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Abstract

We propose a deep network that can be trained to tackle

image reconstruction and classification problems that in-

volve detection of multiple object instances, without any su-

pervision regarding their whereabouts. The network learns

to extract the most significant K patches, and feeds these

patches to a task-specific network – e.g., auto-encoder or

classifier – to solve a domain specific problem. The chal-

lenge in training such a network is the non-differentiable

top-K selection process. To address this issue, we lift the

training optimization problem by treating the result of top-K

selection as a slack variable, resulting in a simple, yet ef-

fective, multi-stage training. Our method is able to learn to

detect recurring structures in the training dataset by learning

to reconstruct images. It can also learn to localize struc-

tures when only knowledge on the occurrence of the object is

provided, and in doing so it outperforms the state-of-the-art.

Code available at https://github.com/ubc-vision/mist

1. Introduction

Finding and processing multiple instances of character-

istic entities in a scene is core to many computer vision

applications, including object detection [42, 20, 41], pedes-

trian detection [11, 46, 60], and keypoint localization [34, 2].

In traditional pipelines, it is common to localize entities by

selecting the top-K responses in a heatmap and use their lo-

cations [34, 2, 14]. However, this type of approach does not

provide a gradient with respect to the heatmap, and cannot

be directly integrated into neural network-based systems.

To overcome this challenge, previous work proposed

to use grids [40, 20, 10] to simplify the formulation by

isolating each instance [58], or to optimize over multiple

branches [38]. While effective, these approaches require

additional supervision to localize instances, and do not gen-

eralize well outside their intended application domain. Other

formulations, such as sequential attention [1, 18, 12] and

channel-wise approaches [62] are problematic to apply when

the number of instances of the same object is large, as we

show later through experiments.

Here, we introduce a novel way to tackle this problem,

which we term Multiple Instance Spatial Transformer, or

MIST for brevity. As illustrated in Figure 1 for the image syn-

thesis task, given an image, we first compute a heatmap via

a deep network whose local maxima correspond to locations

of interest. From this heatmap, we gather the parameters of

the top-K local maxima, and then extract the corresponding

collection of image patches via an image sampling process.

We process each patch independently with a task-specific

network, e.g., an image decoder, and aggregate the network’s

output across patches.

Training a pipeline that includes a non-differentiable se-

lection/gather operation is non-trivial. Thus, we propose

to lift the problem to a higher dimensional one by treating

the parameters defining the interest points as slack variables,

and introduce a hard constraint that they must correspond

to the output of the heatmap network. This constraint is

realized by introducing an auxiliary function that generates

a heatmap given a set of interest point parameters. We then

solve for the relaxed version of this problem, where the hard

constraint is turned into a soft one, and the slack variables

are also optimized within the training process. Critically,

our training strategy allows the network to incorporate both

non-maximum suppression and top-K selection. We evaluate

the performance of our approach for 1� recovering the basis

functions that created a given texture, 2� detection and clas-

sification of handwritten digits in cluttered scenes, and 3�

object detection on natural images, all without any location

supervision.

Contributions In summary, in this paper we:

• propose an end-to-end training method that allows the use

of top-K selection;

• show that our framework can reconstruct images as parts,

as well as detect/classify instances without any location

supervision;

• outperform the state of the art in various scenarios, includ-

ing on natural images.
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2. Related work

Focusing on a sub-region in an image is in an essence

an attention model. Attention models and the use of lo-

calized information have been actively investigated in the

literature. Some examples include discriminative tasks such

as fine-grained classification [47], pedestrian detection [60],

and generative ones such as image synthesis from natural

language [28]. They have also been studied in the con-

text of more traditional Multiple Instance Learning (MIL)

setup [24]. We now discuss a selection of representative

works, and classify them according to how they deal with

multiple instances.

Grid-based methods. Since the introduction of Region

Proposal Networks (RPN) [42], grid-based strategies have

been used for dense image captioning [29], instance seg-

mentation [20], keypoint detection [16], and multi-instance

object detection [41]. Recent improvements to RPNs attempt

to learn the concept of a generic object covering multiple

classes [45], and to model multi-scale information [7]. The

multiple transformation corresponding to separate instances

can also be densely regressed via Instance Spatial Trans-

formers [55], which removes the need to identify discrete

instance early in the network. However, all these methods

are fully supervised, requiring both class labels and object

locations for training.

Heatmap-based methods. Heatmap-based methods have

recently gained interest to detect features [58, 38, 10],

find landmarks [62, 36], and regress human body key-

points [52, 37]. While it is possible to output a separate

heatmap per class [62, 52], most heatmap-based approaches

do not distinguish between instances. [58] re-formulate the

problem based on each instance, but in doing so introduce a

sharp difference between training and testing. Grids can also

be used with heatmaps [10], but this results in an unrealistic

assumption of uniformly distributed detections in the image.

Overall, heatmap-based methods excel when the “final” task

of the network is to generate a heatmap [36], but are prob-

lematic to use as an intermediate layer in the presence of

multiple instances.

Sequential inference methods. Another way to approach

multi-instance problems is to attend to one instance at a

time in a sequentially. Training neural network-based mod-

els with sequential attention is challenging, but approaches

using policy gradient [1] and differentiable attention mech-

anisms [18, 12] have achieved some success for images

comprising small numbers of instances. However, Recurrent

Neural Networks (RNN) often struggle to generalize to se-

quences longer than the ones encountered during training,

and while recent results on inductive reasoning are promis-

ing [19], their performance does not scale well when the

number of instances is large.

Knowledge transfer. To overcome the acquisition cost of

labelled training data, one can transfer knowledge from la-

beled to unlabeled dataset. For example, [25] train on a

single instance dataset, and then attempt to generalize to

multi-instance domains, while [53] attempt to also transfer

a multi-class proposal generator to the new domain. While

knowledge transfer can be effective, it is highly desirable to

devise unsupervised methods such as ours that do not depend

on an additional dataset.

Weakly supervised methods. To further reduce the labeling

effort, weakly supervised methods have also been proposed.

[54] learn how to detect multiple instances of a single object

via region proposals and ROI pooling, while [50] propose

to use a hierarchical setup to refine their estimates. [15]

provides an additional supervision by specifying the num-

ber of instances in each class, while [39] and [61] localize

objects by looking at the network activation maps [63, 43].

[44] introduce an adversarial setup, where detection boxes

are supervised by distribution assumptions and classification

objectives. Recently, [32] proposed to accompany a segmen-

tation task to improve the two-branch architecture of [4].

However, all these methods still rely on region proposals

from an existing method, or define them via a hand-tuned

process.

Differentiable top-k methods. Recently, researchers pro-

posed a differentiable formulation of top-K via optimal trans-

port [57]. This method unfortunately often requires too much

memory in its application, and is geared towards an image

classification setup. We show in Section 5.2 that our method

performs better.

A relevant contemporary work exits on differentiable

patch selection [9] that uses the perturbed maximum

method [3]. They demonstrate impressive classification

results on mega-pixel images and for fine-grained classi-

fication. However, the method struggles to incorporate non-

maximum suppression in their framework.

3. MIST framework

We first explain our framework at a high level, and then

detail each component in Section 4. A prototypical MIST

architecture (Figure 1) is composed of two trainable com-

ponents: 1� the first module receives an image as input and

extracts K patches, at image locations and scales given by

the top K local maxima of a heatmap generated by a train-

able heatmap network Hη with weights η. 2� the second

module processes each extracted patch with a task-specific

network Tτ whose weights τ are shared across patches, and

further manipulates these signals to express a task-specific

loss Ltask. The two modules are connected through non-

maximum suppression on the scale-space heatmap output

of Hη , followed by a top-K selection process to extract the

parameters defining the patches, which we denote as EK .

We then sample patches at these locations through (differen-
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Figure 1. The MIST architecture – A network Hη estimates locations and scales of patches encoded in a heatmap h. Patches are then

extracted via a sampler S , and then fed to a task-specific network Tτ . For example, the specific task could be to re-synthesize the image as a

super-position of (unknown and locally supported) basis functions, or simply classifying each patch. As top-k operation is non-differentiable,

we back-propagate by lifting through G; see Section 3 for details.

tiable) bilinear sampling S and feed them the task module.

The defining characteristic of the MIST architecture is

that they are quasi-unsupervised: the only supervision re-

quired is the number K of patches to extract. However, as

we show in Section 5.3, our method is not sensitive to the

choice of K during training. In addition, our extraction pro-

cess uses a single heatmap for all instances that we extract.

In contrast, existing heatmap-based methods [12, 62] typi-

cally rely on heatmaps dedicated to each instance, which is

problematic when an image contains two instances of the

same class. Conversely, we restrict the role of the heatmap

network Hη to find the “important” areas in a given im-

age, without having to distinguishing between classes, hence

simplifying learning.

Formally, the training of the MIST architecture is sum-

marized by:

minimize
τ,η

Ltask(Tτ (S(EK(Hη(I))))) (1)

where τ, η are the network trainable parameters. Unfortu-

nately, the patch extractor EK is non-differentiable, as it iden-

tifies the locations of the top-K local maxima of a heatmap

and then selects the corresponding patches from the input

image. Differentiating this operation provides a gradient

with respect to the input, but no gradient with respect to the

heatmap. Although it is possible to smoothly relax the patch

selection operation in the K=1 case [58] (i.e., argmax), it

is unclear how this can be generalized to the case of multiple

distinct local maxima. It is thus impossible to train the patch

selector parameters directly by backpropagation. Here, we

propose an alternative via lifting.

Differentiable top-K via lifting. The introduction of aux-

iliary variables to simplify the structure of an optimization

problem has proven effective in a range of domains ranging

from non-rigid registration [51], to robust optimization [59].

To simplify our training optimization, we start by decoupling

the heatmap tensor from the optimization (1) by introducing

the corresponding auxiliary variables h, as well as the patch

location variables {xk} from the top-K extractor:

minimize
η,τ,h,{xk}

Ltask(Tτ (S({xk}))) (2)

s.t. h = Hη(I), {xk} = EK(h).

We then relax the first constraint above to a least-squares

penalty via a Lagrange multiplier λ:

minimize
η,τ,h,{xk}

Ltask(Tτ (S({xk}))) + λ�h−Hη(I)�
2

2
(3)

s.t. {xk} = EK(h).

As in many methods that use keypoint supervision to regress

heatmaps [6], we assume that a good heatmap generator G
exists – that is {xk} ≈ EK(G({xk})) We can now rewrite

our optimization as:

minimize
η,τ,h,{xk}

Ltask(Tτ (S({xk}))) + λ�h−Hη(I)�
2

2
(4)

s.t. h = G({xk}).

We can now drop the auxiliary variable h and rewrite our

optimization as:

minimize
η,τ,{xk}

Ltask(Tτ (S({xk})))+ (5)

λ�G({xk})−Hη(I)�
2

2
,
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Algorithm 1 Multi-stage optimization for MISTs

Require: K : number of patches to extract, Ltask : task specific loss, I : input image, G : the keypoints to heatmap function,

H : the heatmap network, η : parameters of the heatmap network, T : the task network, τ : parameters of the task network,

EK : the top-K operator.

1: function TRAINMIST(I, Ltask)

2: for each training batch do

3: τ ← Optimization step for Tτ with Ltask + λ�{xk}− EK(Hη(I))�
2
2

4: {xk} ← Optimization step for {xk} with Ltask + λ�{xk}− EK(Hη(I))�
2
2

5: η ← Optimization step for η with �G({xk})−Hη(I)�
2
2

6: end for

7: end function

and then approach the problem by block coordinate descent

– where the energy terms not containing the variable being

optimized are safely dropped, and we apply EK to the penalty

term of (5):

minimize
τ,{xk}

Ltask(Tτ (S({xk})))+ (6)

λ�{xk}− EK(Hη(I))�
2

2
,

minimize
η

�G({xk})−Hη(I)�
2

2
. (7)

To accelerate training, we further split (6) into two stages,

and alternate between optimizing τ and {xk}. Being

based on block coordinate descent, this process converges

smoothly, as we show in Section 5.3. The summary for

the three stage optimization procedure is outlined in Algo-

rithm 1. Notice that we are not introducing any additional

supervision signal that is tangent to the given task.

4. Implementation

4.1. Components

Multiscale heatmap network – Hη . Any network that pro-

vides localization via a heatmap can be used. Our standard

implementation is a multiscale heatmap network inspired by

LF-Net [38]. We improve the network by applying modifi-

cations on how the scores are aggregated over scale. The

network takes as input an image I, and outputs multiple

heatmaps h�

s of the same size for each scale level s. To limit

the number of necessary scales, we use a discrete scale space

with S scales, and resolve intermediate scales via interpola-

tion. For tasks where pre-trained networks are needed – e.g.

classification on a natural image – we utilize an architecture

similar to [20]. Note that we are simply using the pretrained

deep features, and these can also be obtained through a fully

unsupervised setup, such as contrastive learning [8], if de-

sired; see Section A of the appendix for details.

Top-K patch selection – EK . To extract the top K ele-

ments, we perform an addition cleanup through a standard

non-maximum suppression. We then find the spatial loca-

tions of the top K elements of this suppressed heatmap,

denoting the spatial location of the kth element as (xk, yk),
which now should correspond to local maxima. When using

multiscale heatmaps, for each location, we also compute the

corresponding scale by weighted first order moments [48]

where the weights are the responses in the corresponding

heatmaps, i.e. sk =
�

s h
�

s(xk, yk)s

Generative model for ideal heatmap – G({xk}). For the

generative model that turns keypoint and patch locations

into heatmaps, we apply a simple model where the heatmap

is zero everywhere except at the corresponding keypoint

locations (patch centers); see Section B of the appendix.

Patch resampling – S . As a patch is uniquely parameter-

ized by its location and scale, i.e. xk = (xk, yk, sk), we

can then proceed to resample its corresponding tensor via

bilinear interpolation [26, 27] as {Pk} = S (I, {xk}).

4.2. Task-specific networks

We now introduce two applications of the MIST frame-

work. We use the same heatmap network and patch extractor

for both applications, but the task-specific network and loss

differ. We provide further details regarding the task-specific

network architectures in Section C.1 of the appendix.

Image reconstruction / auto-encoding. As illustrated in

Figure 1, for image reconstruction we append our patch

extraction network with a shared auto-encoder for each ex-

tracted patch. We can then train this network to reconstruct

the original image by inverting the patch extraction process

and minimizing the mean squared error between the input

and the reconstructed image. Overall, the network is de-

signed to jointly model and localize repeating structures in

the input signal. Specifically, we introduce the generalized

inverse sampling operation S−1(Pi,xi), which starts with

an image of all zeros, and places the patch Pi at xi. We

then sum all the images together to obtain the reconstructed

image, optimizing the task loss

Ltask = �I −
�

i

S−1 (Pi,xi)�
2
2. (8)
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Figure 2. MNIST character synthesis examples for (top) the “easy” single instance setup and (bottom) the hard multi-instance setup. We

compare the output of MISTs to grid, channel-wise, sequential Eslami et al. [12] and Zhang et al. [62].

Multiple instance classification. By appending a classifi-

cation network to the patch extraction module, we can also

perform multiple instance learning. For each extracted patch

Pk we apply a shared classifier network to output ŷk ∈ RC ,

where C is the number of classes. In turn, these are then

converted into probability estimates by the transformation

p̂k = softmax(ŷk).
With yl being the one-hot ground-truth labels of instance

l with unit norm, we define the multi-instance classification

loss as

Ltask =

�

�

�

�

�

1

L

L
�

l=1

yl −
1

K

K
�

k=1

p̂k

�

�

�

�

�

2

2

, (9)

where L is the number of instances in the image. We em-

pirically found this loss to be more stable compared to the

cross-entropy loss, similar to [35]. Note that we do not pro-

vide supervision about the localization of instances, yet the

detector network will automatically learn how to localize

with minimal supervision (i.e., the number of instances).

5. Results and evaluation

To demonstrate the effectiveness of our framework we

apply MIST to two different tasks. We first perform a quasi-

unsupervised image reconstruction task, where only the to-

tal number of instances in the scene is provided, i.e., K is

defined. We then show that MIST can also be applied to

weakly supervised multi-instance classification, where only

image-level supervision is provided. Note that, unlike region

proposal based methods, our method relies only on the cues

from the classifier, do not require object proposals, and can

be trained from scratch.

5.1. Image reconstruction

From the MNIST dataset, we derive two different sce-

narios. In the MNIST easy dataset, we consider a simple

setup where the sorted digits are confined to a perturbed

grid layout; see Figure 2 (top). Specifically, we perturb the

digits with a Gaussian noise centered at each grid center,

with a standard deviation that is equal to one-eighths of the

grid width/height. In the MNIST hard dataset, the positions

are randomized through a Poisson distribution [5], as is the

identity, and cardinality of each digit. We allow multiple

instances of the same digit to appear in this variant. For both

datasets, we construct both training and test sets, and the test

set is never seen during training.

Comparison baselines. We compare our method against

four baselines 1� the grid method divides the image into a

3 × 3 grid and applies the same auto-encoder architecture

as MIST to each grid location to reconstruct the input im-

age; 2� the channel-wise method uses the same auto-encoder

network as MIST, but we modify the heatmap network to

produce K channels as output, where each channel is dedi-

cated to an interest point. Locations are obtained through a

channel-wise soft-argmax as in [62]; 3� Esl16 [12] is a se-

quential generative model; 4� Zha18 [62] is a heatmap-based

method with channel-wise strategy for unsupervised learning

of landmarks. We do not compare against Xie20 [57] for the

reconstruction tasks as it requires too much memory to be

used for generative tasks; see Section C.2 of the appendix

for more details.

Results for “MNIST easy”. As shown in Figure 2 (top)

all methods successfully re-synthesize the image, with the

exception of Eslami et al. [12]. As this method is sequen-

tial, with nine digits the sequential implementation simply

becomes too difficult to optimize through. Note how this

method only learns to describe the scene with a few large

regions. We summarize quantitative results in Table 1.

Results for “MNIST hard”. As shown in Figure 2 (bot-

tom), all baseline methods failed to properly represent the

image. Only MIST succeeded at both localizing digits and

reconstructing the original image. Although the grid method
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Figure 3. Two auto-encoding examples learnt from MNIST-hard. In the top row, for each example we visualize input, patch detections, and

synthesis. In the bottom row we visualize each of the extracted patch, and how it is modified by the learnt auto-encoder.

Figure 4. Inverse rendering of Gabor noise; we annotate correct / erroneous localizations.

MIST Grid Ch.-wise Esl16 [12] Zha18 [62]

MNIST easy .038 .039 .042 .100 .169

MNIST hard .053 .062 .128 .154 .191

Gabor .095 - - - -

Table 1. Reconstruction error (root mean square error). Note that

Grid does not learn any notion of digits.

accurately reconstructs the image, it has no concept of indi-

vidual digits. Conversely, as shown in Figure 3, our method

generates accurate bounding boxes for digits even when

these digits overlap, and does so without any location super-

vision. For quantitative results, please see Table 1.

Finding the basis of a procedural texture. We further

demonstrate that our methods can be used to find the basis

function of a procedural texture. For this experiment we

synthesize textures with procedural Gabor noise [31]. Gabor

noise is obtained by convolving oriented Gabor wavelets

with a Poisson impulse process. Hence, given exemplars

of noise, our framework is tasked to regress the underlying

impulse process and reconstruct the Gabor kernels so that

when the two are convolved, we can reconstruct the original

image. Figure 4 illustrates the results of our experiment. The

auto-encoder learned to accurately reconstruct the Gabor

kernels, even though in the training images they are heavily

overlapped. These results show that MIST is capable of

generating and reconstructing large numbers of instances per

image, which is intractable with other approaches.

5.2. Multiple instance classification

Multi-MNIST – Figure 5, Table 2, and Table 3. To test

our method in a multiple instance classification setup, we

rely on the MNIST hard dataset. To evaluate the detection

accuracy of the models, we compute the intersection over

union (IoU) between the ground-truth bounding box and the

detection results, and assign it as a match if the IoU score is

over 50%. In Table 2, we compare our method to channel-

wise and report the number of correctly classified matches,

as well as the proportion of instances that are both correctly

detected and correctly classified. To provide a sense of the

upper-bound, we also provide results for the case when lo-

cation supervision is used. Our method clearly outperforms

the channel-wise strategy. Note that, even without local-

ization supervision, our method correctly localizes digits.

Conversely, the channel-wise strategy fails to learn. This

is because multiple instances of the same digits are present

in the image. For example, in the Figure 5 (right), we have

three sixes, two zeros, and two nines. This prevents any

of these digits from being detected/classified properly by a
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Figure 5. Two qualitative examples for detection and classification on our MNIST-hard dataset.

MIST Ch.-wise Supervised

IOU 50% 97.8% 25.4% 99.6%

Classif. 98.8% 75.5% 98.7%

Both 97.5% 24.8% 98.6%

Table 2. Instance detection and classification on MNIST-hard.

channel-wise approach.

We further compare our method to Xie20 [57], a state-of-

the-art differentiable top-K formulation in Table 3. We test

with the MNIST hard dataset, and also an easier version of

this dataset with only three digits. For Xie20 [57], we mod-

ify the heatmap network to accommodate for the fact that

Xie20 requires extracting all potential patches, thus need-

ing extensive memory, to be used in a detection framework

(Xie20 generates a differentiable top K “mask”, not a selec-

tion, which has then to be multiplied to the input to finally

perform selection). Hence, we apply an architecture similar

to the region proposal network [20], which we found to work

better than training a heatmap network that downsamples the

heatmap to a reasonable size; see Supplementary Section C.1

for details. Our method works best for both experiments in

Table 3, with the gap between MIST and Xie20 widening

significantly as the problem becomes more complicated.

PASCAL + COCO – Table 4 and Figure 6. To further

test MIST in a more generalized setting, we apply MIST on

PASCAL VOC 2007 dataset [13] and COCO dataset [33].

We combine the two datasets together by taking images from

both datasets that contain any of the twenty Pascal VOC

2007 classes. As we are aiming for an ambitious goal of not

having any location supervision at all, including the bound-

ing box proposals used in state-of-the-art weakly-supervised

works [4, 49, 32, 56], we apply additional treatments to make

the task easier. We filter the combined dataset by removing

images that contain objects that are too large (covering more

than 30% of the image) and images with objects that are too

wide or narrow (aspect ratio bigger than 2.0 or smaller than

0.5 ). The remaining images are random cropped to ensure

that all objects within the image cover 30% of the image in

average. The final dataset has 9780 images in total, which

we split into training (7816 images), validation (987 images),

and test (977 images) sets.

As the task is hard, we further restrict the role of MIST

and Xie20 [57] to localization only without scale, i.e., we

MNIST-3 digits MNIST-hard

MIST Xie20 [57] MIST Xie20 [57]

IOU 50% 99.5% 95.4% 97.8% 72.7%

Classif. 96.9% 97.4% 98.8% 93.1%

Both 96.6% 92.2% 97.5% 71.3%

Table 3. Instance level detection and classification performance

comparison with a state-of-the-art differentiable top K formula-

tion [57].

use a single scale heatmap for localization.

We use K=2 for this dataset. The number of objects vary

from one image to another in this dataset, thus, on top of the

20 classes in Pascal VOC 2007, we also add an additional

class ‘background’ to indicate unused bounding boxes. With

this setup, K=2 serves as the upper bound for number of

instances to attend to in an image.

Since the dataset is relatively limited, as mentioned ear-

lier in Section 4.1, we use a pretrained ResNet34 [22] net-

work. We use the feature maps of the fourth convolutional

block and append a 1× 1 convolution layer on top to obtain

the heatmap. We also resample patches from this heatmap

instead of the original image to take advantage of these pre-

trained features. We further apply data augmentation by

performing random horizontal flips, as well as randomly

masking the input image with a square mask of uniform

distributed random size (between 0.15× and 0.6× of the im-

age size) and filling the inside of the mask with the average

color within the mask. We emphasize that even with such

filtering and restriction, our method is, to the best of our

knowledge, the first to be able to learn to detect and classify

without any location supervision – existing weakly super-

vised methods [4, 49, 32, 56] mainly rely on provided object

proposals. Extending MIST to be able to deal with scale and

aspect-ratio for natural images is left as future work.

We evaluate the performance of each method by com-

puting the accuracy, recall, and F1-score of the detection

outcomes. Regarding the localization, as we estimate the

center only (scale is fixed), we consider the detection to

be correct if the detection center is within the ground-truth

bounding box. We report results for MIST and Xie20 [57]

in Table 4, and show qualitative highlights in Figure 6. Our

method outperforms Xie20 [57] by more than 13% relative,

in terms of the F1-Score, for this task.
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Figure 6. Qualitative results on PASCAL+COCO dataset. (Top row) we show detection results when using MIST and (bottom row) when

using Xie20 [57]. Correctly localized and classified ones are shown in green, and wrong ones in red.

Precision Recall F1-Score

MIST 87.4% 55.5% 67.9%

Xie20 [57] 72.7% 51.0% 60.0%

Table 4. Instance level localization and classification results on

PASCAL+COCO dataset.

(a) Ltask (b) �G({xk})−Hη(I)�22

Figure 7. Evolution of the loss and heatmap during training on

MNIST hard. (a) the task (classification) loss Ltask and (b) the

heatmap related loss �G({xk})−Hη(I)�
2

2 for each iteration.

5.3. Additional results

Convergence during training. As is typical for neural net-

work training, our objective is non-convex and there is no

guarantee that a local minimum found by gradient descent

training is a global minimum. Empirically, however, the op-

timization process is stable, as shown in Figure 7. We report

both the training losses Ltask and �G({xk}) − Hη(I)�
2
2

when training for MNIST hard. Both losses converge

smoothly, demonstrating the stability of our formulation.

This is unsurprising, as our formulation is a lifted version

of this loss to allow gradient-based training. Note that the

initial jump in Figure 7 (b) is caused by the weak response

of the randomly initialized detector’s weights, producing a

heatmap close to zero for every pixel.

Sensitivity to K – Table 5. To investigate the sensitivity to

the correctness of K during training, we train with varying

number of of instances and test with ground-truth K. For

example, with K = 6, where the ground truth could be

anything within {3, 4, 5, 6, 7, 8, 9} – we mark the K used

during training with bold. Our method still is able to give

accurate result with inaccurate K during training. Knowing

Instances during train APIoU=.50

{9} 92.2%

{6,7, 8, 9} 90.1%

{3, 4, 5,6, 7, 8, 9} 90.8%

Table 5. Sensitivity experiment of K on the MNIST hard dataset.

We mark the number of K used for testing in bold.

the exact number of objects is not a strict requirement at test

time, as our detector generates a heatmap for the entire image

regardless of the K it was trained with. Note that while in

theory sequential methods are free from this limitation, in

practice they are able to deal with limited number of objects

(e.g. up to three) due to their recurrent nature.

6. Conclusion

We have introduced the MIST framework for multi-

instance image reconstruction/classification. With MIST, we

show how localization of multiple instances can be learned

even with the non-differentiable top-K operation by lifting.

We demonstrated the effectiveness of MIST by showing its

compelling performance in both reconstruction and classifi-

cation tasks using synthetic data. We further demonstrated

its performance in learning to localize and classify multiple

objects in real-world images, without any supervision on lo-

cation, and without any help from object proposal methods.

MISTs are a first step towards the definition of optimizable

image decomposition networks that could be extended to a

number of exciting unsupervised learning tasks.
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