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Abstract

Extracting robust and general 3D local features is key

to downstream tasks such as point cloud registration and

reconstruction. Existing learning-based local descriptors

are either sensitive to rotation transformations, or rely on

classical handcrafted features which are neither general

nor representative. In this paper, we introduce a new, yet

conceptually simple, neural architecture, termed SpinNet,

to extract local features which are rotationally invariant

whilst sufficiently informative to enable accurate registra-

tion. A Spatial Point Transformer is first introduced to

map the input local surface into a carefully designed cylin-

drical space, enabling end-to-end optimization with SO(2)

equivariant representation. A Neural Feature Extractor

which leverages the powerful point-based and 3D cylindri-

cal convolutional neural layers is then utilized to derive a

compact and representative descriptor for matching. Ex-

tensive experiments on both indoor and outdoor datasets

demonstrate that SpinNet outperforms existing state-of-the-

art techniques by a large margin. More critically, it has the

best generalization ability across unseen scenarios with dif-

ferent sensor modalities. The code is available at https:

//github.com/QingyongHu/SpinNet.

1. Introduction

Accurate matching of partial 3D surfaces is critical for

point cloud registration [17, 38, 6, 21, 29], segmenta-

tion [58, 28, 27], and recognition [24, 12, 47]. Given

multiple partially overlapped 3D scans, the goal of surface

matching is to align these fragments according to a set of

point correspondences, thus obtaining a complete 3D scene

structure. To achieve this, it is of key importance to identify

general and robust local geometric patterns shared between

two scans. However, this is challenging, primarily because

1) different scans usually have different viewing angles, 2)

the raw 3D scans are typically incomplete, noisy, and have

significantly different point densities.
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Figure 1: The Feature Matching Recall (FMR) scores of dif-

ferent approaches on the indoor 3DMatch [65] and outdoor

ETH [46] dataset. Note that, all methods are trained only

on the 3DMatch dataset. Our method not only achieves the

highest score on 3DMatch, but also has the best generaliza-

tion ability across the unseen ETH dataset.

Early methods to extract local geometries include PS [9],

3DSC [19], ISS [67] and SHOT [40], which simply com-

pute the low-level features such as faces [41, 64], cor-

ners [52], and handcrafted statistical histograms [43]. Al-

though they achieve encouraging results on high-quality 3D

point clouds, they are not capable of generalizing to highly

noisy and large-scale real-world 3D point clouds.

Recent learning-based approaches [65, 32, 14, 45] have

yielded excellent results in extracting better local point fea-

tures, thanks to the availability of large-scale labeled 3D

datasets. However, they have two major limitations. First,

many of these methods such as D3Feat [2] and FCGF [8]

rely on kernel-based point convolution [53] or submani-

fold sparse convolution [23] to extract per-point features,

resulting in the learned point local patterns being rotation-

ally variant. Consequently, their performance drops dra-

matically when across datasets with significantly different

rotation distributions. Second, although a number of re-

cent approaches [14, 13, 22, 37] introduce rotation-invariant

descriptors, they simply integrate the handcrafted features

such as point-pairs [48, 16] and point density [50, 62, 51],

or external local reference frames (LRFs) [37, 33, 66] into
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the pipeline, fundamentally limiting the representational

power of the framework [25]. As a result, the extracted

point features, albeit being rotation invariant, are not robust

and general when being applied to unseen 3D scans with

noise and different point densities.

In this paper, we aim to design a new neural architecture,

which is able to learn descriptive local features and general-

ize well to unseen scenarios. This network clearly satisfies

three key properties: 1) It is rotation invariant. Particularly,

it learns consistent local features from 3D scans with differ-

ent rotation angles; 2) It is descriptive. In essence, it pre-

serves the prominent local patterns despite the noise, possi-

ble surface incompleteness, or different point densities; 3)

It does not include any handcrafted features. Instead, it only

consists of multiple point transformations and simple neu-

ral layers coupled with true end-to-end optimization. This

allows the learned descriptor to be extremely representative

and general for complex real-world 3D surfaces.

Our network, named SpinNet, mainly consists of two

modules, 1) a Spatial Point Transformer1, which ex-

plicitly transforms the input 3D scans into a carefully de-

signed cylindrical space, driving the transformed scans to be

SO(2) equivariant, whilst retaining point local information;

2) a Neural Feature Extractor, which leverages powerful

point-based and convolutional neural layers to learn repre-

sentative and general local patterns.

The Spatial Point Transformer firstly aligns the input

3D surface by a reference axis, eliminating the rotational

variance along the Z-axis. This is followed by a coordinate

transformation over the XY-plane with the aid of spherical

voxelization, further removing the rotation variance of each

spherical voxel. Lastly, the transformed local surface is for-

mulated as a simple yet novel 3D cylindrical volume, which

is amenable to consumption by the subsequent point-based

and convolutional neural layers. The Neural Feature Ex-

tractor firstly uses simple point-based MLPs to extract a

unique signature for each voxel within the cylindrical vol-

ume, generating an initial set of cylindrical feature maps.

These maps are further fed into a series of novel 3D cylin-

drical convolutional layers, which fully exploit the rich spa-

tial and contextual information and generate a compact and

representative feature vector for the input 3D surface.

These two modules enable our SpinNet to learn remark-

ably robust and general local features for accurate 3D point

cloud registration. It achieves state-of-the-art performance

both on the indoor 3DMatch [65] dataset and the outdoor

ETH [46] dataset. Notably, it shows superior generalization

ability across unseen scenarios. As shown in Figure 1, being

trained only on the 3DMatch dataset, the learned descriptor

of our SpinNet can achieve an average recall score of 92.8%

on the unseen outdoor ETH dataset for feature matching,

significantly surpassing the state of the art by nearly 13%.

1This is different from the Transformer for natural language processing.

Overall, our contributions are three-fold:

• We propose a new neural feature learner for 3D surface

matching. It is rotation invariant, representative, and has

superior generalization ability across unseen scenarios.

• By formulating the transformed 3D surface into a cylin-

drical volume, we introduce a powerful 3D cylindrical

convolution to learn rich and general features.

• We conduct extensive experiments and ablation stud-

ies, demonstrating the remarkable generalization of our

method and providing the intuition behind our choices.

2. Related Work

2.1. Handcrafted Descriptors

Traditional handcrafted descriptors can be roughly di-

vided into two categories: 1) LRF-free methods and 2)

LRF-based. The LRF-free descriptors including Spin Im-

ages (SIs) [30], Local Surface Patch (LSP) [4] and Fast

Point Feature Histograms (FPFHs) [48] are typically con-

structed by exploiting geometrical properties (e.g. curva-

tures and normal deviations) of a local surface. The main

drawback of these descriptors is the lack of sufficient geo-

metric details for the local surface. The LRF-based descrip-

tors such as Point Signature (PS) [9], SHOT [54] and Rota-

tional Projection Statistics (RoPS) [26], albeit being able to

exploit more spatial attributes than LRF-free descriptors, in-

herently introduce lager rotation errors, sacrificing the fea-

ture robustness. Overall, all these handcrafted descriptors

are usually tailored to specific tasks and sensitive to noise,

thus not being sufficiently flexible and descriptive for com-

plicated and novel scenarios.

2.2. Learning-based Descriptors

In contrast to traditional handcrafted descriptors, recent

works [10, 68, 3, 15, 63, 61] leverage data-driven deep

neural networks to learn local features from large-scale

datasets. These learned descriptors tend to have strong de-

scriptive ability and robustness.

Rotation Variant Descriptors. Zeng et al. propose

the pioneering work 3DMatch [65], which takes the local

volumetric patches as input, and then leverages 3D Con-

volutional Neural Networks (CNNs) to learn local geomet-

ric patterns. Yew and Lee introduce a weakly-supervised

framework 3DFeat-Net [60] to learn both the 3D feature

detector and descriptor simultaneously. Choy et al. build

a dense feature descriptor FCGF [8] based on [7]. Re-

cently, Bai et al. [2] design a pipeline to jointly learn

both dense feature detectors and local feature descriptors,

achieving the state-of-the-art performance on 3DMatch [65]

and KITTI [20] datasets for point cloud registration. How-

ever, all these methods are sensitive to rigid transformation

in Euclidian space. Extensive data augmentation can be

11754



used to alleviate this problem, however, the overall perfor-

mance of subsequent tasks is still sub-optimal [18].

Rotation Invariant Descriptors. A number of recent

methods have started to learn rotation-invariant descrip-

tors. Khoury et al. [32] parameterize the raw point clouds

with oriented spherical histograms, and then map the high-

dimensional embedding to a compact descriptor through a

deep neural network. Deng et al. [14] encode the local

surface using rotation-invariant Point Pair Features (PPFs).

These features are then fed into multiple MLPs to learn

a global descriptor. In the follow-up work [13], Fold-

ingNet [59] is adopted as the backbone network to learn

3D local descriptors. Gojcic et al. [22] introduce the vox-

elized Smoothed Density Value (SDV) to encode the local

surface as a compact and rotation-invariant representation,

which is fed into a Siamese architecture to learn the final de-

scriptor. Overall, although these methods are indeed able to

learn rotationally invariant features from the local surface,

they initially rely on classical handcrafted features which

significantly limits the descriptiveness, robustness and gen-

eralization ability of the descriptors.

A handful of recent works [50, 62, 33, 37] try to learn

rotation-invariant local descriptors with end-to-end opti-

mization. However, they either require the computation of

the point density or rely on external LRFs to achieve rota-

tion invariance. This is usually unstable and does not gener-

alize well to unseen datasets. In contrast, our SpinNet learns

rotation-invariant, and highly descriptive local features in

a truly end-to-end fashion, without relying on any hand-

crafted features or unstable LRFs. This enables the learned

descriptors to be well generalized to novel scenarios.

3. SpinNet

3.1. Problem Statement

Given two partially overlapped point clouds P = {pi ∈
R

3|i = 1, . . . , N} and Q = {qj ∈ R
3|j = 1, . . . ,M}. The

task of point cloud registration is to find an optimal rigid

transformation T = {R, t}, as well as the point correspon-

dences to align pairs of fragments, and finally recover the

complete scene. The pair of point correspondence (pi, qj)
is expected to satisfy:

qj = Rpi + t+ ǫi, (1)

where R ∈ SO(3) denotes the rotation matrix, t ∈ R
3 is the

translation vector, and ǫi is the residual error. In practice, it

is infeasible to simultaneously find the correspondences and

estimate the transformation, due to the non-convexity of this

problem [36]. However, if the point subsets Pc and Qc with

one-to-one correspondences can be determined, the regis-

tration problem can be simplified as a minimization prob-

lem for the following L2 distance:

L(Pc,Qc|P,R, t) =
1

N
‖Qc −RPcP− t‖2 (2)

where N is the number of successfully matched correspon-

dences, P ∈ R
N×N is a permutation matrix whose entries

satisfy Pu,v = 1 if the uth point in Pc corresponds to vth

point in Qc and 0 otherwise.

We propose a new surface feature learner SpinNet, which

is a mapping function M, where M(pi) is equal to M(qj)
under arbitrary rigid transformations such as rotation and

translation, if pi and qj are indeed a correct match. In par-

ticular, our feature learner mainly consists of a Spatial Point

Transformer and a Neural Feature Extractor.

3.2. Spatial Point Transformer

This module is designed to spatially transform the input

3D surfaces into a cylindrical volume, overcoming the rota-

tion variance, whilst without dropping critical information

of local patterns. As shown in Figure 2, it consists of four

components, as discussed below.

Alignment with a Reference Axis. Given a specific

point p ∈ P in a local surface, we first estimate a reference

axis np oriented to the viewpoint [40, 1] from its neigh-

bouring point set Ps = {pi : ‖pi − p‖2 ≤ R} within a

support radius R. We then align np with the Z-axis using a

rotation matrix Rz. Compared with the external local refer-

ence frames which are likely to be ambiguous and unstable,

our estimated np tends to be more robust and stable with

regard to rotation changes [44]. Subsequently, the neigh-

bouring point set Ps is transformed to Ps
r = RzP

s. To

achieve translation invariance, we further normalize Ps
r by

offsetting to the center point, i.e., P̂s
r = Ps

r −Rzp. Hence,

the obtained local patch P̂s
r is aligned with the z-axis, leav-

ing the remaining rotational degree of freedom entirely on

the XY-plane.

Spherical Voxelization. To further eliminate the rota-

tional variance on the XY-plane, we leverage a rotation-

robust spherical representation. In particular, we treat the

patch P̂s
r as a sphere, and evenly divide it into J ×K × L

voxels along the radial distance ρ, elevation angle φ and az-

imuth angle θ. The center of each voxel is denoted as vjkl,

where j ∈ {1, ..., J}, k ∈ {1, ...,K}, l ∈ {1, ..., L}. We

then explicitly identify a set of neighboring points for the

center vjkl of each voxel. In particular, we use the radius

query to find the neighboring points Pjkl ⊂ P̂s
r based on

a fixed radius Rv , where Pjkl = {p̂i : ‖p̂i − vjkl‖
2 ≤

Rv, p̂i ∈ P̂s
r}. Lastly, we randomly sample and preserve

a fixed number of kv points for each voxel, aiming for ef-

ficient computation in parallel. This spherical voxelization

step is key to the successive spatial point transformation.

Transformation on the XY-Plane. To enable each

spherical voxel to be rotationally invariant on the XY-plane,
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Figure 2: The detailed components and processing steps of our Spatial Point Transformer.

we proactively rotate each voxel around the Z-axis to align

its center vjkl with the YZ-plane, where the rotation matrix

Rjkl is defined as:

Rjkl =

⎡
⎣
cos(π/2− 2πl/L) − sin(π/2− 2πl/L) 0
sin(π/2− 2πl/L) cos(π/2− 2πl/L) 0

0 0 1

⎤
⎦

(3)

This removes an additional rotational degree of freedom for

each voxel on the XY-plane, without dropping any local ge-

ometric patterns of each voxel. Note that, the existing meth-

ods [50, 62] usually use handcrafted features to achieve ro-

tation invariance, resulting in the loss of the rich local pat-

terns. Uniquely, our simple strategy to transform voxels can

preserve these patterns, leaving them to be learned by the

powerful neural layers.

Cylindrical Volume Formulation. Once the local pat-

terns of each voxel are transformed, it is crucial to further

preserve the larger spatial structures across multiple voxels.

This requires the relative positions of all voxels to be rep-

resented in the whole framework. To this end, we reformu-

late the spherical voxels into a cylindrical volume. This is

amenable to the proposed 3D cylindrical convolutional net-

work, which guarantees the SO(2) equivariance of the input

local surface and preserves the topological patterns of mul-

tiple voxels. In particular, given the transformed spherical

voxels, each of which has a set of neighbouring points, we

logically project them into a cylindrical volume, denoted as

C ∈ R
J×K×L×kv×3 and illustrated in Figure 2.

In summary, given an input surface patch, our Spatial

Point Transformer explicitly aligns its Z-axis with a refer-

ence axis, and proactively transforms the spherical voxel

patterns on the XY-plane, and further preserves the topolog-

ical surface structures through the cylindrical volume for-

mulation. Clearly, this module keeps all surface patterns

intact for the subsequent Neural Feature Extractor to learn.

3.3. Neural Feature Extractor

This module is designed to learn the general features

from the transformed points within each cylindrical voxel

using the powerful neural layers. As shown in Figure 3, it

consists of two components, as discussed below.

Point-based Layers. Given the points within each cylin-

drical voxel, we use shared MLPs followed by a max-

pooling function A(·) to learn an initial signature for each

voxel. Formally, the point-based layers are defined as:

fjkl = A(MLPs(RjklPjkl)) (4)

where fjkl is the learned features with D dimension. Note

that, the MLP weights are shared across all spherical voxels.

Eventually, we obtain a set of 3D cylindrical feature maps

F ∈ R
J×K×L×D.

3D Cylindrical Convolutional Layers. To further learn

wider spatial structures across multiple voxels of the cylin-

drical volume, we propose an efficient 3D Cylindrical Con-

volution Network (3DCCN) inspired by [31]. In particu-

lar, given a voxel located at the position (j, k, l) on the dth

cylindrical feature map in the sth layer, our 3DCCN is de-

fined as follows.

Fsd′

jkl =
D∑

d=1

Rs∑

r=1

Ys∑

y=1

Xs∑

x=1

wsd′d
ryx F

(s−1)d
(j+r)(k+y)(l+x). (5)

where Rs is the size of the kernel along the radial dimen-

sion, Ys and Xs are the height and width of the kernel re-

spectively, wsd′d
ryx are the learnable parameters.

Being quite different from existing convolution opera-

tions, our proposed 3DCCN is novel in the following two

aspects. First, since the cylindrical feature maps are 360◦

continuous over a cylinder, our 3DCCN is designed to wrap

around these feature maps, i.e., over the periodic bound-

ary from −180◦ to 180◦. Therefore, explicit padding is not

required in our 3DCCN, but required by 3D-CNN at the

boundary of feature maps. Second, compared with the ex-

isting 3D manifold sparse convolution [8] or kernel point

convolutions [2], the continuous convolution around the

360◦ volume enables the obtained feature map to be SO(2)

equivariant, hence to achieve the final rotation-invariance.

After stacking multiple of these 3DCCN layers followed

by max-pooling, the original cylindrical feature maps are

compressed to a compact and representative feature vector.
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Figure 3: Illustration of the proposed Neural Feature Extractor.

3.4. End-to-end Implementation

The Spatial Point Transformer is directly connected with

the Neural Feature Extractor, followed by the existing con-

trastive loss [2] for end-to-end optimization. The widely-

used hardest in batch sampling [42] is also adopted on-the-

fly to maximize the distance between the closest positive

and the closest negative patches. Details of the neural lay-

ers are presented in the appendix.

We implement our SpinNet based on the PyTorch frame-

work. The Adam optimizer [35] with default parameters is

used. The initial learning rate is set to 0.001 and decayed

with a rate of 0.5 for every 5 epochs. We train the net-

work for 20 epochs, the best-performed model on the val-

idation set is then used for testing. For a fair comparison,

we keep the same setting for all experiments. All experi-

ments are conducted on the platform with Intel Xeon CPU

@2.30GHZ with an NVIDIA RTX2080Ti GPU.

4. Experiments

We first evaluate our SpinNet on the indoor 3DMatch

dataset [65] and the outdoor KITTI dataset [20]. We then

evaluate the generalization ability of our approach across

multiple unseen datasets [65, 20, 46] acquired by different

sensors. Lastly, extensive ablation studies are conducted.

Experimental Setup. We follow [2, 65] to generate

training samples by only considering the point cloud frag-

ment pairs with more than 30% overlap in the whole dataset.

For each paired fragment P and Q, we randomly sample

a fixed number of anchor points from the overlapping re-

gion of P, and then apply the ground-truth transformation

T = {R, t} to determine the corresponding points in frag-

ment Q. For each anchor point, we randomly sample 2048

points from its support region.

4.1. Evaluation on Indoor 3DMatch Dataset

3DMatch is a RGBD-reconstruction dataset, which con-

sists of 62 real-world indoor scenes collected from existing

dataset [56, 49, 57, 34, 56, 11]. We follow the official pro-

tocol provided in [2] to divide the scenes into training and

testing splits. Each scene contains several partially over-

lapped fragments, and has the ground truth transformation

parameters available for evaluation. Feature Matching Re-

call (FMR) [13] is used as the standard metric.

Comparisons with the state-of-the-arts. We first com-

pare the FMR scores achieved by our SpinNet and strong

baselines (including LMVD [37], D3Feat [2], FCGF [8],

PerfectMatch [22], PPFNet [14], and PPF-FoldNet [13])

on the 3DMatch dataset, under the conditions of sampling

points f=5000, distance threshold τ1=10 cm and inlier ra-

tio threshold τ2=5%. To further evaluate the robustness of

all approaches against rotations, we follow [14, 2] to build a

rotated 3DMatch benchmark by applying arbitrary rotations

in SO(3) group to all fragments of the dataset. The rotation

distribution of each dataset is showed in the appendix.

Origin Rotated Feat. Rot.

FMR (%) STD FMR (%) STD dim. Aug.

FPFH [48] 35.9 13.4 36.4 13.6 33 No

SHOT [54] 23.8 10.9 23.4 9.5 352 No

3DMatch [65] 59.6 8.8 1.1 - 512 No

CGF [32] 58.2 14.2 58.5 14.0 32 No

PPFNet [14] 62.3 10.8 0.3 - 64 No

PPF-FoldNet [13] 71.8 10.5 73.1 10.4 512 No

PerfectMatch [22] 94.7 2.7 94.9 2.5 32 No

FCGF [8] 95.2 2.9 95.3 3.3 32 Yes

D3Feat-rand [2] 95.3 2.7 95.2 3.2 32 Yes

D3Feat-pred [2] 95.8 2.9 95.5 3.5 32 Yes

LMVD [37] 97.5 2.8 96.9 - 32 No

SpinNet (Ours) 97.6 1.9 97.5 1.9 32 No

Table 1: Quantitative results on the 3DMatch dataset, STD:

standard deviation. The symbol ‘-’ means the results are

unavailable or STD under low FMRs (<10%).

As shown in Table 1, the descriptor generated by our

method achieves the highest average FMR score and the

lowest standard deviation on both the original and rotated

datasets, outperforming the state-of-the-art methods. Note

that, several baselines [8, 2] require rotation-based data aug-

mentation for training, whilst ours does not.

Performance under different number of sampled points.

We further evaluate the performance of our SpinNet on the
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#Sampled points 5000 2500 1000 500 250 Average

Feature Matching Recall (%)

PerfectMatch [22] 94.7 94.2 92.6 90.1 82.9 90.9

FCGF [8] 95.2 95.5 94.6 93.0 89.9 93.6

D3Feat-rand [2] 95.3 95.1 94.2 93.6 90.8 93.8

D3Feat-pred [2] 95.8 95.6 94.6 94.3 93.3 94.7

SpinNet (Ours) 97.6 97.5 97.3 96.3 94.3 96.6

Table 2: Quantitative results on the 3DMatch dataset using

different numbers of sampled points.

Figure 4: Feature matching recall on the 3DMatch dataset

under different inlier distance threshold τ1 (Left) and inlier

ratio threshold τ2 (Right).

3DMatch by taking different number of sampled points as

input. As shown in Table 2, the descriptor learned by our

SpinNet consistently achieves the best FMR scores when

the number of sampled points is reduced from 5000 to 250.

In particular, by randomly selecting points, our method even

outperforms D3Feat-pred which has an explicit keypoint

detection module. This demonstrates our network is highly

robust and not sensitive to the number of sampled points.

RTE (cm) RRE (◦)
Success (%)

AVG STD AVG STD

3DFeat-Net [60] 25.9 26.2 0.57 0.46 95.97

FCGF [8] 9.52 1.30 0.30 0.28 96.57

D3Feat-rand [2] 8.78 0.44 0.32 0.07 99.81

D3Feat-pred [2] 6.90 0.30 0.24 0.06 99.81

SpinNet (Ours) 9.88 0.50 0.47 0.09 99.10

Table 3: Quantitative results of different approaches on the

KITTI odometry dataset. The scores of baselines are re-

trieved from [2].

Performance under Different Error Thresholds. Addi-

tionally, we evaluate the robustness of SpinNet by vary-

ing the error thresholds (τ1 and τ2). As shown in Figure

4, the descriptor generated by SpinNet consistently out-

performs other methods under all thresholds. It is worth

noting that the FMR score of our method is significantly

higher than others, when the inlier ratio threshold increases.

For a stricter condition τ2 = 0.2, our method maintains a

high FMR score of 85.7%, while D3Feat and FCGF drop

to 75.8% and 67.4%, respectively. This highlights that our

approach is more robust in harder scenarios.

4.2. Evaluation on Outdoor KITTI Dataset

KITTI odometry [20] is an outdoor sparse point cloud

dataset acquired by Velodyne-64 3D LiDAR scanners. It

consists of 11 sequences of outdoor scans. For fair compar-

ison, we follow the same dataset splits and preprocessing

methods as used in D3Feat [2, 8]. Similar to [39], Relative

Translational Error (RTE), Relative Rotation Error (RRE),

and Success rate are used as the evaluation metrics. The

registration is regarded as successful if the RTE and RRE

of a pair of fragments are both below the predefined thresh-

olds 2m and 5◦ in [60]. It is noted that the point clouds are

gravity-aligned in this dataset, we follow [60] to skip the

alignment with a reference axis in our method. As shown in

Table 3, the results of our SpinNet are on par with the strong

baseline D3Feat. Admittedly, our SpinNet is marginally

lower than the state-of-the-art D3Feat-pred, primarily be-

cause D3Feat has a powerful joint learned descriptor and

keypoint detector. Also, the well aligned point clouds in

this dataset are indeed in favor of D3Feat. We leave the

integration of keypoint detection for future exploration.

4.3. Generalization across Unseen Datasets

We have conducted several groups of experiments to ex-

tensively evaluate the generalization ability of our SpinNet.

In each group, our network is trained on one dataset, and

then directly tested on a completely unseen dataset.

Param. Gazebo Wood
Avg.

(Mb) Summer Winter Autumn Summer

FPFH† [48] - 38.6 14.2 14.8 20.8 22.1

SHOT† [54] - 73.9 45.7 60.9 64.0 61.1

3DMatch [65] 13.40 22.8 8.3 13.9 22.4 16.9

CGF [32] 1.86 37.5 13.8 10.4 19.2 20.2

PerfectMatch [22] 3.26 91.3 84.1 67.8 72.8 79.0

FCGF [8] 33.48 22.8 10.0 14.8 16.8 16.1

D3Feat (rand) [2] 13.42 45.7 23.9 13.0 22.4 26.2

D3Feat (pred) [2] 13.42 85.9 63.0 49.6 48.0 61.6

LMVD [37] 2.66 85.3 72.0 84.0 78.3 79.9

SpinNet (Ours) 2.16 92.9 91.7 92.2 94.4 92.8

Table 4: Quantitative results on the ETH dataset, where †
denotes handcrafted descriptor. Note that, all learned meth-

ods are only trained on the indoor 3DMatch dataset. The

FMR scores at τ1 = 10cm, τ2 = 5% are compared.

Generalization from 3DMatch to ETH dataset. Fol-

lowing the settings in [2], all models are only trained
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on the 3DMatch dataset, and then directly tested on the

ETH dataset [46]. Note that, the ETH dataset consists of

four scenes, i.e., Gazebo-Summer, Gazebo-Winter, Wood-

Summer, and Wood-Autumn. Different from 3DMatch,

the ETH dataset is acquired by static terrestrial scanners

and dominated by outdoor vegetation, such as trees and

bushes. In addition, the fragments of point clouds in the

ETH dataset have lower resolution and contain more com-

plex geometries compared with the 3DMatch dataset. The

large domain gap between these two datasets poses a great

challenge to the generalization of all approaches.

As shown in Table 4, the performance of all baselines,

namely D3Feat, FCGF, 3DMatch, and CGF, show a sig-

nificant drop on the ETH dataset. Their FMR scores de-

crease up to 80% compared with their results on the original

3DMatch dataset, as shown in Table 1, and some techniques

are even lower in performance than handcrafted descriptors

such as SHOT. Fundamentally, the poor generalization of

these methods is attributed to the fact that the descriptors

learned by D3Feat, FCGF, and 3DMatch are variant to rigid

transformations such as rotation and translation.

The descriptor generated by our SpinNet achieves the

highest FMR scores on all four scenes, significantly sur-

passing the second-best method (LMVD) by about 13%.

This clearly shows that our method has excellent general-

ization ability across the unseen dataset collected by a new

sensor modality. This is primarily because our SpinNet is

explicitly designed to achieve rotational invariance. The

first row of Figure 5 shows the qualitative results.

Origin Rotated

FMR (%) STD (%) FMR (%) STD (%)

FPFH† [48] 35.9 13.4 36.4 13.6

SHOT† [54] 23.8 10.9 23.4 9.5

FCGF [8] 32.5 7.4 1.0 1.0

D3Feat-rand [2] 60.7 7.7 17.2 4.6

D3Feat-pred [2] 62.7 8.1 17.8 3.2

SpinNet (Ours) 84.5 5.9 84.2 5.8

Table 5: Quantitative results of different methods on the

indoor 3DMatch dataset, where † denotes handcrafted de-

scriptor. Note that, all learned methods are only trained on

the outdoor KITTI dataset.

RTE (cm) RRE (◦)
Success (%)

AVG STD AVG STD

FCGF [8] 27.1 5.58 1.61 1.51 24.19

D3Feat-rand [2] 37.8 9.98 1.58 1.47 18.47

D3Feat-pred [2] 31.6 10.1 1.44 1.35 36.76

SpinNet (Ours) 15.6 1.89 0.98 0.63 81.44

Table 6: Quantitative results on the KITTI dataset. Note

that, all models are trained on the indoor 3DMatch dataset,

while being directly tested on the outdoor KITTI dataset.

Generalization from KITTI to 3DMatch dataset. All

models are trained on the outdoor KITTI dataset which is

mainly composed of sparse LiDAR point clouds, and then

directly tested on the indoor 3DMatch dataset which con-

sists of dense point clouds reconstructed from RGBD im-

ages. As presented in Table 5, both D3Feat and FCGF

achieve poor results on the 3DMatch dataset, especially

when arbitary rotation in SO(3) exists. Their scores are even

lower than the traditional methods such as FPFH, primar-

ily because both D3Feat and FCGF have large numbers of

parameters and tend to overfit the KITTI dataset, without

learning the representative and general local patterns that

can be applicable to the unseen dataset. By comparison, our

SpinNet achieves an overall FMR score of 79.6%, demon-

strating the superior generalization across novel scenarios.

The second row of Figure 5 shows the qualitative results.

Generalization from 3DMatch to KITTI dataset.

Additionaly, we evaluate the generalization ability from

3DMatch to KITTI dataset. All models are only trained on

the indoor 3DMatch dataset, and then directly tested on the

outdoor KITTI dataset. Table 6 presents the quantitative re-

sults. Because these two datasets are collected by different

types of sensors, there is a large gap between the data distri-

butions. Neither FCGF nor D3Feat can effectively general-

ize from 3DMatch to KITTI dataset. However, our method

still demonstrates an excellent success rate of 69.19%, dou-

bling that of the second best method. The third row of Fig-

ure 5 shows the qualitative results.

4.4. Ablation Study

To systematically evaluate the effectiveness of each com-

ponent in our SpinNet, we conduct extensive ablative exper-

iments on both 3DMatch and ETH datasets. In particular,

we train all ablated models on the 3DMatch dataset, and

then directly test them on both 3DMatch and ETH datasets.

(1) Only removing the alignment with a reference axis.

Initially, the reference axis is computed to align the input

patch with the Z-axis. By removing this step, the rotation

invariance on SO(3) is no longer maintained.

3DMatch ETH

Origin Rotated Origin Rotated

Inlier ratio τ2 = 0.05 0.2 0.05 0.2 0.05 0.05

(1) W/o reference axis 95.1 80.0 63.0 23.1 83.9 13.5

(2) W/o transformation 93.5 70.8 87.7 44.8 60.5 47.7

(3) W/o Point Nets 94.0 66.3 93.8 66.1 42.6 42.4

(4) Replacing 3DCCN 64.4 10.6 64.4 10.4 0.0 0.0

(5) The full method 97.6 85.7 97.5 86.1 92.8 92.4

Table 7: The FMR scores of all ablated models on the

3DMatch and ETH datasets with τ1 = 0.1cm.

(2) Only removing the transformation on the XY-plane.

The transformation employed on the XY-plane is originally
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Fragment 1 Fragment 2 D3Feat [2]FCGF [7] Ours Ground Truth

Figure 5: Qualitative results of our method on unseen datasets. The first row is from 3DMatch to ETH, the second row is

from KITTI to 3DMatch, and the third row is from 3DMatch to KITTI.

designed to eliminate the rotation variance of each voxel in

the plane. In this experiment, we remove the transforma-

tion and directly operate on the non-transformed spherical

voxels to formulate the cylindrical volume.

(3) Only replacing the point-based layers with density.

Instead of using the Point-based layers to learn a signature

for each cylindrical voxel, we manually compute the point

density of each voxel as its signature. Basically, this is to

validate whether our point-based learned features are more

general and representative than the commonly used, yet lim-

ited, handcrafted feature.

(4) Only replacing 3DCCN by MLPs. The 3DCNN is de-

signed to learn larger spatial structures from multiple vox-

els, whilst maintaining rotation equivariance. In this exper-

iment, we replace the 3DCNN layers with the same number

of MLP layers shared by all cylindrical voxels. These MLPs

are unable to learn a wide context.

Analysis. Table 7 shows the results of all ablated net-

works on the 3DMatch dataset, as well as the generalization

performance on the ETH datasets. It can be seen that: 1)

Without using the alignment of a reference axis or the trans-

formation of spherical voxels, the ablated models are unable

to effectively match the point clouds either in 3DMatch or

ETH datasets, especially for the point clouds with random

rotations. This shows that the proposed Spatial Point Trans-

former indeed plays an important role to achieve rotation

invariance in our SpinNet. 2) Without using the advanced

point-based neural layers to learn the signatures for spheri-

cal voxels, the ablated method can obtain consistent results

on the 3DMatch dataset using the simple handcrafted fea-

ture, i.e., point density, but fails to generalize to the unseen

ETH dataset. This clearly demonstrates that the learned lo-

cal features tend to be much more powerful and general than

the handcrafted features. 3) Without using the 3DCCN to

learn larger surface structures, the ablated model only ob-

tains significantly lower scores on both the 3DMatch and

ETH datasets. This demonstrates that our 3DCCN is a key

to preserving the local spatial patterns.

5. Conclusion

In this paper, we present a new neural descriptor to learn

compact representations for complex 3D surfaces. The

learned representations are rotation invariant, descriptive,

and able to preserve complex local geometric patterns. Ex-

tensive experiments demonstrate that our descriptor has re-

markable generalization ability across unseen scenarios and

achieves superior results for 3D point cloud registration. In

future, we will investigate the integration of keypoint detec-

tor, as well as the fully-convolutional architecture.
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