This CVPR 2021 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Image Generators with Conditionally-Independent Pixel Synthesis

I. Anokhin’?, K. Demochkin!?, T.Khakhulin®?, G. Sterkin!, V. Lempitsky'?, D. Korzhenkov'

!Samsung AI Center, Moscow
2Skolkovo Institute of Science and Technology, Moscow

.w T

Figure 1: Samples from our generators trained on several challenging datasets (LSUN Churches, FFHQ, Landscapes,
Satellite-Buildings, Satellite-Landscapes) at resolution 256 x 256. The images are generated without spatial convolutions,
upsampling, or self-attention operations. No interaction between pixels takes place during inference.

Abstract

Existing image generator networks rely heavily on spa-
tial convolutions and, optionally, self-attention blocks in or-
der to gradually synthesize images in a coarse-to-fine man-
ner. Here, we present a new architecture for image genera-
tors, where the color value at each pixel is computed inde-
pendently given the value of a random latent vector and the
coordinate of that pixel. No spatial convolutions or similar
operations that propagate information across pixels are in-
volved during the synthesis. We analyze the modeling capa-
bilities of such generators when trained in an adversarial
fashion, and observe the new generators to achieve simi-
lar generation quality to state-of-the-art convolutional gen-
erators. We also investigate several interesting properties
unique to the new architecture.

1. Introduction

State-of-the-art in unconditional image generation is
achieved using large-scale convolutional generators trained
against adversarial discriminators [10, 11, 1]. While lots
of nuances and ideas have contributed to the state-of-the-
art recently, for many years since the introduction of DC-
GAN [21] such generators are based around spatial con-
volutional layers, also occasionally using the spatial self-
attention blocks [32]. Spatial convolutions are also invari-
ably present in other popular generative architectures for
images, including autoencoders [13], autoregressive gener-
ators [30], or flow models [3, 12]. Thus, it may seem that
spatial convolutions (or at least spatial self-attention) is an
unavoidable building block for state-of-the-art image gen-
erators.

Recently, a number of works have shown that individual
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images or collections of images of the same scene can be en-
coded/synthesized using rather different deep architectures
(deep multi-layer perceptrons) of a special kind [19, 25].
Such architectures do not use spatial convolutions or spatial
self-attention and yet are able to reproduce images rather
well. They are, however, restricted to individual scenes. In
this work, we investigate whether deep generators for un-
conditional image class synthesis can be built using simi-
lar architectural ideas, and, more importantly, whether the
quality of such generators can be pushed to achieve state-
of-the-art.

Perhaps surprisingly, we come up with a positive answer
(Fig. 1), at least for the medium image resolution (of 256 X
256). We have thus designed and trained deep generative
architectures for diverse classes of images that achieve sim-
ilar quality of generation to state-of-the-art convolutional
generator StyleGANv2 [11], even surpassing this quality
for some datasets. Crucially, our generators are not using
any form of spatial convolutions or spatial attention in their
computational graphs. Instead, they use coordinate encod-
ings of individual pixels, as well as multiplicative condition-
ing (weight modulation) on random latent vectors. Aside
from such conditioning, the color of each pixel in our archi-
tecture is predicted independently (hence we call our im-
age generator architecture Conditionally-Independent Pixel
Synthesis (CIPS) generators).

In addition to suggesting this class of image genera-
tors and comparing its quality with state-of-the-art con-
volutional generators, we also investigate the extra flexi-
bility that is permitted by the independent processing of
pixels. This includes easy extention of synthesis to non-
trivial topologies (e.g. cylindrical panoramas), for which
the extension of spatial convolutions is known to be non-
trivial [16, 2]. Furthermore, the fact that pixels are synthe-
sized independently within our generators, allows sequen-
tial synthesis for memory-constrained computing architec-
tures. It enables our model to both improve the quality of
photos and generate more pixel values in a specific areas of
image (i.e. to perform foveated synthesis).

2. Related Work

Feeding pixel coordinates as an additional input to the
neural network previously was successfully used in the
widely known CoordConv technique [17] to introduce the
spatial position-related biases. Recently, the same idea was
employed by the COCO-GAN [ 6] to generate images part-
by-part or to create “looped” images like spherical panora-
mas. However, those models still use standard convolutions
as the main synthesis operation. The synthesis process for
neighboring pixels in such architectures is therefore not in-
dependent.

To the best of our knowledge, the problem of regress-
ing a given image from pixel coordinates with a perceptron

(that calculates each pixel’s value independently) started
from creating compositional patterns with an evolution-
ary approach [28]. Those patterns, appealing for digital
artists, were also treated as kind of differentiable image
parametrization [20]. However, this approach was not ca-
pable of producing photorealistic high resolution outputs
(e.g. see the demo [9]).

Some machine learning blogs reported experiments with
adversarial learning, where the generator takes a form of
a perceptron accepting a random vector and pixel coordi-
nates as an input, and returning that pixel’s value as an out-
put [5, 6]. The described model was successfully trained
on MNIST, but has not been scaled to more complex image
data.

Scene-representation networks [26] and later neural ra-
diance fields (NeRF) networks [19] have demonstrated how
3D content of individual scenes can be encoded with sur-
prising accuracy using deep perceptron networks. Follow-
ing this realization, systems [25] and [29] considered the
usage of periodic activation functions and so-called Fourier
features to encode the pixel (or voxel) coordinates. In par-
ticular, the ability to fit high-resolution individual images
with perceptron architetures using these features and activa-
tion functions was demonstrated. All these works however
have not considered the task of learning image generators,
which we address here.

The very recent (and independent) Generative Radiance
Fields (GRAF) system [24] showed promising results at
embedding the NeRF generator into an image generator for
3D aware image synthesis. Results for such 3D aware syn-
thesis (still limited in diversity and resolution) for certain
have been demonstrated. Here, we do not consider 3D-
aware synthesis and instead investigate whether perceptron-
based architectures can achieve high 2D image synthesis
quality.

The independent and parallel work on implicit neural
representations (INR) [27] achieves results similar to ours.
Their work differs in the use of the nearest neighbor upsam-
pling inside the generator (which “entangles” nearby posi-
tions in the high-resolution output) and in the reliance on
another functional form of conditioning on the style vector.

3. Method

Our generator network synthesizes images of a fixed res-
olution H x W and has the multi-layer perceptron-type
architecture G (see Fig. 2). In more detail, the synthe-
sis of each pixel takes a random vector z € Z shared
across all pixels, as well the pixel coordinates (z,y) €
{0...W —1} x{0... H — 1} as input. It then returns the
RGB value ¢ € [0,1]° of that pixel G : (z,y,2) — c.
Therefore, to compute the whole output image I, the gener-
ator G is evaluated at each position (, y) of the coordinate
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grid, while keeping the random part z fixed:
I'={G(z,y;2) | (z,y) € mgrid (H, W)}, (1)
where
mgrid(H,W)={(z,y) |0<z<W,0<y< H}

is a set of integer pixel coordinates.

Following [10], the mapping network M (also a percep-
tron) turns z into a style vector w € W, M : z — w.
We then follow the StyleGANV2 [11] approach of injecting
the style w into the process of generation via weight mod-
ulation. To make the paper self-contained, we describe the
procedure in brief here.

Any modulated fully-connected (ModFC) layer of our
generator (see Fig. 2) can be written in the form ¢ =
B¢ + b, where ¢ € R™ is an input, B is a learnable weight
matrix B € R"*™ modulated with the style w, b € R™
is a learnable bias, and 1y € R™ is an output. The modu-
lation takes place as follows: at first, the style vector w is
mapped with an affine transform (referred to as A in Fig. 2)
to a scale vector s € R™. Then, the (i, j)-th entry of B is
computed as

. B,
By = 5374 : @)

€+ Z (SkBik)Q
k=1

where € is a small constant.

To apply the spatial noise introduced by [10], we sample
a separate random value n for each of H x W spatial posi-
tions from the standard normal distribution and add it (us-
ing the tensor broadcasting) to the output of ModFC layer
1 + an, where « is a learnable scalar parameter shared
across both channels and spatial positions [ 1 1]. Afterwards,
a LeakyReLU function [18] is applied to that sum. Inter-
estingly, in our experiments « learns a value close to zero
within all the layers, and therefore the spatial noise has al-
most no influence on the generation process.

Finally, in our default configuration we add skip con-
nections for every two layers from the intermediate feature
maps to RGB values and sum the contributions of RGB out-
puts corresponding to different layers. These skip connec-
tions naturally add values corresponding to the same pixel,
and do not introduce interactions between pixels.

We note that the independence of the pixel generation
process, makes our model parallelizable at inference time
and, additionally, provides flexibility in the latent space.
E.g., as we show in Supplementary material, for some mod-
ified variants of synthesis, each pixel can be computed with
a different style vector w, though gradual variation in w is
required to achieve consistently looking images.
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Figure 2: The Conditionally-Independent Pixel Synthesis
(CIPS-base) generator architecture. Top: the generation
pipeline, in which the coordinates (z,y) of each pixel are
encoded (yellow) and processed by a fully-connected (FC)
network with weights, modulated with a latent vector w,
shared for all pixels. The network returns the RGB value
of that pixel. Bottom: The architecture of the modulated
fully-connected layer (ModFC). Note that our default con-
figuration also includes skip connections to the output and
per-layer noise maps (not shown here).

3.1. Positional encoding

The architecture described above needs an important
modification in order to achieve the state-of-the-art syn-
thesis quality. Recently two slightly different versions of
positional encoding for coordinate-based multi-layer per-
ceptrons (MLP), producing images, were described in lit-
erature. Firstly, SIREN [25] proposed perceptrons with a
principled weight initialization and sine as an activation
function, used throughout all the layers. Secondly, [29]
advocated the use of Fourier features as inputs to percep-
trons. There, sine waves were used as activation func-
tions in the very first layer only, which encoded non-learned
affine transformation (in the spirit of [22]). In our experi-
ments, we apply a somewhat in-between scheme: the sine
function is used in the first layer that has learnable affine
transformation resulting in Fourier embedding eg,, while
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other layers use a standard LeakyReLU function:

: T
eto (,y) = sin | B (/)] )
where z/ = 22 — land y/ = % — 1 are pixel coordi-

nates, uniformly mapped to the range [—1, 1] and the weight
matrix By, € R2*™ is learnable.

However, using only Fourier positional encoding turned
out to be insufficient to produce plausible images. In par-
ticular, we have found out that the outputs of the synthe-
sis tend to have multiple wave-like artifacts. Therefore,
we also train a separate vector eéﬁf ) for each spatial posi-
tion and call them coordinate embeddings. They represent
H x W learnable vectors in total. For comparison of these
two embedding from the spectral point of view, see Sec. 4.5.
The full positional encoding e (x,y) is a concatenation of
Fourier features and the coordinate embedding:

e(x,y) = concat |ef, (g:7y)7€£§,y) ] (4)

It serves as an input for the next perceptron layer:

G (z,y;2) = G’ (e(z,y); M (2)).

4. Experiments
4.1. Architecture details

In our experiments, both Fourier features and coordinate
embeddings had the dimension of 512. For ablation study
we use the generator with 14 modulated fully-connected
layers with 512 hidden units. For the final experiments, in
order to reduce memory usage, we use 512 hidden units
for the first ten layers, 256 units for layers 11 and 12,
and 128 units for layers 13-14. We implement our exper-
iments' on top of the public code’ for StyleGANv2. We
trained our model on eight P40 GPUs and showed approx-
imately 22.4 mln images to the discriminator during train-
ing. With a straightforward PyTorch implementation, CIPS
is 4.3 times slower than StyleGANv2 and has 3.3x more
MACs (at 256 x 256 resolution). Further experimental de-
tails are provided in the supplementary material.

4.2. Evaluation

We now evaluate CIPS generators and their variations on
a range of datasets. For the sake of efficiency, most evalua-
tions are restricted to 256 x 256 resolution. The following
datasets were considered:

e The Flickr Faces-HQ (FFHQ) [10] dataset contains
70,000 high quality well-aligned, mostly near frontal
human faces. This dataset is the most regular in terms
of geometric alignement and the StyleGAN variants
are known to perform very well in this setting.

'https://github.com/saic-mdal/CIPS
’https://github.com/rosinality/stylegan2-pytorch

Dataset StyleGANv2 | CIPS (ours)
FFHQ 3.83 4.38
LSUN Churches 3.86 2.92
Landscapes 2.36 3.61
Satellite-Buildings 73.67 69.67
Satellite-Landscapes 51.54 48.47

Table 1: FID on multiple datasets at resolution of 2562 for
CIPS-skips model. Note that CIPS is of comparable quality
with state-of-the-art StyleGANV2, and even exceeds it for
some datasets. The value for CIPS model on FFHQ differs
from the one reported in Tab. 3 as we trained this model for
more time and with larger batch size. For Landscape dataset
we employ generator with residual blocks rather than our
default setting as it produced slightly better FID in this case.

Model Precision? | Recallf | PPL]
StyleGANv2 0.609 0.513 | 270.2
CIPS (ours) 0.613 0.493 | 336.4

Table 2: Precision & Recall and PPL measured on FFHQ
at 2562. The resulting quality of our model is better in
terms of precision (corresponds to plausibility of images)
and worse in recall (this points to the greater number of
dropped modes). Perceptual path length (measures both
disentanglement and quality of samples) is better for Style-
GANV2 eventhough it was trained without the correspond-
ing regularization in this case (as was our method).

e The LSUN Churches [31] contains 126,000 outdoor
photographs of churches of diverse architectural style.
The dataset is less regular/aligned, yet all images share
upright orientation.

* The Landscapes dataset contains 60,000 manually col-
lected landscape photos from the Flickr website.

* The Satellite-Buildings® dataset contains 280,741 im-
ages of 300 x 300 pixels (which we crop to 256 x 256
resolution and randomly rotate). This dataset has large
size, and is approximately aligned in terms of scale,
yet lacks consistent orientation.

* Finally, the Satellite-Landscapes* contains a smaller
curated collection of 2,608 images of 512 x 512 res-
olution of satellite images depicting various unusual
landscapes found on Google Earth (which we crop to
256 x 256 resolution). This is the most “textural”
dataset, that lacks consistent scale or orientation.

For evaluation, we relied on commonly used metrics for
image generation: Frechet Inception Distance (FID) [7]

3https://www.crowdai.org/challenges/mappingfchallenge

“https://earthview.withgoogle.com/
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Figure 3: Image corresponding to the mean style vector in
the space of W for CIPS (left) and CIPS-NE (no embed-
dings) generators (right). Left image has more plausible
details like hair which confirms the results in Tab. 3.

as well as more recently introduced generative Precision
and Recall measures [23, 14] and Perceptual path length
(PPL) [10].

Our main evaluation is thus against the state-of-the-art
StyleGANv?2 generator [ 1]. We took FID value for LSUN-
Churches directly from the original paper [1 1] and trained
StyleGANV2 on other datasets. We trained StyleGANV2 in
authors’ setup but without style-mixing and path regular-
ization of generator — as noted in the original paper, these
changes do not influence the FID metric. The results of this
key comparison are presented in Tab. 1 and 2. Neither of
the two variants of the generator dominates the other, with
StyleGANV2 achieving lower (better) FID score on FFHQ,
Landscapes, while CIPS generator achieving lower score on
LSUN Churches and Satellite datasets.

4.3. Ablations

We then evaluate the importance of different parts of our
model by its ablation on the FFHQ dataset (Tab. 3). We thus
consider removing Fourier features, coordinate embeddings
(config referred to as CIPS-NE) and replace LeakyReLU
activation with sine function in all layers. We also compare
the variants with residual connections (we follow Style-
GANvV2 [11] implementation adjusting variance of resid-
ual blocks with the division by \/5) with our main choice
of cumulative projections to RGB. Additionally, the “base”
configuration without skip connections and residual con-
nections is considered. Finally, to estimate the importance
of conditional independence of CIPS approach we replace
each ModFC layer with a combination of a pointwise con-
volution and a depthwise convolution (we use filters 3 x 3)

(a) Fourier features (b) Coordinate embeddings

Figure 4: The spectrum magnitude for our two kinds of po-
sitional encoding (color scale is equal for both plots). The
output of coordinate embeddings clearly has more higher
frequencies.

(a) Fourier features (b) Coordinate embeddings

Figure 5: PCA plot (three components) for two kinds of po-
sitional encoding of CIPS-base. Interestingly, learned co-
ordinate embeddings contain both high-frequency patterns
and eye shaped features (emerging from the registration of
the FFHQ dataset).

from MobileNet [8]. In this comparison, all models were
trained for 300K iterations with batch size 16.

As the results show, coordinate embeddings, residual
blocks and cumulative projection to RGB significantly im-
prove the quality of the model. Interestingly, adding 3 x 3
convolutions (“MobileNet”) degrades performance, we sug-
gest it may have such an effect as it makes the model less
rotation-invariant. The removal of coordinate embeddings
most severely worsens the FID value, and affects the qual-
ity of generated images (Fig. 3). We further investigate the
importance of coordinate embeddings for the CIPS model
below.

4.4. Influence of positional encodings

To analyze the difference between Fourier features eg,
and coordinate embeddings e.,, we plotted the spectrum of
these codes for the generator CIPS-base, trained on FFHQ.
As shown in Fig. 4, Fourier encoding generally carries low-
frequency components, whereas coordinate embeddings re-
semble more high-frequency details. The Principal Com-
ponent Analysis (PCA) of the two encodings supports the
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CIPS “pbase” | “noembed” (NE) | “no Fourier” | “default” | “residual” | “sine” | “MobileNet”
Fourier features + + - + + - +
Coordinate embeddings + - + + + + +
Residual blocks - - - - + - _

Skip connections - - - + _ - _

Sine activation - - - - — + _
Conv3x3 - — - - — - +

FID 6.71 12.71 10.18 6.31 6.52 10.0 11.39

Table 3: Effects of the modifications of CIPS generator on the FFHQ dataset in terms of Frechet Inception Distance (FID)
score. Each column corresponds to a certain configuration, while rows correspond to present/missing features. The simulta-
neous usage of Fourier features and coordinate embeddings is necessary for a good FID score. Also, both residual connections
and cumulative skip connections (default configuration) to the output outperform the plain multilayer perceptron.

Figure 6: Influence of different types of positional encoding
on the resulting image. Left: original image. Center: coor-
dinate embeddings zeroed out (the image contains no fine-
grained details). Right: Fourier features zeroed out (only
high-frequency details are present).

[ . -

Figure 7: Latent linear morphing between two sampled im-
ages — the left-most and right-most ones.

same conclusion (Fig. 5) The possible explanation is sim-
ple: coordinate embeddings are trained independently for
each pixel, while e, (,y) is a learned function of the co-
ordinates. However, the next layers of the network could
transform the positional codes and, for example, finally pro-
duce more fine-grained details, relying on Fourier features.
To demonstrate that this is not the case, we conducted the
following experiment. We have zeroed out either the output
of Fourier features or coordinate embeddings and showed
the obtained images in Fig. 6. We notice that the informa-
tion about the facial hair’s details as well as the forelock is
contained in the coordinate embeddings. Thus, coordinate

Figure 8: Images generated using foveated synthesis. In
each case, the CIPS generator was sampled on a 2D Gaus-
sian distribution concentrated in the center of an image
(standard deviation = 0.4ximage size). Left to right: sam-
pled pattern covers 5% of all pixels, 25%, 50%, 100% (full
coordinate grid). Missing color values have been filled via
bicubic interpolation.

embeddings turn out to be key for high-frequency details in
the resulting image.

4.5. Spectral analysis of generated images

Recently, [4] observed that the common convolutional
upsampling operations can lead to the inability to learn the
spectral distribution of real images. In contrast, CIPS oper-
ates explicitly with the coordinate grid and has no upsam-
pling modules, which should lead to improved reproduction
of the spectrum. Indeed, we compare the spectrum of our
models (CIPS-base without residual and skip connections,
and CIPS-NE) to StyleGANvV2 and the comparison reveals
the advantage of CIPS generators in the spectral domain.

The analysis of magnitude spectra for produced images
is given in Fig. 9 (average results for 5, 000 randomly sam-
pled images). The spectrum of StyleGANv2 has artifacts

14283



CIPS-base

CIPS-NE

StyleGANv2 Real Images

Figure 9: Magnitude spectrum. Our models produce less ar-
tifacts in high frequency components (note the grid pattern
in StyleGANvV2 spectrum). Two CIPS models are difficult
to distinguish between (zoom-in required).
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Figure 10: Azimuthal integration over Fourier power spec-
trum. The curve of StyleGANV2 has heavy distortions in
most high frequency components. Surprisingly, CIPS-NE

has more realistic and smoother tail than CIPS-base, while
being worse in terms of FID.

in high-frequency regions, not present in both considered
variants of CIPS generators. Following prior works [4],
we also use the azimuthal integration (AI) over the Fourier
power spectrum (Fig. 10). It is worth noting that AT statis-
tics of CIPS-NE are very close to the ones of real images.
However, adding the coordinate embeddings degrades a re-
alistic spectrum while improving the quality in terms of

Figure 11: Left: the generated image of resolution 256 X
256, upscaled with Lanczos upsampling scheme [15] to
1024 x 1024. Right: the image, synthesized by CIPS,
trained at resolution of 256 x 256 on the coordinate grid
of resolution 1024 x 1024. Note the sharpness/plausibility
of the eyelid and the more proper shape of the pupil.

FID (Tab. 3).
We note that the introduction of skip connections in fact
makes the spectra less similar to those of natural images.

4.6. Latent interpolation

We conclude the experimental part with the demonstra-
tion of the flexibility of CIPS. As well as many other genera-
tors, CIPS generators have the ability to interpolate between
latent vectors with meaningful morphing (Fig. 7). As ex-
pected, the change between the two images occurs smoothly
as in StyleGANV2.

4.7. Foveated rendering and upsampling

One of the inspiring applications of our per-pixel genera-
tor is the foveated synthesis. The foveated synthesis ability
can be beneficial for computer graphics and other applica-
tions, and it also mimics human visual system. In foveated
synthesis, sampling is irregular and more dense in the area,
where the gaze is assumed to be directed to, and more sparse
outside of that region. CIPS is evaluated on this irregular set
of pixels (that contains less pixels that the full image). The
color for missing pixels is filled using interpolation. The
demonstration of this method is provided in Fig. 8.

Alongside the foveated rendering, we are also able to in-
terpolate the image beyond the training resolution by simply
sampling denser grids. Here we use a model, trained on im-
ages of 256 x 256 resolution to process a grid of 1024 x 1024
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Figure 12: Samples from CIPS trained progressively on
FFHQ-1024.

Generator Landscapes-512 | FFHQ-512 | FFHQ-1024
StyleGANv2 3.94 341 2.84
CIPS (ours) 6.90 6.18 10.07

Table 4: FID value for for CIPS ans StyleGANv2 models
trained on hi-res FFHQ and Landscapes datasets. Quality
and diversity of images produced by CIPS in high resolution
is worse than in case of StyleGANV2.

pixels (the learned tensor of coordinate embeddings is bi-
linearly upscaled). We compare the result of such synthe-
sis with the results of upsampling the image, synthesized at
the 256 x 256 resolution, using the Lanczos filter [15]. As
Fig. 11 suggests, more plausible details are obtained with
denser synthesis than with Lanczos upsampling.

4.8. High-resolution image generation

Finally, to show the ability of our architecture to general-
ized to hi-res images we trained CIPS on FFHQ with resolu-
tion 512 x 512 and 1024 x 1024 and Landscapes with reso-
lution 512 x 512. These models were trained progressively:
we initialized our default generator with weights trained on
256x256 resolution images. In this setting we trained the
networks with batch size of 8 showing about 1.9 mln images
to the discriminator. At resolution of 1024 x 1024, train-
ing in full size did not fit the GPU memory (on P40 GPU),
so we used the patch-based approach with patches of size
512 x 512 which explains the relatively bad FID score (see
Supplementary for details). In Tab. 4 we report FID metrics
showing that hi-res datasets are feasible for our model. At
higher resolution, CIPS produces worse result than Style-
GANv2. Examples of outputs are shown in Fig. 12.

4.9. Typical artifacts

Finally, we show the typical artifacts that keep recurring
in the results of CIPS generators (Fig. 13). We attribute the
wavy texture (in hair) and repeated lines pattern (in build-
ings) to the periodic nature of sine activation function within

Figure 13: Examples of the most common kinds of artifacts
on different datasets. They are best described as wavy tex-
tures on hair, background, and glowing blobs. See text for
discussion.

the Fourier features. Also we note that sometimes CIPS
produces a realistic image with a small part of the image
being inconsistent with the rest and out of the domain. Our
belief is that this behaviour is caused by the LeakyReLU ac-
tivation function that divides the coordinate grid into parts.
For each part, CIPS effectively applies its own inverse dis-
crete Fourier transform. As CIPS generators do not use any
upsampling or other pixel coordination, it is harder for the
generator to safeguard against such behaviour.

5. Conclusion

We have presented a new generator model called CIPS,
a high-quality architecture with conditionally independent
pixel synthesis, such that the color value is computed using
only random noise and coordinate position.

Our key insight is that the proposed architecture without
spatial convolutions, attention or upsampling operations is
nevertheless competitive and obtains reasonable quality in
terms of FID and precision & recall. Furthermore, in the
spectral domain outputs of CIPS match real images more
closely than StyleGANV2 generators. Interestingly, CIPS-
NE modification is weaker in terms of plausibility, yet has
a more realistic spectrum.

Direct usage of a coordinate grid allows us to work with
more complex structures, such as cylindrical panoramas,
just by replacing the underlying coordinate system (see
Supplementary).

In summary, our generator demonstrates quality on par
with state-of-the-art model StyleGANv2; moreover, it has
applications in various diverse scenarios. We have shown
that the considered model could be successfully applied to
foveated rendering and super-resolution problems in their
generative interpretations. Future development of our ap-
proach assumes researching these problems in their image-
to-image formulations.
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