released both of these files (the video recording and the AR

session metadata) in the dataset. We assume the standard

pinhole camera model, and provide calibration, extrinsics

and intrinsics matrix for every frame in the dataset.

All the videos are recorded in 1920× 1080 resolution at

30fps using the back-camera of high-end phones. We only

enabled data collection on a very few phone models (<5) to

make sure the output quality remains consistent across our

dataset. To avoid drift in the AR session, we kept the video

length short at around 10sec. The collectors are instructed

to avoid rapid movements to avoid blurry images. Finally,

the object remains stationary in all of our videos.

By using mobile phones for data collection we were able

to quickly launch a data collection campaign across many

different countries. The dataset is geo-diverse and covers

10 countries over five continents. Figure 3 shows which

countries are represented in the dataset. The samples are

distributed uniformly in each region.

3.3. Data Annotation

Efficient and accurate data annotation is the key to build-

ing large-scale datasets. Annotating 3D bounding boxes for

each image is time-consuming and expensive. Instead, we

annotate 3D objects in a video clip and populate them to all

frames in the clip, scaling up the annotation process, and
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reducing the per image annotation cost. The user interfaces

for the annotation tool is shown in Figure 4a. The input to

our annotation tool is a video sequence of stationary objects.

It covers different viewing angles of objects.

Next, we show the 3D world map to the annotator side-

by-side with the images from the video sequence (Figure 4a).

The annotator draws a 3D bounding box in the 3D world map,

and our tool projects the 3D bounding box over all the frames

given pre-computed camera poses from the AR sessions

(such as ARKit or ARCore). The annotator looks at the

projected bounding box and makes necessary adjustments

(position, orientation, and the scale of a 3D bounding box) so

the projected bounding box looks consistent across different

frames. At the end of the process, the user saves the 3D

bounding box and the annotation.

(a) Our annotation tool

Figure 4: Data annotation. The annotated 3D box is verified

at multiple views, and then populated to all images in the

sequence.

The benefits of our approach are 1) by annotating a video

once, we get annotated images for all frames in the video

sequence; 2) by using AR, we can get accurate metric sizes

for bounding boxes.

3.4. Annotation Variance

The accuracy of our annotation hinges on two factors: 1)

the amount of drift in the estimated camera pose through-

out the captured video, and 2) the accuracy of the raters

annotating the 3D bounding box. We compared the relative

positional drift in our camera pose against an offline refined

camera pose (obtained by an offline bundle adjustment) and

Figure 5: Distribution of the video length in our dataset.

Majority of the videos are 10 seconds long (300 frames) and

the longest video is 2022 frames long.

observed an average of 0.69% drift in length. To further

reduce the drift, we usually capture shorter sequences below

10sec and further instructed our annotators to reject any se-

quences that with drift and jitter artifacts. Figure 5 shows

the distribution of the length of the videos in our dataset. To

evaluate the accuracy of the rater, we asked eight annotators

to re-annotate same sequences. A few samples are shown in

Figure 6. Overall for the chairs, the standard deviation for the

chair orientation, translation, and scale was 4.6◦, 1cm, and

4cm, respectively which demonstrates insignificant variance

of the annotation results between different raters.

4. Objectron Dataset

In this section, we describe the details of our Objectron

dataset and provide some statistics. The dataset contains

videos in 9 categories: bikes, books, bottles, cameras, ce-

real boxes, chairs, cups, laptops, and shoes. Some of these

objects are non-rigid (e.g. bikes or laptops) and all of them

remain stationary during the video recording. In each video,

the camera moves around the object, capturing it from dif-

ferent angles. In total there are 17, 095 object instances

that appear in 4M annotated images from 14819 annotated

videos (not counting the unreleased evaluation set for future

competitions). The dataset is collected from ten different

countries. This is important for categories that contain texts

and labels, such as books, cereal boxes and bottles. So our

samples contain different languages as well as different local

environments. Each category is divided to train and test sets.

Table 1 shows detailed per-category statistics of our dataset.

Each sample contains the high-resolution image, along

with the camera pose, point-cloud (from tracking), and planar

surfaces in the environment. The data also contains manu-

ally annotated 3D bounding boxes for each object, which
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Figure 6: The overlay of the 3D bounding boxes annotated by different annotators shows the annotations from different raters

are very close.

Figure 7: View-point distribution of samples per object category. The top row shows the azimuth distribution in polar graph,

and the bottom row denotes the elevation distribution.

describe the object’s orientation, translation, and size rela-

tive to the camera pose. Our coordinate system follows a

left-hand rule, where +y axis is up. From the pose, we also

compute the object’s bounding box 3D keypoints, projected

2D keypoints, as well as azimuth and elevation. Furthermore,

each frame in the video contains the camera pose, and the

camera’s projection and view matrices.

The annotation of the object contains its rotation, trans-

lation w.r.t. the camera center as well as the object’s scale.

To get a better understanding of the viewpoint distribution,

we computed the azimuth of each object instance w.r.t the

camera center. Here azimuth 0 degree indicates the object

is being viewed from the front. Figure 7-top shows the

azimuth distribution for different object categories in our

dataset. For some categories, there is a specific bias toward

the front and top views.

We optimized the camera poses using a standard bundle

adjustment algorithm from a Structure-from-Motion (SfM)

pipeline. The bundle adjustment algorithm minimizes the re-

projection error between different projections of keypoints

across multiple frames to produces an up-to-scale pose trajec-

tory. We used the scale factor of the original sequence to re-

scale the trajectory and bring it to metric scale. Then we com-

puted the mean absolute positional error between the opti-

mized and the original trajectory
∑

‖pi − qi‖2/
∑

∆pi×n
where pi is the position of the original camera pose, qi is the

optimized camera pose,
∑

∆pi is the length of the trajectory

and n is the number of frames in the sequence. On average,

we observed 0.69% mean absolute positional error between

the original and optimized camera poses.

5. Baseline Experiments and Evaluations

Our dataset is released with an evaluation code to assess

the performance of 3D object detection algorithms using

various metrics. The evaluation code computes the average

precision for multiple 2D and 3D metrics such as 3D IoU, 2D

projection error, view-point error, polar and azimuth error,

and rotation error.

Except for the 3D IoU, the other metrics are fairly stan-

dard and we refer the readers to our code as well as other

references for further details. In this section, we explain our
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class bike book bottle camera cereal_box chair cup laptop shoe

No. videos 476 2024 1928 815 1609 1943 2204 1473 2116

No. frames 150k 576k 476k 233k 396k 488k 546k 485k 557k

No. instances 487 2084 2014 931 1638 2362 2378 1710 3500

Avg instance per video 1.03 1.02 1.04 1.14 1.01 1.21 1.07 1.16 1.65

Table 1: Per-category statistics of Objectron dataset.

Model bike book bottle camera cereal_box chair cup laptop shoe average

MobilePose [16] 0.3109 0.1797 0.5433 0.4483 0.5419 0.6847 0.3665 0.5225 0.4171 0.4461

Two-stage 0.6127 0.5218 0.5744 0.8016 0.6272 0.8505 0.5388 0.6735 0.6606 0.6512

(a) Average precision at 0.5 3D IoU metric for different categories (Higher is better).

Model bike book bottle camera cereal_box chair cup laptop shoe average

MobilePose [16] 0.1581 0.0840 0.0818 0.0773 0.0454 0.0892 0.2263 0.0736 0.0655 0.1001

Two-stage 0.0828 0.0477 0.0405 0.0449 0.0337 0.0488 0.0541 0.0291 0.0391 0.0467

(b) Mean pixel error (MPE) of 2D projection of box vertices for different categories (Lower is better).

Model bike book bottle camera cereal_box chair cup laptop shoe average

MobilePose [16] 0.4376 0.4111 0.4413 0.5293 0.8780 0.6195 0.0893 0.6052 0.3934 0.4894

Two-stage 0.8234 0.7222 0.8003 0.8030 0.9404 0.8840 0.6444 0.8561 0.5860 0.7844

(c) Average precision at 15◦ Azimuth error for different categories (Higher is better).

Model bike book bottle camera cereal_box chair cup laptop shoe average

MobilePose [16] 0.7130 0.6289 0.6999 0.5233 0.8030 0.7053 0.6632 0.5413 0.4947 0.6414

Two-stage 0.9390 0.8616 0.8567 0.8437 0.9476 0.9272 0.8365 0.7593 0.7544 0.8584

(d) Average precision at 10◦ Elevation error for different categories (Higher is better).

Table 2: Evaluation of different baseline models for the Objectron dataset.

(a) Clip a polygon from two

boxes using the Sutherland-

Hodgman algorithm.

(b) Compute intersection

volume (green) using the

convex hull algorithm.

Figure 8: Accurate computation of 3D IoU using polygon-

clipping algorithm.

implementation of 3D IoU metric, which to the best of our

knowledge, is novel.

5.1. 3D Intersection Over Union

Intersection over Union (IoU), also known as Jaccard

index, is an evaluation metric for computer vision tasks such

as object detection, segmentation, and tracking. It measures

how close the prediction bounding boxes are to the ground

Figure 9: 3D IoU computation for symmetric objects: Ro-

tating the bounding box along the Y axis of symmetry to

maximize 3D IoU.

truth. The IoU takes two boxes as input: the predicted box

(by the model) and the ground truth box and computes the

intersection volume of the two boxes. The IoU metric is

invariant under change in the scale, as well as any rigid

transformations that belong to the SE3 group. Therefore if

we change the coordinate system, or rotate, translate, and

scale both boxes by the same transformation, their IoU does
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Figure 10: Evaluation of MobilePose network[16] on the Objectron dataset
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Figure 11: Evaluation of two-stage network on the Objectron dataset

not change. This property becomes useful later. The IoU is

a normalized metric and the it’s value ranges between 0 to 1,

where 1 is considered the perfect score.

For evaluation, although 3D IoU has been used in pre-

vious work, its computation is overly simplified based on

some assumptions. In [36], 3D boxes are assumed to be axis-

aligned. Another approach, used by autonomous datasets

(e.g. in [25] and others), is to project the 3D bounding boxes

to the ground plane and then compute the intersection of

the 2D projected polygons. Then the intersection volume

is estimated by multiplying the area of the 2D intersecting

polygon with the height of the 3D bounding boxes. Although

this approach works for vehicles on the road, it has two limi-

tations: 1) The object should sit on the same ground plane,

which limits the degrees of freedom of the box from 9 to 7.

The box only has freedom in yaw, and the roll and pitch are

set to 0. 2) it assumes the boxes have the same height. For

the Objectron datasets, these assumptions do not hold.

We propose an algorithm for computing accurate 3D IoU

values for general 3D-oriented boxes. First, we compute the

intersection points between the faces of the two boxes using

the Sutherland-Hodgman Polygon clipping algorithm [10].

Let x denote the predicted box and y denote the annota-

tion label. To compute the intersecting points between the

boxes x and y, first transform both boxes using the inverse

transformation of the box x. The transformed box x will be

axis-aligned and centered around the origin while the box

y is brought to the coordinate system of the box x and re-

mains oriented. Volume remains invariant under rigid-body

transformation. We can compute the intersecting points in

the new coordinate system and estimate the volume from the

transformed intersection points. Using this coordinate sys-

tem allows for more efficient and simpler polygon clipping

against boxes since each surface is perpendicular to one of

the coordinate axes.

Next, we clip each face in box y, which is a convex poly-

gon, against the axis-aligned box x. There is a well-known

polygon clipping algorithm in computer graphics [10], where

each world polygon is clipped against the camera frustum

to determine the rendered environment. We use a robust

Sutherland-Hodgman algorithm to perform the clipping. To

clip a polygon against a plane, the edges of the plane are hy-

pothetically extended to infinity. We iterate over each edge

in the polygon in clockwise order and determine whether

that edge intersects with any faces in the axis-aligned box x.

For each vertex in the box y, we check whether any of them

are inside the box x. We add those vertices to the intersecting

vertices as well. We repeat the whole process swapping the

box x and y. We refer the readers to [10] for the details of

the polygon clipping algorithm. Figure 8a shows an example

of a polygon clipping.

The volume of the intersection is computed by the con-

vex hull of all the clipped polygons, as shown in Figure 8b.

Finally, the IoU is computed from the volume of the intersec-

tion and volume of the union of two boxes. We are releasing

the evaluation metrics source code along with the dataset.

For symmetric objects, such as bottles or cups, the 3D

IoU metric is not well-defined. In those instances, we rotate

7828



Figure 12: Results of the NeRF [24] model on our dataset. 1) Input image with annotation, 2) NeRF rendering from the same

view, 3) Estimated depth map from NeRF, 4) Extracted segmentation mask, and 5) Synthesized novel view.

the estimated bounding box along the symmetry axis and

evaluate each rotated instance, then pick the bounding box

that maximizes the IoU. Figure 9 shows an example for

asymmetric cup.

5.2. Baselines for 3D object detection

We provide baseline results for 3D object detection and

viewpoint estimation. We trained a state-of-the-art model

[16] over our dataset for detecting 3D bounding boxes. Mo-

bilePose is a lightweight network that is designed to perform

in real-time on mobile devices. We evaluate the network’s

output using our evaluation code and report various metrics,

such as average precision for 3D IoU, 2D pixel projection

error, azimuth, and elevation1. For each category, we trained

the network separately without any pre-training or hyperpa-

rameter optimization. Table 2 shows the evaluation results.

We empirically observed pre-training and hyperparameter

optimization can significantly improve the baseline results.

Each model was trained for 100 epochs (∼12 hours) on eight

V100 GPUs.

We also designed a new two-stage architecture for 3D

object detection. The first stage estimates a 2D crop of the

object of the size 224× 224 using SSD model[23][17], fol-

lowed by a second stage model using EfficientNet-Lite [33]

architecture which uses the 2D crop to regress the keypoints

of the 3D bounding box. We use a similar EPnP algorithm

as in [16] to lift the 2D predicted keypoints to 3D. This

network is very lightweight (5.2MB size) and runs at 83fps

on Samsung S20 mobile GPU. Figure 11 shows the evalua-

tion results, including the average precision plot for 3D IoU,

azimuth, and elevation for the two-stage model.

For the average precision, first, the detector has to detect

the 3D bounding box using the center of the box, then pro-

ceed to compute the other metrics. The experimental result

shows the model is more accurate in estimating elevation

than azimuth because the distribution of the elevation in our

dataset (Figure 7) is biased toward 45◦, but azimuth is uni-

1The trained models and their evaluation report can be downloaded

from https://github.com/google-research-datasets/

Objectron

formly distributed. In other words, in our videos, the data

collector is looking down and walking around the object to

capture the video. Data augmentation techniques, such as

affine transformation or cropping, can change the distribu-

tion of viewpoints in the dataset and help generalization. We

should also highlight how badly the network performs on

estimating the rotation of the ’cup’, as evident by the average

precision of azimuth for the cups (Figure 10 and Table 2c).

5.3. Baselines for Neural Radiance Field

Recently [24] has shown neural radiance field (NeRF) can

learn the scene and object representation with fine details.

The NeRF model learns the color and density value of each

voxel in the scene and can generate novel views. We trained

the NeRF [7] model on the optimized camera poses from

our dataset (Figure 12). We used NeRF for two baselines: 1)

Computing segmentation mask and 2) Novel view synthesis.

We estimated the depth map of the image by synthesizing

the same view. Then we re-scaled the depth map to metric

scale using the depth of the box centroid. For each pixel, we

cast a ray with the given depth to get the 3D point. Finally,

we used a culling algorithm to check if the point is inside

the 3D bounding box. As a result, we could compute the

segmentation mask of the object for each frame in the video.

Another application is to generate novel views from the same

scene. Objectron dataset is slightly biased toward specific

elevation views (Figure 7). We used the NeRF model to

generate improbable views in the dataset.

6. Conclusion

This paper introduces the Objectron dataset: a large scale

object-centric dataset of 14, 819 short videos in the wild

with object pose annotation. We developed an efficient and

scalable data collection and annotation framework based

on on-device AR libraries. By releasing this dataset, we

hope to enable the research community to push the limits of

3D object geometry understanding and foster new research

and applications in 3D understanding, video models, object

retrieval, view synthetics, and 3D reconstruction.
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