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Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in silver), aligning it with even the tiniest faces,

without face detection or facial landmark localization. Our estimated 3D face locations are rendered by descending distances

from the camera, for coherent visualization.

Abstract

We propose real-time, six degrees of freedom (6DoF),

3D face pose estimation without face detection or landmark

localization. We observe that estimating the 6DoF rigid

transformation of a face is a simpler problem than facial

landmark detection, often used for 3D face alignment. In

addition, 6DoF offers more information than face bounding

box labels. We leverage these observations to make multiple

contributions: (a) We describe an easily trained, efficient,

Faster R-CNN–based model which regresses 6DoF pose for

all faces in the photo, without preliminary face detection.

(b) We explain how pose is converted and kept consistent

between the input photo and arbitrary crops created while

training and evaluating our model. (c) Finally, we show

how face poses can replace detection bounding box train-

ing labels. Tests on AFLW2000-3D and BIWI show that

our method runs at real-time and outperforms state of the

art (SotA) face pose estimators. Remarkably, our method

also surpasses SotA models of comparable complexity on

the WIDER FACE detection benchmark, despite not been

optimized on bounding box labels.

∗ Joint first authorship.

All experiments reported in this paper were performed at the Univer-

sity of Notre Dame.

1. Introduction

Face detection is the problem of positioning a box to

bound each face in a photo. Facial landmark detection

seeks to localize specific facial features: e.g., eye centers,

tip of the nose. Together, these two steps are the corner-

stones of many face-based reasoning tasks, most notably

recognition [18, 47, 48, 49, 74, 76] and 3D reconstruc-

tion [20, 30, 71, 72]. Processing typically begins with

face detection followed by landmark detection in each de-

tected face box. Detected landmarks are matched with cor-

responding ideal locations on a reference 2D image or a 3D

model, and then an alignment transformation is resolved us-

ing standard means [16, 39]. The terms face alignment and

landmark detection are thus sometimes used interchange-

ably [3, 15, 38].

Although this approach was historically successful, it

has drawbacks. Landmark detectors are often optimized

to the particular nature of the bounding boxes produced by

specific face detectors. Updating the face detector therefore

requires re-optimizing the landmark detector [4, 21, 50, 79].

More generally, having two successive components implies

separately optimizing two steps of the pipeline for accuracy

and – crucially for faces – fairness [1, 2, 35]. In addition,

SotA detection and pose estimation models can be compu-

tationally expensive (e.g., ResNet-152 used by the full Reti-
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naFace [17] detector). This computation accumulates when

these steps are applied serially. Finally, localizing the stan-

dard 68 face landmarks can be difficult for tiny faces such

as those in Fig. 1, making it hard to estimate their poses

and align them. To address these concerns, we make the

following key observations:

Observation 1: 6DoF pose is easier to estimate than de-

tecting landmarks. Estimating 6DoF pose is a 6D regres-

sion problem, obviously smaller than even 5-point landmark

detection (5×2D landmarks = 10D), let alone standard 68

landmark detection (=136D). Importantly, pose captures

the rigid transformation of the face. By comparison, land-

marks entangle this rigid transformation with non-rigid fa-

cial deformations and subject-specific face shapes.

This observation inspired many to recently propose skip-

ping landmark detection in favor of direct pose estima-

tion [8, 9, 10, 36, 51, 64, 81]. These methods, however,

estimate poses for detected faces. By comparison, we aim

to estimate poses without assuming that faces were already

detected.

Observation 2: 6DoF pose labels capture more than just

bounding box locations. Unlike angular, 3DoF pose esti-

mated by some [31, 32, 64, 81], 6DoF pose can be converted

to a 3D-to-2D projection matrix. Assuming a known intrin-

sic camera parameters, pose can therefore align a 3D face

with its location in the photo [27]. Hence, pose already cap-

tures the location of the face in the photo. Yet, for the price

of two additional scalars (6D pose vs. four values per box),

6DoF pose also provides information on the 3D position and

orientation of the face. This observation was recently used

by some, most notably, RetinaFace [17], to improve detec-

tion accuracy by proposing multi-task learning of bounding

box and facial landmarks. We, instead, combine the two in

the single goal of directly regressing 6DoF face pose.

We offer a novel, easy to train, real-time solution to

6DoF, 3D face pose estimation, without requiring face de-

tection (Fig. 1). We further show that predicted 3D face

poses can be converted to obtain accurate 2D face bound-

ing boxes with only negligible overhead, thereby providing

face detection as a byproduct. Our method regresses 6DoF

pose in a Faster R-CNN–based framework [63]. We explain

how poses are estimated for ad-hoc proposals. To this end,

we offer an efficient means of converting poses across dif-

ferent image crops (proposals) and the input photo, keeping

ground truth and estimated poses consistent. In summary,

we offer the following contributions.

• We propose a novel approach which estimates 6DoF,

3D face pose for all faces in an image directly, and

without a preceding face detection step.

• We introduce an efficient pose conversion method to

maintain consistency of estimates and ground-truth

poses, between an image and its ad-hoc proposals.

• We show how generated 3D pose estimates can be con-

verted to accurate 2D bounding boxes as a byproduct

with minimal computational overhead.

Importantly, all the contributions above are agnostic to the

underlying Faster R-CNN–based architecture. The same

techniques can be applied with other detection architectures

to directly extract 6DoF, 3D face pose estimation, without

requiring face detection.

Our model uses a small, fast, ResNet-18 [28] back-

bone and is trained on the WIDER FACE [80] training

set with a mixture of weakly supervised and human anno-

tated ground-truth pose labels. We report SotA accuracy

with real-time inference on both AFLW2000-3D [89] and

BIWI [19]. We further report face detection accuracy on

WIDER FACE [80], which outperforms models of compa-

rable complexity by a wide margin. Our implementation

and data are publicly available from: http://github.

com/vitoralbiero/img2pose.

2. Related work

Face detection Early face detectors used hand-crafted fea-

tures [14, 40, 73]. Nowadays, deep learning is used for

its improved accuracy in detecting general objects [63] and

faces [17, 82]. Depending on whether region proposal net-

works are used, these methods can be classified into single-

stage methods [43, 61, 62] and two-stage methods [63].

Most single-stage methods [41, 52, 68, 86] were based

on the Single Shot MultiBox Detector (SSD) [43], and fo-

cused on detecting small faces. For example, S3FD [86]

proposed a scale-equitable framework with a scale com-

pensation anchor matching strategy. PyramidBox [68] in-

troduced an anchor-based context association method that

utilized contextual information.

Two-stage methods [75, 83] are typically based on Faster

R-CNN [63] and R-FCN [13]. FDNet [83], for example,

proposed multi-scale and voting ensemble techniques to im-

prove face detection. Face R-FCN [75] utilized a novel

position-sensitive average pooling on top of R-FCN.

Face alignment and pose estimation. Face pose is typi-

cally obtained by detecting facial landmarks and then solv-

ing Perspective-n-Point (PnP) algorithms [16, 39]. Many

landmark detectors were proposed, both conventional [5, 6,

12, 44] and deep learning–based [4, 66, 77, 90] and we refer

to a recent survey [78] on this topic for more information.

Landmark detection methods are known to be brittle [9, 10],

typically requiring a prior face detection step and relatively

large faces to position all landmarks accurately.

A growing number of recent methods recognize that

deep learning offers a way of directly regressing the face

pose, in a landmark-free approach. Some directly esti-

mated the 6DoF face pose from a face bounding box [8,
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9, 10, 36, 51, 64, 81]. The impact of these landmark free

alignment methods on downstream face recognition accu-

racy was evaluated and shown to improve results compared

with landmark detection methods [9, 10]. HopeNet [64]

extended these methods by training a network with multi-

ple losses, showing significant performance improvement.

FSA-Net [81] introduced a feature aggregation method to

improve pose estimation. Finally, QuatNet [31] proposed

a Quaternion-based face pose regression framework which

claims to be more effective than Euler angle-based meth-

ods. All these methods rely on a face detection step, prior to

pose estimation whereas our approach collapses these two

to a single step.

Some of the methods listed above only regress 3DoF an-

gular pose: the face yaw, pitch, and roll [64, 81] or rota-

tional information [31]. For some use cases, this informa-

tion suffices. Many other applications, however, including

face alignment for recognition [27, 47, 48, 49, 74, 76], 3D

reconstruction [20, 71, 72], face manipulation [54, 55, 56],

also require the translational components of a full 6DoF

pose. Our img2pose model, by comparison, provides full

6DoF face pose for every face in the photo.

Finally, some noted that face alignment is often per-

formed along with other tasks, such as face detection, land-

mark detection, and 3D reconstruction. They consequently

proposed solving these problems together in a multi-task

manner. Some early examples of this approach predate the

recent rise of deep learning [57, 58]. More recent meth-

ods add face pose estimation or landmark detection heads

to a face detection network [9, 37, 59, 60, 90]. It is unclear,

however, if adding these tasks together improves or hurts

the accuracy of the individual tasks. Indeed, evidence sug-

gesting the latter is growing [45, 69, 88]. We leverage the

observation that pose estimation already encapsulates face

detection, thereby requiring only 6DoF pose as a single su-

pervisory signal.

3. Proposed method

Given an image I, we estimate 6DoF pose for each face,

i appearing in I. We use hi ∈ R
6 to denote each face pose:

hi = (rx, ry, rz, tx, ty, tz), (1)

where (rx, ry, rz) represent a rotation vector [70] and

(tx, ty, tz) is the 3D face translation.

It is well known that a 6DoF face pose, h, can be con-

verted to an extrinsic camera matrix for projecting a 3D face

to the 2D image plane [22, 67]. Assuming known intrinsic

camera parameters, the 3D face can then be aligned with a

face in the photo [26, 27]. To our knowledge, however, pre-

vious work never leveraged this observation to propose re-

placing training for face bounding box detection with 6DoF

pose estimation.

Figure 2: Bounding boxes generated using predicted poses.

White bounding boxes generated with a loose setting, green

with very tight setting, and blue with a less tight setting and

forehead expansion (which is located through the pose).

Specifically, assume a 3D face shape represented as a

triangulated mesh. Points on the 3D face surface can be

projected down to the photo using the standard pinhole

model [25]:

[Q,1]T ∼ K[R, t][P,1]T , (2)

where K is the intrinsic matrix (Sec. 3.2), R and t are the

3D rotation matrix and translation vector, respectively, ob-

tained from h by standard means [22, 67], and P ∈ R
3×n is

a matrix representing n 3D points on the surface of the 3D

face shape. Finally, Q ∈ R
2×n is the matrix representation

of 2D points projected from 3D onto the image.

We use Eq. (2) to generate our qualitative figures, align-

ing the 3D face shape with each face in the photo (e.g.,

Fig. 1). Importantly, given the projected 2D points, Q, a

face detection bounding box can simply be obtained by tak-

ing the bounding box containing these 2D pixel coordinates.

It is worth noting that this approach provides better con-

trol over bounding box looseness and shapes, as shown in

Fig. 2. Specifically, because the pose aligns a 3D shape

with known geometry to a face region in the image, we can

choose to modify face bounding boxes sizes and shapes to

match our needs, e.g., including more of the forehead by ex-

panding the box in the correct direction, invariant of pose.

3.1. Our img2pose network

We regress 6DoF face pose directly, based on the obser-

vation above that face bounding box information is already

folded into the 6DoF face pose. Our network structure is

illustrated in Fig. 3. Our network follows a two-stage ap-

proach based on Faster R-CNN [63]. The first stage is a re-

gion proposal network (RPN) with a feature pyramid [42],

which proposes potential face locations in the image.

Unlike the standard RPN loss, Lrpn, which uses ground-

truth bounding box labels, we use projected bounding

boxes, B∗, obtained from the 6DoF ground-truth pose la-

bels using Eq. (2) (see Fig. 3, Lprop). As explained above,

by doing so, we gain better consistency in the facial re-

gions covered by our bounding boxes, B∗. Other aspects
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Figure 3: Overview of our proposed method. Components that only appear in training time are colored in green and red,

and components that only appear in testing time are colored in yellow. Gray color denotes default components from Faster

R-CNN with FPN [42, 63]. Please see Sec. 3 for more details.

of this stage are similar to those of the standard Faster R-

CNN [63], and we refer to their paper for technical details.

The second stage of our img2pose extracts features

from each proposal with region of interest (ROI) pooling,

and then passes them to two different heads: a standard

face/non-face (faceness) classifier and a novel 6DoF face

pose regressor (Sec. 3.3).

3.2. Pose label conversion

Two stage detectors rely on proposals – ad hoc image

crops – as they train and while being evaluated. The pose

regression head is provided with features extracted from

proposals, not the entire image, and so does not have in-

formation required to determine where the face is located

in the entire photo. This information is necessary because

the 6DoF pose values are directly affected by image crop

coordinates. For instance, a crop tightly matching the face

would imply that the face is very close to the camera (small

tz in Eq. (1)) but if the face appears much smaller in the

original photo, this value would change to reflect the face

being much farther away from the camera.

We therefore propose adjusting poses for different image

crops, maintaining consistency between proposals and the

entire photo. Specifically, for a given image crop we define

a crop camera intrinsic matrix, K, simply as:

K =





f 0 cx
0 f cy
0 0 1



 (3)

Here, f equals the face crop height plus width, and cx and

cy are the x, y coordinates of the crop center. Pose values

are then converted between local (crop) and global (entire

photo) coordinate frames, as follows.

Let matrix Kimg be the projection matrix for the en-

tire image, where w and h are the image width and

height respectively, and Kbox be the projection matrix for

an arbitrary face crop (e.g., proposal), defined by B =
(x, y, wbb, hbb), where wbb and hbb are the face crop width

and height respectively, and cx and cy are the x, y coordi-

nates of the face crop’s center. We define these matrices

as:

Kbox =





w + h 0 cx + x
0 w + h cy + y
0 0 1



 (4)

Kimg =





w + h 0 w/2
0 w + h h/2
0 0 1



 (5)

Converting pose from local to global frames. Given a

pose, hprop, in a face crop coordinate frame, B, intrinsic

matrix, Kimg , for the entire image, intrinsic matrix, Kbox,

for a face crop, we apply the method described in Algo-

rithm 1 to convert hprop to himg (see Fig. 3).

Algorithm 1 Local to global pose conversion

1: procedure POSE CONVERT(hprop, B, Kbox, Kimg)

2: f ← w + h
3: tz = tz ∗ f/(wbb + hbb)
4: V = Kbox[tx, ty, tz]

T

5: [t′x, t
′

y, t
′

z]
T = (Kimg)

−1V

6: R = rot vec to rot mat([rx, ry, rz])
7: R′ = (Kimg)

−1KboxR

8: (r′x, r
′

y, r
′

z) = rot mat to rot vec(R′)

9: return himg = (r′x, r
′

y, r
′

z, t
′

x, t
′

y, t
′

z)

Briefly, Algorithm 1 has two steps. First, in lines 2–3,

we rescale the pose. Intuitively this step adjusts the camera

to view the entire image, not just a crop. Then, in steps 4–8,

we translate the focal point, adjusting the pose based on the
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difference of focal point locations, between the crop and

the image. Finally, we return a 6DoF pose relative to the

image intrinsic, Kimg . The functions rot vec to rot mat(·)
and rot mat to rot vec(·) are standard conversion functions

between rotation matrices and rotation vectors [25, 70].

Converting pose from global to local frames. To convert

pose labels, himg , given in the image coordinate frame, to

local crop frames, hprop, we apply a process similar to Al-

gorithm 1. Here, Kimg and Kbox change roles, and scal-

ing is applied last. This conversion is an important step,

since, as previously mentioned, proposal crop coordinates

vary constantly as the method is trained and so ground-truth

pose labels given in the image coordinate frame must be

converted to match these changes.

3.3. Training losses

We simultaneously train both the face/non-face classifier

head and the face pose regressor. For each proposal, the

model employs the following multi-task loss L.

L = Lcls(pi, p
∗

i ) + p∗i · Lpose(h
prop
i ,hprop∗

i )

+ p∗i · Lcalib(Q
c
i ,Q

c∗
i ),

(6)

which includes these three components:

(1) Face classification loss. We use standard binary cross-

entropy loss, Lcls, to classify each proposal, where pi is

the probability of proposal i containing a face and p∗i is

the ground-truth binary label (1 for face and 0 for back-

ground). These labels are determined by calculating the in-

tersection over union (IoU) between each proposal and the

ground-truth projected bounding boxes. For negative pro-

posals which do not contain faces, (p∗i = 0), Lcls is the only

loss that we apply. For positive proposals, (p∗i = 1), we also

evaluate the two novel loss functions described below.

(2) Face pose loss. This loss directly compares a 6DoF face

pose estimate with its ground truth. Specifically, we define

Lpose(h
prop
i ,hprop∗

i ) =
∥

∥h
prop
i − h

prop∗
i

∥

∥

2

2
, (7)

where h
prop
i is the predicted face pose for proposal i in the

proposal coordinate frame, h
prop∗
i is the ground-truth face

pose in the same proposal (Fig. 3, Lpose). We follow the

procedure mentioned in Sec. 3.2 to convert ground-truth

poses, h
img∗
i , relative to the entire image, to ground-truth

pose, h
prop∗
i , in a proposal frame.

(3) Calibration point loss. As an additional means of cap-

turing the accuracy of estimated poses, we consider the 2D

locations of projected 3D face shape points in the image

(Fig. 3, Lcalib). We compare points projected using the

ground-truth pose vs. a predicted pose: An accurate pose

estimate will project 3D points to the same 2D locations as

the ground-truth pose (see Fig. 4 for a visualization). To

this end, we select a fixed set of five calibration points,

(a) Wrong Pose Estimation (b) Correct Pose Estimation

Figure 4: Visualizing our calibration points. (a) When the

estimated pose is wrong, points projected from a 3D face

to the photo (in green) fall far from the location of these

same 3D point, projected using the ground truth (in blue);

(b) With a better pose estimate, calibration points projected

using the estimated pose fall closer to their locations fol-

lowing projection using the ground-truth pose.

Pc ∈ R
5×3, on the surface of the 3D face. Pc is selected

arbitrarily; we only require that they are not all co-planar.

Given a face pose, h ∈ R
6, either ground-truth or pre-

dicted, we can project Pc from 3D to 2D using Eq. (2). The

calibration point loss is then defined as,

Lcalib = ‖Q
c
i −Qc∗

i ‖1 , (8)

where Qc
i are the calibration points projected from 3D us-

ing predicted pose h
prop
i , and Qc∗

i is the calibration points

projected using the ground-truth pose h
prop∗
i .

4. Implementation details

4.1. Pose labeling for training and validation

We train our method on the WIDER FACE training

set [80] (see also Sec. 5.3). WIDER FACE offers manually

annotated bounding box labels, but no labels for pose. The

RetinaFace project [17], however, provides manually anno-

tated, five point facial landmarks for 76k of the WIDER

FACE training faces. We increase the number of training

pose labels as well as provide pose annotations for the vali-

dation set, using the following weakly supervised manner.

We run the RetinaFace face bounding box and five point

landmark detector on all images containing face box anno-

tations but missing landmarks. We take RetinaFace pre-

dicted bounding boxes which have the highest IoU ratio

with the ground-truth face box label, unless their IoU is

smaller than 0.5. We then use the box predicted by Reti-

naFace along with its five landmarks to obtain 6DoF pose

labels for these faces, using standard means [16, 39]. Im-

portantly, neither box or landmarks are then stored or used

in our training; only the 6DoF estimates are kept. Finally,

poses are converted to their global, image frames using the

process described in Sec. 3.2.

This process provided us with 12, 874 images contain-

ing 138, 722 annotated training faces of which 62, 827 were

7621



Method Direct? Yaw Pitch Roll MAEr X Y Z MAEt

Dlib (68 points) [33] ✗ 18.273 12.604 8.998 13.292 0.122 0.088 1.130 0.446

3DDFA [89] † ✗ 5.400 8.530 8.250 7.393 - - - -

FAN (12 points) [4] † ✗ 6.358 12.277 8.714 9.116 - - - -

Hopenet (α = 2) [64] † ✗ 6.470 6.560 5.440 6.160 - - - -

QuatNet [31] † ✗ 3.973 5.615 3.920 4.503 - - - -

FSA-Caps-Fusion [81] ✗ 4.501 6.078 4.644 5.074 - - - -

HPE [32] † ✗ 4.870 6.180 4.800 5.280 - - - -

TriNet [7] † ✗ 4.198 5.767 4.042 4.669 - - - -

RetinaFace R-50 (5 points) [17] ✓ 5.101 9.642 3.924 6.222 0.038 0.049 0.255 0.114

img2pose (ours) ✓ 3.426 5.034 3.278 3.913 0.028 0.038 0.238 0.099

Table 1: Pose estimation accuracy on AFLW2000-3D [89]. † denotes results reported by others. Direct methods, like ours,

were not tested on the ground-truth face crops, which capture scale information. Some methods do not produce or did

not report translational accuracy. Finally, MAEr and MAEt are the rotational and translational MAE, respectively. On a

400× 400 pixel image from AFLW2000, our method runs at 41 fps.

Method Direct? Yaw Pitch Roll MAEr

Dlib (68 points) [33] † ✗ 16.756 13.802 6.190 12.249

3DDFA [89] † ✗ 36.175 12.252 8.776 19.068

FAN (12 points) [4] † ✗ 8.532 7.483 7.631 7.882

Hopenet (α = 1) [64] † ✗ 4.810 6.606 3.269 4.895

QuatNet [31] † ✗ 4.010 5.492 2.936 4.146

FSA-NET [81] † ✗ 4.560 5.210 3.070 4.280

HPE [32] † ✗ 4.570 5.180 3.120 4.290

TriNet [7] † ✗ 3.046 4.758 4.112 3.972

RetinaFace R-50 (5 pnt.) [17] ✓ 4.070 6.424 2.974 4.490

img2pose (ours) ✓ 4.567 3.546 3.244 3.786

Table 2: Comparison of the state-of-the-art methods on

the BIWI dataset. Methods marked with † are reported

by others. Direct methods, like ours, were not tested on

ground truth face crops, which capture scale information.

On 933× 700 BIWI images, our method runs at 30 fps.

assigned with weakly supervised poses. Our validation set

included 3, 205 images with 34, 294 pose annotated faces,

all of which were weakly supervised. During training, we

ignore faces which do not have pose labels.

Data augmentation. Similar to others [83], we process our

training data, augmenting it to improve the robustness of

our method. Specifically, we apply random crop, mirroring

and scale transformations to the training images. Multiple

scales were produced for each training image, where we de-

fine the minimum size of an image as either 640, 672, 704,

736, 768, 800, and the maximum size is set as 1400.

4.2. Training details

We implemented our img2pose approach in PyTorch us-

ing ResNet-18 [28] as backbone. We use stochastic gradi-

ent descent (SGD) with a mini batch of two images. During

training, 256 proposals per image are sampled for the RPN

loss computation and 512 samples per image for the pose

head losses. Learning rate starts at 0.001 and is reduced

by a factor of 10 if the validation loss does not improve

over three epochs. Early stop is triggered if the model does

not improve for five consecutive epochs on the validation

set. Finally, the main training took 35 epochs. On a sin-

gle NVIDIA Quadro RTX 6000 machine, training time was

roughly 4 days.

For face pose evaluation, Euler angles are the standard

metric in the benchmarks used. Euler angles suffer from

several drawbacks [7, 31], when dealing with large yaw an-

gles. Specifically, when yaw angle exceeds±90◦, any small

change in yaw will cause significant differences in pitch and

roll (See [7] Sec. 4.5 for an example of this issue). Given

that the WIDER FACE dataset contains many faces whose

yaw angles are larger than±90◦, to overcome this issue, for

face pose evaluation, we fine-tuned our model on 300W-

LP [89], which only contains face poses with yaw angles in

the range of (−90,+90).

300W-LP is a dataset with synthesized head poses from

300W [65] containing 122, 450 images. Training pose rota-

tion labels are obtained by converting the 300W-LP ground-

truth Euler angles to rotation vectors, and pose translation

labels are created using the ground-truth landmarks, using

standard means [16, 39]. During fine-tuning, 2 proposals

per image are sampled for the RPN loss and 4 samples per

image for the pose head losses. Finally, learning rate is kept

fixed at 0.001 and the model is fine-tuned for 2 epochs.

5. Experimental results

5.1. Face pose tests on AFLW2000­3D

AFLW2000-3D [89] contains the first 2k faces of the

AFLW dataset [34] along with ground-truth 3D faces and

corresponding 68 landmarks. The images in this set have

a large variation of pose, illumination, and facial ex-

pression. To create ground-truth translation pose labels

for AFLW2000-3D, we follow the process described in

Sec. 4.1. We convert the manually annotated 68-point,

ground-truth landmarks, available as part of AFLW2000-

3D, to 6DoF pose labels, keeping only the translation part.

For the rotation part, we use the provided ground-truth in

Euler angles (pitch, yaw, roll) format, where the predicted

rotation vectors are converted to Euler angles for compar-
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Validation Test

Method Backbone Pose? Easy Med. Hard Easy Med. Hard

SotA methods using heavy backbones (provided for completeness)

SRN [11] R-50 ✗ 0.964 0.953 0.902 0.959 0.949 0.897

DSFD [41] R-50 ✗ 0.966 0.957 0.904 0.960 0.953 0.900

PyramidBox++ [68] R-50 ✗ 0.965 0.959 0.912 0.956 0.952 0.909

RetinaFace [17] R-152 ✓* 0.971 0.962 0.920 0.965 0.958 0.914

ASFD-D6 [82] - ✗ 0.972 0.965 0.925 0.967 0.962 0.921

Fast / small backbone face detectors

Faceboxes [85] - ✗ 0.879 0.857 0.771 0.881 0.853 0.774

FastFace [84] - ✗ - - - 0.833 0.796 0.603

LFFD [29] - ✗ 0.910 0.881 0.780 0.896 0.865 0.770

RetinaFace-M [17] MobileNet ✓* 0.907 0.882 0.738 - - -

ASFD-D0 [82] - ✗ 0.901 0.875 0.744 - - -

Luo et al. [46] - ✗ - - - 0.902 0.878 0.528

img2pose (ours) R-18 ✓ 0.908 0.899 0.847 0.900 0.891 0.839

Table 3: WIDER FACE results. ’*’ Requires PnP to get pose from landmarks.

Our img2pose surpasses other light backbone detectors on Med. and Hard

sets, despite not being trained to detect faces.

Figure 5: Visualizing our estimated pose

translations on WIDER FACE val. images.

Colors encode Easy (blue), Med. (green),

and Hard (red). Easy faces seem centered

close to the camera whereas Hard faces are

far more distributed in the scene.

ison. We follow others [64, 81] by removing images with

head poses that are not in the range of [−99,+99], discard-

ing only 31 out of the 2, 000 images.

We test our method and its baselines on each image,

scaled to 400 × 400 pixels. Because some AFLW2000-3D

images show multiple faces, we select the face that has the

highest IoU between bounding boxes projected from pre-

dicted face poses and ground-truth bounding boxes, which

were obtained by expanding the ground-truth landmarks.

We verified the set of faces selected in this manner and it

is identical to the faces marked by the ground-truth labels.

AFLW2000-3D face pose results. Table 1 compares

our pose estimation accuracy with SotA methods on

AFLW2000-3D. Importantly, aside from RetinaFace [17],

all other methods are applied to manually cropped face

boxes and not directly to the entire photo. Ground truth

boxes provide these methods with 2D face translation and,

importantly, scale for either pose of landmarks. This in-

formation is unavailable to our img2pose which takes the

entire photo as input. Remarkably, despite having less in-

formation than its baselines, our img2pose reports a SotA

MAEr of 3.913, while running at 41 frames per second (fps)

with a single Titan Xp GPU.

Other than our img2pose, the only method that processes

input photos directly is RetinaFace [17]. Our method out-

performs it, despite the much larger, ResNet-50 backbone

used by RetinaFace, its greater supervision in using not

only bounding boxes and five point landmarks, but also per-

subject 3D face shapes, and its more computationally de-

manding training. This result is even more significant, con-

sidering that this RetinaFace model was used to generate

some of our training labels (Sec. 4.1). We believe our su-

perior results are due to img2pose being trained to solve a

simpler, 6DoF pose estimation problem, compared with the

RetinaFace goal of bounding box and landmark regression.

5.2. Face pose tests on BIWI

BIWI [19] contains 15, 678 frames of 20 subjects in an

indoor environment, with a wide range of face poses. This

benchmark provides ground-truth labels for rotation (rota-

tion matrix), but not for the translational elements required

for full 6DoF. Similar to AFLW2000-3D, we convert the

ground-truth rotation matrix and prediction rotation vectors

to Euler angles for comparison. We test our method and its

baselines on each image using 933× 700 pixels resolution.

Because many images in BIWI contain more than a single

face, to compare our predictions, we selected the face that is

closer to the center of the image with a face score pi > 0.9.

Here, again, we verified that our direct method detected and

processed all the faces supplied with test labels.

BIWI face pose results. Table 2 reports BIWI results fol-

lowing protocol 1 [64, 81] where models are trained with

external data and tested in the entire BIWI dataset. Simi-

larly to the results on AFLW2000, Sec. 5.1, our pose esti-

mation results again outperform the existing SotA, despite

being applied to the entire image, without pre-cropped and

scaled faces, reporting MAEr of 3.786. Finally, img2pose

runtimeon the original 933× 700 BIWI images is 30 fps.

5.3. Face detection on WIDER FACE

Our method outperforms SotA methods for face pose es-

timation on two leading benchmarks. Because it is applied

to the input images directly, it is important to verify how ac-

curate is it in detecting faces. To this end, we evaluate our

img2pose on the WIDER FACE benchmark [80]. WIDER

FACE offers 32, 203 images with 393, 703 faces annotated

with bounding box labels. These images are partitioned into

12, 880 training, 3, 993 validation, and 16, 097 testing im-

ages, respectively. Results are reported in terms of detection

mean average precision (mAP), on the WIDER FACE easy,
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Figure 6: Qualitative img2pose results on WIDER FACE validation images [80]. In all cases, we only estimate 6DoF face

poses, directly from the photo, and without a preliminary face detection step. A longer version of this paper with more

qualitative results is available at: https://arxiv.org/abs/2012.07791.

medium, and hard subsets, for both validation and test sets.

We train our img2pose on the WIDER FACE training set

and evaluate on the validation and test sets using standard

protocols [17, 53, 87], including application of flipping, and

multi-scaling testing, with the shorter sides of the image

scaled to [500, 800, 1100, 1400, 1700] pixels. We use the

process described in Sec. 3 to project points from a 3D face

shape onto the image and take a bounding box containing

the projected points as a detected bounding box (See also

Fig. 3). Finally, box voting [23] is applied on the projected

boxes, generated at different scales.

WIDER FACE detection results. Table 3 compares our

results to existing methods. Importantly, the design of our

img2pose is motivated by run-time. Hence, with a ResNet-

18 backbone, it cannot directly compete with far heavier,

SotA face detectors. Although we provide a few SotA re-

sults for completeness, we compare our results with meth-

ods that, similarly to us, use light and efficient backbones.

Evidently, our img2pose outperforms models of compa-

rable complexity in the validation and test, Medium and

Hard partitions. This results is remarkable, considering that

our method is the only one that provides 6DoF pose and

direct face alignment, and not only detects faces. More-

over, our method is trained with 20k less faces than prior

work. We note that RetinaFace [17] returns five face land-

marks which can, with additional processing, be converted

to 6DoF pose. Our img2pose, however, reports better face

detection accuracy than their light model and substantially

better pose estimation as evident from Sec. 5.1 and Sec. 5.2.

Fig. 5 visualizes the 3D translational components of our

estimated 6DoF poses, for WIDER FACE validation im-

ages. Each (tx, ty, tz) point is color coded by: Easy (blue),

Medium (green), and Hard (red). This figure clearly shows

how faces in the easy set congregate close to the camera and

in the center of the scene, whereas faces from the Medium

and Hard sets vary more in their scene locations, with Hard

especially scattered, which explains the challenge of that set

and testifies to the correctness of our pose estimates.

Fig. 6 provides qualitative samples of our img2pose on

WIDER FACE validation images. We observe that our

method can generate accurate pose estimation for faces with

various pitch, yaw, roll angles, and for images under vari-

ous scale, illumination, occlusion variations. These results

demonstrate the effectiveness of img2pose for direct pose

estimation and face detection.

6. Conclusions

We propose a novel approach to 6DoF face pose estima-

tion and alignment, which does not rely on first running a

face detector or localizing facial landmarks. To our knowl-

edge, we are the first to propose such a multi-face, direct ap-

proach. We formulate a novel pose conversion algorithm to

maintain consistency of poses estimated for the same face

across different image crops. We show that face bound-

ing box can be generated via the estimated 3D face pose –

achieving face detection as a byproduct of pose estimation.

Extensive experiments have demonstrated the effectiveness

of our img2pose for face pose estimation and face detection.

As a class, faces offer excellent opportunities to this mar-

riage of pose and detection: faces have well-defined appear-

ance statistics which can be relied upon for accurate pose

estimation. Faces, however, are not the only category where

such an approach may be applied; the same improved accu-

racy may be obtained in other domains, e.g., retail [24], by

applying a similar direct pose estimation step as a substitute

for object and key-point detection.
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