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Abstract

Perceptual metrics based on features of deep Convolu-

tional Neural Networks (CNNs) have shown remarkable

success when used as loss functions in a range of com-

puter vision problems and significantly outperform classi-

cal losses such as L1 or L2 in pixel space. The source of

this success remains somewhat mysterious, especially since

a good loss does not require a particular CNN architecture

nor a particular training method. In this paper we show that

similar success can be achieved even with losses based on

features of a deep CNN with random filters. We use the tool

of infinite CNNs to derive an analytical form for percep-

tual similarity in such CNNs, and prove that the perceptual

distance between two images is equivalent to the maximum

mean discrepancy (MMD) distance between local distribu-

tions of small patches in the two images. We use this equiva-

lence to propose a simple metric for comparing two images

which directly computes the MMD between local distribu-

tions of patches in the two images. Our proposed metric is

simple to understand, requires no deep networks, and gives

comparable performance to perceptual metrics in a range

of computer vision tasks.

1. Introduction

Following the enormous success of CNNs for object

recognition tasks [37, 24] and evidence for the generality

of their learned representations [11], Gatys et al. [15] sug-

gested comparing images in the feature space of such net-

works’ intermediate layers instead of in pixel space. They

suggested that such representations are more sensitive to

the semantic content of the image and less to the exact ap-

pearance of the objects in the image. Following their suc-

cess, the use of perceptual losses has spread and showed

promising results for a variety of tasks: ranging from image

restoration tasks, such as super-resolution [20, 26], image

deblurring [25] and image inpainting [28], image genera-

tion [12, 14] and image domain transfer [6]. Despite its

universal success and applicability, perceptual losses suffer

from several drawbacks:

• Computational cost - computing intermediate feature

representations and propagating gradients backwards

through a large object recognition CNN can be very

expensive.

• Domain specificity - while representations learned on

ImageNet [10] tend to transfer well to a range of com-

puter vision tasks, such features may not be applica-

ble for domains where the image statistics differ dras-

tically from those in ImageNet.

• Interpretability - it is not well understood when, how

and why perceptual losses succeed, and how to tune

their hyperparameters. As evidence for the severity of

this problem, one can observe the large inconsistency

in the literature in the choice of most hyper-parameters

for perceptual loss - the choice of specific layers (or

combinations of them), whether features are extracted

pre or post activation and whether to normalize activa-

tions prior to distance computation.

In this work we derive a better understanding of the rea-

sons behind the success of the commonly used perceptual

losses, and use this understanding to derive a simpler, well

understood loss that can serve as an alternative. Specifi-

cally, we show that losses based on CNNs with random fil-

ters are almost equally “perceptual” and can serve as a suit-

able loss function in image prediction tasks. We then use

the recent tool of infinite random networks to derive an ana-

lytical form for perceptual loss in such CNNs. Specifically,

we prove that the perceptual distance between two images

is equivalent to the maximum mean discrepancy (MMD)

distance between local distributions of small patches in the

two images. We use this equivalence to propose a simple

metric for comparing two images which directly computes

the MMD between the distribution of patches in the two im-

ages. Our proposed metric is simple to understand, requires

no deep networks, and gives comparable performance to

perceptual metrics in a range of computer vision tasks.

1.1. The Success of Perceptual Losses

The effectiveness of perceptual losses compared to stan-

dard losses is evidenced by two empirical successes: (1)
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Figure 1. The generalized mean image problem. Given a set of target images (left), we find an image that minimizes the sum of losses

with respect to all targets (right). In (A) sets were generated using StyleGAN as described in Section 5, and in (B) target images consist of

slightly different crops of a single image from ImageNet. When the loss is L2, the optimal image is blurry , while both perceptual losses

and our new, proposed loss, give sharp, realistic images.

when used as losses in tasks in which the targets are natural

images they lead to sharp, realistic images while standard

losses lead to blurry, non-realistic images (e.g. [3]) and (2)

they better correlate with human judgements of patch simi-

larity [40]. In this section, we illustrate these successes and

also show the surprising utility of perceptual losses based

on random filters in those two scenarios.

To investigate the effectiveness of perceptual losses in

image prediction tasks, i.e. tasks in which the targets are

natural images, we first consider why the mean squared er-

ror (MSE) over pixel values fails on such tasks. Consider

for example, the task of image super-resolution in which

for every low resolution (LR) image one needs to predict the

correct high resolution (HR) image. A trained model which

generalizes well will minimize the reconstruction loss with

respect to the true distribution of HR images given LR im-

ages. Since such a model is deterministic, for a single LR

image it should predict a single HR image even though

many plausible HR images could have been mapped to the

same LR image. The optimal model will choose the im-

age that minimizes the average expected reconstruction loss

over the distribution of possible HR images. When MSE is

used, this is simply the mean. Since the mean of many sharp

images with non-aligned textures and edges is a blurry im-

age, the predictions of the model will be blurry. Thus, a

sensible requirement from a loss function would be that the

image which minimizes the expected loss over all probable

target images is sharp and realistic.

To empirically investigate this property in controlled set-

ting, we define the “Generalized Image Mean” (GIM) op-

timization problem, where given a set of target images

Y = {y1, ..., yN} and an image reconstruction loss L we

seek to find an image ŷ that minimizes the sum of the losses

with respect to all target images:

ŷ = argmin
y

1

N

∑

i

L(y, yi) (1)

For the MSE loss this reduces to the mean of the set Y and

for any differentiable loss we can approximate it by opti-

mizing the value of ŷ directly, using Stochastic Gradient

Descent (SGD). Figure 1 shows results for the GIM prob-

lem for different sets and losses. In the first two rows, Y

is a set of samples generated by StyleGAN [22] for a small

neighborhood of latent codes and in the last two rows these

are slightly different crops of the same image. When the L2

loss is used, the optimal image is clearly blurry and non-

realistic. However, when the loss function is the percep-

tual loss with a trained VGG network, the optimal image is
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sharper and much more realistic. These illustrative results

confirm previous reports (e.g. [3, 5]) and demonstrate that

the effectiveness of perceptual losses can be observed even

in simple prediction problems.

1.2. Unreasonable Effectiveness of Random Filters

In the work of Zhang et al. [40] randomly initialized net-

works were found to be as “perceptual” as low level losses

and far less consistent with human judgements compared to

trained CNNs. The judgements were based on a two alter-

native forced choice (2AFC) task, where each trial is com-

posed of a random reference image patch and two random

deformations of the patch. Subjects are asked to choose

which of the two deformations is more similar perceptu-

ally to the reference patch. In contrast to their results, we

found that by adding a few simple modifications, random

networks can achieve comparable performance to learned

networks on this task. First, to reduce the variance of pre-

dicted judgements, we compute each 2AFC judgement by

initializing 20 random networks and using voting between

all results. Second, we constrain the random filters in the

first layer to have zero-mean, thus ignoring the DC com-

ponent for every channel (by subtracting the mean of the

randomly drawn filter). We evaluate random VGG16 net-

works using this scheme and obtain accuracy closer to that

of supervised methods as can be seen in figure 2.

Motivated by the surprising success of these random net-

works, we turn to analyze a simpler CNN architecture that

consists of the standard “ingredients” of common CNNs:

convolutions and pooling layers, which we call the Simple-

CNN (S-CNN). This architecture consists of a single spatial

convolution with kernel size P followed by D 1×1 convolu-

tion layers and a single average pooling layer with window

size W and strides S. All intermediate layers have constant

width C and all convolutional layers are followed by ReLU

activation. This architecture shares some similarities with

previous works which investigated the use of limited local

receptive fields and 1× 1 convolutions [4, 34]. As shown in

figure 2, random networks of this architecture with param-

eters P = 3, D = 6, W = 32, S = 16 and C = 1024
work significantly better than low-level metrics and slightly

better than random VGG in the 2AFC experiment.

Figure 1 shows that random networks also work surpris-

ingly well when used as loss functions for the GIM task.

Again, we compute ŷ using equation 1 where the loss is a

“perceptual” loss with random CNNs. The computed image

ŷ is sharp and realistic, comparable to the predictions when

a trained VGG is used for the loss. This is true both for a

random VGG network and a random S-CNN.

In summary, our results reaffirm previous reports regard-

ing the remarkable effectiveness of perceptual losses com-

pared to standard losses. However, the success of random

CNNs challenges the conventional wisdom that this success
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Figure 2. Test accuracy on the CNN-based and traditional image

distortion 2AFC task from [40]. Trained CNNs, random CNNs

and our suggested MMD loss, significantly outperform classic

low-level distance metrics.

has to do with the fact that CNNs trained on image discrim-

ination learn representations that are semantically meaning-

ful. How, then, can we understand the success of perceptual

losses?

2. Analysis: Perceptual Similarity in Ran-

dom S-CNNs Converges to MMD Between

Patch Distributions.

Our main analytical result shows that perceptual sim-

ilarity between two images using a random S-CNN con-

verges to a distance between the local distribution of small

patches in the two images. The distance between distri-

butions is measured using Maximum Mean Discrepancy

(MMD) [17]. Roughly speaking, given two distributions

P (x), Q(x), MMD measures the maximal difference be-

tween the expectations of a smooth function of x in the two

distributions. We now give the formal definition of MMD

and describe its properties before stating our result.

Definition: given two distributions P,Q, and a norm

over functions ‖f‖H whose reproducing kernel is K, the

MMD between P,Q is given by:

MMD(P,Q) = max
‖f‖H<1

EP [f(x)]− EQ[f(x)] (2)

Similar to the Wasserstein distance [1], the MMD be-

tween the distributions P and Q is given by a critic function

f(x). If two distributions are identical, then for any critic

function we will have EP [f ] = EQ[f ] and the more dissim-

ilar the distributions, the larger the difference. The critic is

constrained to have unit Hilbert norm in function space. For

the commonly used RBF Kernel, ‖f‖H penalizes the mag-

nitude of the Fourier transform of f at different frequencies

and thus measures the smoothness of f .
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As shown by [17], under reasonable assumptions on the

kernel K, the MMD distance between two distributions is

zero if and only if P = Q. However, unlike the Wasserstein

distance and other distances between distributions, it can be

efficiently computed in high-dimensions.

Given N IID samples si from P and N IID samples ti
from Q, an empirical (biased) estimate of the MMD be-

tween P and Q is given by:

ˆMMDK(S, T ) =
1

N2

∑

i,j

K(si, sj)−2K(si, tj)+K(ti, tj)

Theorem 2.1. L2 distance over normalized representa-

tions in the post-pooling layer of an infinite random S-CNN

with patch size P and pooling window size W is equal to

the average ˆMMDK distance between the distributions

of patches of size P within windows of size W in the two

images. The kernel K(p1, p2) of two patches is a robust,

monotonically decreasing function of the L2 distance be-

tween the two patches.

Proof. The proof follows from a line of recent results re-

garding infinitely-wide CNNs [33, 8]. Given two images

x1, x2, a neural network architecture and a layer h, these

results allow us to calculate K(x1, x2), defined as the dot

product between h(x1) and h(x2) in an infinite CNN with

that architecture. When computing perceptual similarity,

we are measuring the L2 distance between representations

which can be written as ‖h(x1)− h(x2)‖
2 = K(x1, x1)−

2K(x1, x2) +K(x2, x2). By using the form of K derived

in previous work, we arrive at the result. For completeness,

a full proof is given in the supplementary material.

Corollary: If the set of possible outputs {yi} for a given

input x are a sequence of images that all have the same dis-

tribution over patches of size P in all pooling windows of

size W , then ŷ defined by equation 1 using a perceptual loss

with an infinite random S-CNN should have the same local

distribution over patches of size P as each of the original

images.

Proof: This follows directly from the fact that

MMD(P,Q) is zero if and only if P = Q.

While our theorem is for the simplified CNN with ran-

dom weights and infinite width, similar results can be ob-

tained for an S-CNN with learned weights and finite width:

the perceptual distance is still the MMD between the two

distributions, but the kernel between patches K is now a

learned kernel which may not satisfy the conditions that en-

sure that the MMD is zero if and only if the two distributions

are the same.

Our analysis suggests an alternative explanation for the

success of perceptual losses in many settings. If all the

training images have the same local distributions over

patches, the predicted image will have the same distribu-

tion. Thus if all the training images have sharp gradients,

we should expect the predicted image to have sharp gradi-

ents as well.

3. A New Loss

If indeed the success of perceptual loss is largely due to

its minimization of the distance between distributions of lo-

cal patches, we should be able to achieve similar success

with a more direct loss. To test this hypothesis, we define

a new loss that directly measures the average ˆMMDK dis-

tance between the distributions of patches of size P within

windows of size W in the two images. Rather than using

deep networks to define the kernel between two patches, we

simply replace it with the standard Gaussian RBF kernel,

defined as:

k(p1, p2) = exp

(

−
‖p1 − p2‖

2

2σ2

)

(3)

As mentioned above, the MMD distance between two dis-

tributions over patches P (p) and Q(p) with this kernel mea-

sures how different EP (f) can be from EQ(f), where f is

constrained to be a smooth function of the patches.

Our MMD loss has four hyper-parameters: the band-

width of the Gaussian kernel (σ), the size (W ) and strides

(S) of the pooling window and the patch size (P ). In ad-

dition, one can decide whether or not to use channel nor-

malization (in which the DC of the patch in each channel is

ignored when comparing the two patches). All the results

in this paper used patch size of 3, W = 32 and S = 16
corresponding to the post-pooling features of the S-CNN.

We varied σ for different applications but it was always in

the range (0.5, 0.75). We used channel normalization only

in the 2AFC experiments.

Computing the distance for all pairs of patches within ev-

ery pooling window can become computationally intensive

for large pooling windows. Therefore, we approximate the

Gaussian kernel using Random Fourier Features [36]. Us-

ing this approximation, the MMD loss can be represented

in any auto differentiation framework as a two layer CNN,

where the first layer is a convolution with random weights

w ∼ N
(

0, 1

σ2

)

and biases b ∼ U (0, 2π), followed by co-

sine activations and an average pool layer with a pooling

window W and pooling strides S.

Our new loss function was motivated by the success of

random S-CNNs in the GIM experiments and the 2AFC task

of [40]. As can be seen in figures 1 and 2, our loss which di-

rectly computes distances between distributions of patches

in the two images performs very well on both tasks. In the

2AFC task it is within the confidence interval of the pre-

trained VGG.

4. Related Work

Comparing two images by measuring the distance be-

tween their local histograms has a long history in Computer
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Figure 3. How well do different distance metrics preserve the

statistics of target distribution? We compute the Sliced Wasser-

stein Distance over patches in different Laplacian Pyramid scales

[21] and show that for both of our image optimization tasks, MMD

and VGG (either trained or randomly initialized) outperform the

MSE.

Vision (e.g. [16, 9]). Our analytical result shows that the

modern way of comparing images (using perceptual dis-

tance in a CNN) is closely related to this classical idea. A

major difference between the classical idea and the MMD

approach is that the MMD distance does not require bin-

ning the patches into a discrete histogram and can work

directly with the non-binned samples. Among the differ-

ent works that have considered maintaining image statistics

as a goal of image prediction, the closest to our work is

that of [31, 30]. In their work, Mechrez et al. introduced

a loss function called “Contextual Loss” that approximates

the KL-divergence between the global distribution of local

features in the two images. While this loss function can

be applied directly to the pixel values of image patches, in

practice, they focused on the use of such loss above a CNN

based image representation. Therefore, it is framed mainly

as a complementary method to the standard perceptual loss

and not as a replacement as in our approach.

In recent years, many works have investigated the be-

havior of infinitely wide random CNNs [33, 27, 19] but

mainly as a tool for analyzing the inductive bias of discrimi-

native neural networks and their generalization capabilities.

More closely related to our work, is that of Cheng et al.

[7] which analyzed the prior induced by CNNs that output

an image for a fixed noise input and utilized this prior for

image restoration inference problems. To the best of our

knowledge, our work is the first to utilize this analytic tool

for better understanding of the use of CNNs as feature ex-

tractors for images comparison.

Previous works [38, 13] showed that for texture synthe-

sis and style transfer, using the second order statistics of

random networks is as successful as pretrained CNNs. He

et al. [18] devised a data-dependent initialization scheme

for VGG and showed comparable results to the pre-trained

network on style transfer and texture synthesis tasks. In this

context, we further support their findings and extend them

to the general context of image prediction tasks. Bruna et al

[5] compared feature representations of a pretrained VGG

network and the hand-crafted scattering network (which

represents average pooling of local features) as part of

an optimization based method for image super-resolution

where both representations performed comparably.

5. Experiments

In the first set of experiments, we re-examined the GIM

problem (as in figure 1) but in a quantitative fashion. Specif-

ically we repeatedly created datasets Y = {yi} of different

possible outputs for a given input x and used equation 1 to

solve for ŷ. We refer to each set Y as a problem instance

and each problem instance was created using one of two

scenarios:

Random Spatial Transformations - For every problem

instance in this setting we first draw a random example from

ImageNet [10]. This image is then resized such that its short

side is of 256 pixels and the aspect ratio is preserved. Then,

for each example, a random square crop of size 128 is drawn

within a [−4, 4] range from the center crop at each direc-

tion. Such uncertainty over y aims to approximate the type

of uncertainty over high-resolution images observed in the

super-resolution task or image deblurring with motion blur.

StyleGAN Synthetic Faces - We use StyleGAN [22],

a state of the art GAN architecture, trained for generating

samples of face images. For each problem instance, we first

draw a single z code from the original predefined distribu-

tion and then draw N modulated latent codes from a small

Gaussian around z and generate the set of N images that

those codes are mapped to by the generator.

For every problem instance of the described problem set-

tings, we sample 50 target examples. For every loss evalu-

ated, we initialize the image with the mean of the 50 exam-

ples (equivalent to pretraining with L2 loss). The image is

optimized with PyTorch [35] through SGD with the com-

monly used Adam optimizer [23] with default parameters.

See the supplementary material for implementation details.

For quantitative evaluation we focus on the perceptual

loss with pretrained VGG (referred to henceforth as VGG

loss) and our suggested MMD loss. We generate 100 ran-

dom instances for each of the two scenarios and compute

the optimal predicted image for each loss once. Similar to

the evaluation of image generation models, we mainly wish

to examine how perceptive the results are, i.e. how well does

the distribution of image means fits the distribution of input

examples, and not how well the specific images are recon-

structed. We use the Sliced Wasserstein Distance (SWD)

over image patches in a Laplacian pyramid as introduced

by Karras et al. [21] for GAN evaluation. We use the orig-
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Figure 4. Qualitative comparison of image super-resolution results for different loss functions. Our new loss clearly produces sharper

results than both MSE and VGG based perceptual loss, while also producing less artifacts than the VGG loss.

inal implementation 1 with default parameters. It should be

noted that although both the MMD loss and SWD compare

images using patch statistics, SWD uses larger patches and

multiple scales. In general we found that SWD scores are

consistent with our qualitative impression regarding the re-

sults (see additional results in supplementary material).

Figure 3 shows the results. Consistent with our hypothe-

sis, in both scenarios random VGG networks performed as

well as trained VGG and our simple MMD was comparable

to VGG. All three losses performed significantly better than

L2 and the largest gap as expected is observed in the higher

pyramid levels (consistent with the qualitative observation

that L2 reconstructions are blurry).

1https : / / github . com / tkarras / progressive _

growing_of_gans

5.1. Super resolution

To investigate the performance of the MMD loss on real

world problems we turn to the task of ×4 image super reso-

lution. Our implementation is based on the super-resolution

demo from the official PyTorch examples package2 with

some modifications. See the supplementary material for im-

plementation details.

We evaluate our models over the standard super reso-

lution benchmark datasets: BSD100 [29], Set14 [39] and

Set5 [2], and compare our results with those of the mod-

els from [26] obtained by different combinations of L2 dis-

tance on pixels, perceptual losses and adversarial loss. We

recompute the evaluation metrics for these baseline meth-

ods based on their predicted images 3 . We compare the

2https://github.com/pytorch/examples
3https://tinyurl.com/ammv9a37
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Figure 5. An example for a GIM tasks in which VGG succeeds and MMD fails. In (A) sets were generated using StyleGAN as described

in Section 5 with larger variance, and in (B) target images consist of random CelebHQ image and its 9 nearest neighbors. While the MMD

loss fails, adding a local term equivalent to pre-pooling layers of the S-CNN in MMD++ results in significant improvement. Replacing the

multi-layer VGG loss with only the deepest of the five layers in VGG– also introduces very strong artifacts.

Dataset BSD100 Set5 Set14

Metric NIQE PSNR SWD NIQE PSNR SWD NIQE PSNR SWD

Method Loss

Ground

Truth
3.13 - - 4.85 - - 4.78 - -

Bicubic 5.76 24.25 56.21 6.32 25.89 48.00 5.98 23.73 53.24

MSE 5.38 26.05 47.71 6.40 29.61 39.17 5.28 26.26 56.84

VGG 7.55 24.88 27.87 7.73 28.22 23.81 7.40 25.09 28.14
Our

Method
MMD 4.55 23.54 26.89 4.67 26.38 24.40 4.38 23.61 18.92

MSE 5.27 26.27 48.23 6.08 30.05 43.42 6.86 25.57 55.94

V GG2 2 7.19 25.06 32.41 6.53 28.69 30.88 5.19 24.61 41.08

Adversarial

+ MSE
3.78 24.45 30.47 4.10 28.68 31.76 3.52 24.30 41.68

Adversarial

+ V GG2 2

3.45 24.20 27.82 4.40 27.67 22.71 3.82 23.74 34.60SRGAN

Adversarial

+ V GG5 4

3.37 23.70 14.09 3.91 27.23 14.45 3.66 23.43 14.04

Table 1. Summary of quantitative results on the super-resolution task for our method and relevant baselines on standard benchmark test

sets. Methods involving adversarial losses appear in gray. Metrics include the no-reference image quality assessment method NIQE (lower

is better), the standard PSNR and SWD. For each metric, both the best performing method and the best among non-adversarial methods

appear in bold.

models using both reference and no-reference metrics. For

the reference based evaluation, we use the standard PSNR.

As a no-reference metric we use NIQE [32] which com-

pares the statistics of large image patches to a prior model

learned on natural scenes and was previously used to eval-

uate super resolution methods in [3] and SWD over three

levels of the Laplacian Pyramid. We compute all metrics on

the RGB images without any post-processing and use the

standard MATLAB implementation of NIQE.

Predictions for some random examples appear in fig-

ure 4. It is clear that amongst our different models, the

MMD model produces the sharpest results and while it pro-

duces some noisy high-frequency artifacts, they are minor

compared to the VGG model. Quantitatively, it is clear that

our MMD model, although relying only on low-level patch

statistics, produces the highest quality results (in terms of

NIQE score and SWD) between all non-adversarial meth-

ods. In contrast, our suggested loss function consistently
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obtains the lowest PSNR across datasets, indicating that it

encourages the network to distort the images further from

the ground truth images (at least in terms of low level met-

rics). Comparing our and SRGAN’s performance with MSE

and VGG losses, it is clear that there is a slight positive trend

towards SRGAN’s implementation. This can be explained

by the advantage of SRGAN’s training scheme in terms of

dataset size (×35), training iterations (×8) and architec-

ture complexity (as explained in the supplementary mate-

rial). In light of this, the MMD loss can potentially achieve

better performance as more computationally intensive train-

ing should produce even better results - closer to the ball-

park of adversarial training. These results are also in line

with the results obtained in our GIM experiment for spa-

tial transformations, where MMD produced the best results.

Interestingly, both in our experiments and in the SRGAN

work, training with only a combination of the VGG loss and

MSE results in degradation in NIQE scores for all datasets

compared to using only MSE loss. This may be due to the

sensitivity of the NIQE score to high-frequency artifacts,

as it mainly relies on the statistics of local image deriva-

tives. While the VGG results, in both our configuration and

SRGAN’s implementation (with only a single VGG layer)

show very strong periodic artifacts, it is possible that a dif-

ferent choice of layers would produce results closer in qual-

ity to those of the MMD loss. This again demonstrates the

difficulty of working with an uninterpretable loss function -

the space of different CNN-based perceptual loss configura-

tions is large and once training fails, it is hard to determine

what change can resolve it. Moreover, while in the MMD

the parameters factorize the spatial aspects (patch size and

pooling size) and the robustness to outliers (σ), our theoret-

ical results suggest that for VGG, these are entangled, as the

deeper the layer both the robustness and the spatial aspects

increase.

6. Limitations and Extensions

While our results show that the performance of the

MMD loss is comparable to that of the VGG loss in various

settings, there are other settings where the behavior is quite

different. This is particularly true when the losses are used

to compare images that are highly dissimilar. figure 5 shows

two examples for the GIM problem. In the top figures, we

create sets of images from StyleGAN that have greater vari-

ability compared to figure 1 and in the bottom figures we

create a set of 10 images Y by taking a random CelebHQ

[21] image and its 9 nearest neighbors in the dataset. In

both cases, finding the generalized mean using MMD gives

highly nonrealistic images while VGG produces sharp im-

ages (see figure 5).

One way of understanding this failure of MMD, is that as

shown in theorem 2.1, it is equivalent to a “perceptual loss”

that is based on a single layer of an infinite random S-CNN.

In contrast, losses based on VGG almost always use multi-

ple layers. In fact, as shown in figure 5 when we use only

the last layer of VGG (referred to as VGG- in the figure)

we also obtain highly nonrealistic images. While optimiz-

ing the MMD loss by itself can be beneficial when the patch

distribution of possible target images is similar, this is not

necessarily the case when the patch distributions differ. In

that case, an optimal image would match the distribution of

patches randomly drawn from all target images (see analy-

sis in supplementary material) which can explain the strong

artifacts in figure 5.

It follows directly from the proof of Theorem 2.1 that for

all layers other than the post-pooling layer, the equivalent

perceptual loss is a robust loss over corresponding patches

in the two images: L(x, y) = 2 − 2
∑

i K(pi, qi) where

qi, pi are ith patches in x, y respectively. Thus the top-left

P × P patch in one image is compared to the top-left patch

in the second image, and this is repeated for all patches at

all locations. As shown in figure 5, a combination of a ro-

bust loss over patches with the MMD loss (referred to as

MMD++ in the figure) produces much better images com-

pared to pure MMD. Such a loss also reduces many of the

periodic artifacts that are observed with the pure MMD loss

in our experiments (see supplementary material). The sup-

plementary material also shows that when the two images

to be compared are more dissimilar, more differences are

observed between losses based on trained VGG networks

and losses based on random VGG networks, although most

of these differences disappear when using trained weights

only for the convolutions in the very first layer of VGG and

random weights for all other layers.

7. Conclusion

As noted by previous authors, perceptual losses are re-

markably effective in image prediction problems and lead to

sharper, more realistic images when compared to standard

losses such as MSE. Furthermore, they are much better than

standard losses in predicting human similarity judgements.

One explanation for this success is that CNNs trained on

ImageNet learn semantically meaningful features. In this

work, we have shown that CNNs with random filters can

perform comparable to trained features on both tasks, which

argues against the importance of semantically meaningful

features as an explanation. As an alternative explanation,

we used the tools of infinite random networks to show that

perceptual losses in a CNN with random filters converge to

the MMD distance between distributions of local patches

in the two images. We then used this insight to devise a

new loss which requires no pretrained deep networks and

is simple to understand yet retains many of the successful

properties of perceptual losses.
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Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

[2] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and

Marie Line Alberi-Morel. Low-complexity single-image

super-resolution based on nonnegative neighbor embedding.

2012.

[3] Yochai Blau and Tomer Michaeli. The perception-distortion

tradeoff. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 6228–6237,

2018.

[4] Wieland Brendel and Matthias Bethge. Approximating cnns

with bag-of-local-features models works surprisingly well on

imagenet. arXiv preprint arXiv:1904.00760, 2019.

[5] Joan Bruna, Pablo Sprechmann, and Yann LeCun. Super-

resolution with deep convolutional sufficient statistics. arXiv

preprint arXiv:1511.05666, 2015.

[6] Qifeng Chen and Vladlen Koltun. Photographic image syn-

thesis with cascaded refinement networks. In Proceedings of

the IEEE international conference on computer vision, pages

1511–1520, 2017.

[7] Zezhou Cheng, Matheus Gadelha, Subhransu Maji, and

Daniel Sheldon. A bayesian perspective on the deep im-

age prior. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 5443–

5451, 2019.

[8] Youngmin Cho and Lawrence K Saul. Kernel methods for

deep learning. In Advances in neural information processing

systems, pages 342–350, 2009.

[9] Navneet Dalal and Bill Triggs. Histograms of oriented gra-

dients for human detection. volume 1, pages 886–893, 07

2005.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

[11] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,

Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep

convolutional activation feature for generic visual recogni-

tion. In International conference on machine learning, pages

647–655, 2014.

[12] Alexey Dosovitskiy and Thomas Brox. Generating images

with perceptual similarity metrics based on deep networks.

arXiv preprint arXiv:1602.02644, 2016.

[13] Len Du. How much deep learning does neural style trans-

fer really need? an ablation study. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer

Vision, pages 3150–3159, 2020.

[14] Aviv Gabbay and Yedid Hoshen. Demystifying inter-class

disentanglement. In International Conference on Learning

Representations, 2019.

[15] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2414–2423, 2016.

[16] Kristen Grauman and Trevor Darrell. The pyramid match

kernel: Efficient learning with sets of features. J. Mach.

Learn. Res., 8:725–760, May 2007.

[17] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-

hard Schölkopf, and Alexander Smola. A kernel two-sample

test. The Journal of Machine Learning Research, 13(1):723–

773, 2012.

[18] Kun He, Yan Wang, and John Hopcroft. A powerful gener-

ative model using random weights for the deep image repre-

sentation. arXiv preprint arXiv:1606.04801, 2016.

[19] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neu-

ral tangent kernel: Convergence and generalization in neural

networks. arXiv preprint arXiv:1806.07572, 2018.

[20] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

European conference on computer vision, pages 694–711.

Springer, 2016.

[21] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,

and variation. arXiv preprint arXiv:1710.10196, 2017.

[22] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4401–4410, 2019.

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Communications of the ACM, 60(6):84–90, 2017.

[25] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,
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