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Abstract

We propose an approach to domain adaptation for se-

mantic segmentation that is both practical and highly ac-

curate. In contrast to previous work, we abandon the use

of computationally involved adversarial objectives, network

ensembles and style transfer. Instead, we employ standard

data augmentation techniques – photometric noise, flipping

and scaling – and ensure consistency of the semantic pre-

dictions across these image transformations. We develop

this principle in a lightweight self-supervised framework

trained on co-evolving pseudo labels without the need for

cumbersome extra training rounds. Simple in training from

a practitioner’s standpoint, our approach is remarkably ef-

fective. We achieve significant improvements of the state-of-

the-art segmentation accuracy after adaptation, consistent

both across different choices of the backbone architecture

and adaptation scenarios.

1. Introduction

Unsupervised domain adaptation (UDA) is a variant of

semi-supervised learning [6], where the available unla-

belled data comes from a different distribution than the an-

notated dataset [4]. A case in point is to exploit synthetic

data, where annotation is more accessible compared to the

costly labelling of real-world images [59, 60]. Along with

some success in addressing UDA for semantic segmenta-

tion [67, 69, 80, 91], the developed methods are growing

increasingly sophisticated and often combine style trans-

fer networks, adversarial training or network ensembles

[39, 46, 68, 77]. This increase in model complexity impedes

reproducibility, potentially slowing further progress.

In this work, we propose a UDA framework reaching

state-of-the-art segmentation accuracy (measured by the

Intersection-over-Union, IoU) without incurring substantial

training efforts. Toward this goal, we adopt a simple semi-

supervised approach, self-training [12, 42, 91], used in re-

cent works only in conjunction with adversarial training or

Code is available at https://github.com/visinf/da-sac.
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Figure 1. Results preview. Unlike much recent work that com-

bines multiple training paradigms, such as adversarial training and

style transfer, our approach retains the modest single-round train-

ing complexity of self-training, yet improves the state of the art for

adapting semantic segmentation by a significant margin.

network ensembles [17, 39, 54, 70, 80, 86, 87]. By contrast,

we use self-training standalone. Compared to previous self-

training methods [9, 43, 65, 91, 92], our approach also

sidesteps the inconvenience of multiple training rounds, as

they often require expert intervention between consecutive

rounds. We train our model using co-evolving pseudo labels

end-to-end without such need.

Our method leverages the ubiquitous data augmentation

techniques from fully supervised learning [11, 85]: photo-

metric jitter, flipping and multi-scale cropping. We enforce

consistency of the semantic maps produced by the model

across these image perturbations. The following assump-

tion formalises the key premise:

Assumption 1. Let f : I → M represent a pixelwise

mapping from images I to semantic output M. Denote

ρǫ : I → I a photometric image transform and, sim-

ilarly, τǫ′ : I → I a spatial similarity transformation,

where ǫ, ǫ′ ∼ p(·) are control variables following some pre-

defined density (e.g., p ≡ N (0, 1)). Then, for any image

I ∈ I, f is invariant under ρǫ and equivariant under τǫ′ ,

i.e. f(ρǫ(I)) = f(I) and f(τǫ′(I)) = τǫ′(f(I)).

Next, we introduce a training framework using a momentum

network – a slowly advancing copy of the original model.
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The momentum network provides stable, yet recent targets

for model updates, as opposed to the fixed supervision in

model distillation [15, 86, 87]. We also re-visit the problem

of long-tail recognition in the context of generating pseudo

labels for self-supervision. In particular, we maintain an

exponentially moving class prior used to discount the con-

fidence thresholds for those classes with few samples and

increase their relative contribution to the training loss. Our

framework is simple to train, adds moderate computational

overhead compared to a fully supervised setup, yet sets a

new state of the art on established benchmarks (cf. Fig. 1).

2. Related Work

Most of the work on scene adaptation for semantic seg-

mentation has been influenced by a parallel stream of work

on domain adaptation (DA) and semi-supervised learning

for image classification [23, 24, 27, 45, 50]. The main idea

behind these methods is to formulate an upper bound on the

target risk using the so-called H∆H-divergence [3]. In a

nutshell, it defines the discrepancy between the marginals

of the source and target data by means of a binary classifier.

In the following, we briefly review implementation variants

of this idea in the context of semantic segmentation.

Learning domain-invariant representations. Adversar-

ial feature alignment follows the GAN framework [24, 26]

and minimises the gap between the source and target feature

representations in terms of some distance (e.g., Wasserstein

in [41]). The discriminator can be employed at multiple

scales [15, 67, 77] and use local spatial priors [83]; it can

be conditional [33] and class-specific [22, 52], or align the

features of ‘hard’ and ‘easy’ target samples [56]. Often,

self-supervised losses, such as entropy minimisation [69],

or a ‘conservative loss’ [90] assist in this alignment.

The alternative to adversarial feature alignment are more

interpretable constraints, such as feature priors [51], bijec-

tive source-target association [37] or aligning the domains

directly in the image space with style transfer [89] used ei-

ther alone [74] or, most commonly, jointly with adversar-

ial feature alignment [8, 16, 25, 55, 78, 79, 82]. One is-

sue with style translation is to ensure semantic consistency

despite the changes in appearance. To address this, Hoff-

man et al. [32] use semantic and cycle-consistency losses,

while Yang et al. [77] reconstruct the original image from

its label-space representation.

These methods tend to be computationally costly and

challenging to train, since they require concurrent training

of one or more independent networks, e.g. discriminators or

style transfer networks. Although Yang and Soatto [80] ob-

viate the need for style networks by incorporating the phase

of a Fourier-transformed target image into a source sample,

multiple networks have to be trained, each with its own pre-

defined phase band.

Features
PIT
[53]

LDR
[77]

SA-I2I
[55]

IAST
[54]

RPT
[83] Ours

Adversarial training ✓ ✓ ✓ ✓

1-round training ✓ ✓ (6) (3) (3) ✓

SOTA-VGG ✓ ✓ ✓

SOTA-ResNet ✓ ✓ ✓

Table 1. Relation to state of the art. Previous work reaches the

state of the art in terms of IoU either with VGG-16 (SOTA-VGG)

or ResNet-101 (SOTA-ResNet). Our framework uses neither ad-

versarial training nor multiple training rounds (given in parenthe-

ses), yet outperforms the state of the art consistently in both cases.

Self-training on pseudo labels. As a more computation-

ally lightweight approach, self-training seeks high-quality

pseudo supervision coming in the form of class predictions

with high confidence. Our work belongs to this category.

Most of such previous methods pre-compute the labels ‘of-

fline’, used subsequently to update the model, and repeat

this process for several rounds [43, 65, 91, 92]. More re-

cent frameworks following this strategy have a composite

nature: they rely on adversarial (pre-)training [14, 20, 87],

style translation [17, 80] or both [54, 46, 39, 70, 73].

Training on co-evolving pseudo labels can be computa-

tionally unstable, hence requires additional regularisation.

Chen et al. [13] minimise the entropy with improved be-

haviour of the gradient near the saturation points. Using

fixed representations, be it from a ‘frozen’ network [15, 87],

a fixed set of global [53] or self-generated local labels

[47, 68, 81], further improves training robustness.

Overconfident predictions [28] have direct consequences

for the quality of pseudo labels. Zou et al. [92] attain some

degree of confidence calibration via regularising the loss

with prediction smoothing akin to temperature scaling [28].

Averaging the predictions of two classifiers [86], or using

Dropout-based sampling [7, 88], achieves the same goal.

Spatial priors. Different from DA for classification, the

characteristic feature of adaptation methods for segmenta-

tion is the use of spatial priors. Local priors have been

enforced patch-wise [15, 47, 68] and in the form of pre-

computed super-pixels [81, 83]. Although global spatial

priors have also been used [91], their success hinges on the

similarity of the semantic layout in the current benchmarks.

Relation to our approach. As shown in Table 1, our work

streamlines the training process. First, we do not use adver-

sarial training, as feature invariance alone does not guaran-

tee label invariance [36, 84]. Second, we train our model

with co-evolving pseudo labels in one round. Our frame-

work bears resemblance to the noisy mean teacher [76] and

combines consistency regularisation [2, 61, 64, 75] with

self-ensembling [40, 66]. Similar approaches have been ex-

plored in medical imaging [44, 58] and concurrent UDA

work [71], albeit limited in the scope of admissible aug-
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Figure 2. Overview. The segmentation network in our framework (a) maintains a slow copy of itself, the momentum network, which

provides stable targets for self-supervision. In addition to encouraging semantic invariance w.r.t. the photometric noise, we facilitate

consistent predictions across multiple scales and flips by first (b) feeding random multi-scale crops and flips to the momentum network and

then (c) fusing the predictions by simple averaging to produce the pseudo-supervision targets.

mentations. We leverage photometric invariance, scale and

flip equivariance [72] to extract high-fidelity pseudo super-

vision instead of more computationally expensive sampling

techniques [38]. Contrary to [65], we find that scale alone

is not predictive of the label quality, hence we average the

predictions produced at multiple scales and flips. This par-

allels uncertainty estimation using test-time augmentation

[1], but at training time [5].

3. Self-Supervised Augmentation Consistency

3.1. Framework overview

Shown in Fig. 2a, our framework comprises a segmenta-

tion network, which we intend to adapt to a target domain,

and its slowly changing copy updated with a momentum,

a momentum network. To perform self-supervised scene

adaptation, we first supply a batch of random crops and

horizontal flips from a sample image of the target domain

to both networks. For each pixel we average the predictions

(i.e. semantic masks) from the momentum network after the

appropriate inverse spatial transformation. We then create

a pseudo ground truth by selecting confident pixels from

the averaged map using thresholds based on running statis-

tics, which are capable of adapting to individual samples.

Finally, the segmentation network uses stochastic gradient

descent to update its parameters w.r.t. these pseudo labels.

Our approach closely resembles the mean teacher frame-

work [23, 66] and temporal ensembling [35, 40]. However,

as we will show empirically, the ensembling property it-

self plays only an auxiliary role. More importantly, akin

to the critic network in reinforcement learning [48] and the

momentum encoder in unsupervised learning [30], our mo-

mentum network provides stable targets for self-supervised

training of the segmentation network. This view allows us

to focus on the target-generating process, detailed next.

3.2. Batch construction

For each sampled target image, we generate N crops

with random scales, flips and locations, but preserving the

aspect ratio. We re-scale the crops as well as the original im-

age to a fixed input resolution h×w and pass them as the in-

put to the networks. Fig. 2b demonstrates this process. Fol-

lowing the noisy student model in image classification [76],

the input to the segmentation network additionally under-

goes a photometric augmentation: we add random colour

jitter and smooth the images with a Gaussian filter at ran-

dom. The momentum network, on the other hand, receives

a ‘clean’ input, i.e. without such augmentations. This is to

encourage model invariance to photometric perturbations.

3.3. Self­supervision

Multi-scale fusion. We re-project the output masks from

the momentum network back to the original image canvas

of size h × w, as illustrated in Fig. 2c. For each pixel, the

overlapping areas average their predictions. Note that some

pixels may lie outside the crops, hence contain the result

of a single forward pass with the original image. We keep

these predictions intact. The merged maps are then used to

extract the pseudo masks for self-supervision.

A short long-tail interlude. Handling rare classes (i.e.

classes with only a few training samples) is notoriously dif-

ficult in recognition [29]. For semantic segmentation, we

here distinguish between the classes with low image-level

(e.g., “truck”, “bus”) and pixel-level (e.g., “traffic light”,

“pole”) frequency. While generating self-supervision, we

take special care of these cases and encourage (i) lower

thresholds for selecting their pseudo labels, (ii) increased

contributions to the gradient with a focal loss, and (iii) em-

ploy importance sampling. We describe these in detail next.

Sample-based moving threshold. Most previous work

with self-training employs multi-round training that re-

quires interrupting the training process and re-generating

the pseudo labels [43, 46, 54, 65, 91]. One of the rea-

sons is the need to re-compute the thresholds for filtering

the pseudo labels for supervision, which requires travers-

ing the predictions for the complete target dataset with the

model parameters fixed. In pursuit of our goal of enabling

end-to-end training without expert intervention, we take a

different approach and compute the thresholds on-the-go.

As the main ingredient, we maintain an exponentially mov-

ing class prior. In detail, for each softmax prediction of the

momentum network, we first compute a prior estimate of
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the probability that a pixel in sample n belongs to class c as

χc,n =
1

hw

∑

i,j

mc,n,i,j , (1)

where mc,n,:,: is the mask prediction for class c (with res-

olution h × w). We keep an exponentially moving average

after each training iteration t with a momentum γχ ∈ [0, 1]:

χt+1
c = γχχ

t
c + (1− γχ)χc,n. (2)

Our sample-based moving threshold θc,n takes lower values

when the moving prior χc ≈ 0 (i.e. for long-tail classes), but

is bounded from above as χc → 1. We define it as

θc,n = ζ
(

1− e−χc/β
)

m∗c,n, (3)

where β and ζ are hyperparameters and m∗c,n is the pre-

dicted peak confidence score for class c, i.e.

m∗c,n = max
i,j

mc,n,i,j . (4)

Fig. 3 plots Eq. (3) as a function of the moving class prior χc
for a selection of β. For predominant classes (e.g., “road”),

the exponential term has nearly no effect; the threshold is

static w.r.t. the peak class confidence, i.e. θc,n ≈ ζm∗c,n.

However, for long-tail classes such that χc ≈ β, the thresh-

old is lower than this upper bound, hence more pixels for

these classes are selected for supervision. To obtain the

pseudo labels, we apply the threshold θc,n to the peak pre-

dictions of the merged output from the momentum network:

m̂n,i,j =

{

c∗ mc∗,n,i,j > θc,n

ignore otherwise,
(5)

where c∗ = argmaxcmc,n,i,j is the dominant class for that

pixel. Note that the pixels with confidence values lower than

the threshold, as well as non-dominant predictions, will be

ignored in the self-supervised loss.

Focal loss with confidence regularisation. Our loss func-

tion incorporates a focal multiplier [49] to further increase

the contribution of the long-tail classes in the gradient sig-

nal. Unlike previous work [49, 65], however, our moving

class prior χc regulates the focal term:

Ltn(m̄,m | φ) = −mc∗,n(1− χc∗)
λ log(m̄c∗,n), (6)

where m̄ is the prediction of the segmentation network with

parameters φ, the pseudo label c∗ derives from m̂ in Eq. (5)

and λ is a hyperparameter of the focal term. Recall that low

values of χc signify a long-tail category, hence should have

a higher weight. High values of λ (i.e.> 1) increase the rel-

ative weighting on the long-tail classes, while setting λ = 0
disables the focal term. Note that we also regularise our loss

with the confidence value of the momentum network,mc∗,n

(Eq. 4). In case of an incorrect pseudo label, we expect this

confidence to be low and to regularise the training owing to

its calibration with the multi-scale fusion. We minimise the

loss in Eq. (6), applied for each pixel, w.r.t. φ.

0
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θc,n

0 0.01 0.02 0.03 0.04 χc
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c,n
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Figure 3. Sample-based moving threshold. Our thresholding

scheme has two hyperparameters, ζ and β. In this example,

m∗
c,n = 1 and ζ = 0.75. Predominant classes (e.g., “road”) have

χc ≫ 0, hence their threshold approximates ζm∗
c,n. Long-tail

classes (e.g., “traffic light”) have χc ≈ 0 and their thresholds are

further reduced with a steepness controlled by β (see Eq. 3).

3.4. Training

Pre-training with source-only loss. Following [47, 83],

we use Adaptive Batch Normalisation (ABN) [45] to jump-

start our model on the segmentation task by minimising the

cross-entropy loss on the source data only. In our exper-

iments, we found it unnecessary to re-compute the mean

and the standard deviation only at the end of the training.

Instead, in pre-training we alternate batches of source and

target images, but ignore the loss for the latter. For a target

batch, this implies updating the running mean and the stan-

dard deviation in the Batch Normalisation (BN) [34] layers

and leaving the remaining model parameters untouched.

Importance sampling. Our loss function in Eq. (6) ac-

counts for long-tail classes with a high image frequency

(e.g., “traffic light”, “pole”), and may not be effective for

the classes appearing in only few samples (e.g., “bus”,

“train”). To alleviate this imbalance, we use importance

sampling [21] and increase the sample frequency of these

long-tail classes. We minimise the expected target loss by

re-sampling the target images using the density pt:

min
φ

En∼pt

[

Ltn(φ)
]

. (7)

To obtain pt, we use our pre-trained segmentation network

and pre-compute χc,n, the class prior estimate, for each im-

age n using Eq. (1). At training time, we (i) sample a se-

mantic class c uniformly, and then (ii) obtain a target sample

l with probability

χ̂c,l =
χc,l

∑

n χc,n
. (8)

This two-step sampling process ensures that all images have

non-zero sample probability owing to the prevalent classes

for which χ̂c,l > 0 for all l (e.g., “road” in urban scenes).

Joint target-source training. We train the segmentation

network with stochastic gradient descent using the cross-

entropy loss for the source and our focal loss for the target

15387



(a) Input (b) Segmentation net output (c) Momentum net output (d) Fused prediction (e) Pseudo labels

Figure 4. Self-supervision example. In this image sample (a) and its crops, the segmentation network (b) tends to mistake the “motorcycle”

for a “bicycle”. The momentum network (c) improves on this prediction, but may still produce an inconsistent labelling. Averaging the

predictions over multiple scales (d) corrects this inconsistency, allowing to produce high-precision pseudo labels (e) for self-supervision.

data sampled from pt, as defined by Eqs. (6) and (7). Fig. 4

illustrates the synthesis of pseudo labels. We periodically

update the parameters ψ of the momentum network as

ψt+1 = γψψt + (1− γψ)φ, (9)

where φ are the parameters of the segmentation network. γψ
regulates the pace of the updates: low values result in faster,

but unstable training, while high γψ leads to a premature

and suboptimal convergence. We keep γψ moderate, but

update the momentum network only every T iterations.

4. Experiments

Datasets. In our experiments we use three datasets. The

Cityscapes dataset [18] contains 2048 × 1024 images from

real-world traffic scenes, split into 2975 images for train-

ing and 500 for validation. The GTA5 dataset [59] con-

tains 24 966 synthetic scenes with resolution 1914 × 1052

and pixelwise annotation aided by the GTA5 game engine.

We also use the SYNTHIA-RAND-CITYSCAPES subset

of the SYNTHIA dataset [60], which contains 9400 syn-

thetic images with resolution 1280 × 760 and a semantic

annotation compatible with Cityscapes.

Setup. We adopt the established evaluation protocol from

previous work [47, 67, 69]. The synthetic traffic scenes

from GTA5 [59] and SYNTHIA [60] serve as the source

data, and the real images from the Cityscapes dataset as the

target (obviously ignoring the available semantic labels).

This results in two domain adaptation scenarios depending

on the choice of the source data: GTA5 → Cityscapes and

SYNTHIA → Cityscapes. As in previous work, at training

time we only use the training split of the Cityscapes dataset

and report the results on the validation split. We measure

the segmentation accuracy with per-class Intersection-over-

Union (IoU) and its average, the mean IoU (mIoU).

4.1. Implementation details

We implement our framework in PyTorch [57]. We adopt

DeepLabv2 [10] as the segmentation architecture, and eval-

uate our method with two backbones, ResNet-101 [31] and

VGG16 [63], following recent work [39, 67, 68, 69, 73].

Both backbones initialise from the models pre-trained on

ImageNet [19]. We first train the models with ABN [45]

(cf. Sec. 3.4), implemented via SyncBN [57], on multi-

scale crops resized to 640 × 640 and a batch size of 16.

Next, training proceeds with the self-supervised target loss

(cf. Sec. 3.3) and the BatchNorm layers [34] frozen. The

batch size of 16 comprises 8 source images and 8 target im-

ages at resolution 1024× 512, which is a common practice

[70, 80]. The target batch contains only two image samples

along with 3 random crops each (i.e. N = 3 in Sec. 3.2),

downscaled up to a factor of 0.5. As the photometric noise,

we use colour jitter, random blur and greyscaling (see Ap-

pendix B for details). The optimisation uses SGD with a

constant learning rate of 2.5 × 10−4, momentum 0.9 and

weight decay of 5×10−4. We accumulate the gradient in al-

ternating source-target forward passes to keep the memory

footprint in check. Since the focal term in Eq. (6) reduces

the target loss magnitude w.r.t. the source loss, we scale it

up by a factor of 5 (2 for VGG-16). We train our VGG-

based framework on two TITAN X GPUs (12GB), while

the ResNet-based variant requires four. This is a substan-

tially reduced requirement compared to recent work (e.g.,
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Method road sidew build wall fence pole light sign veg terr sky pers ride car truck bus train moto bicy mIoU

Backbone: VGG-16

CyCADA [32] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

ADVENT [69] 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1

CBST [91] 90.4 50.8 72.0 18.3 9.5 27.2 8.6 14.1 82.4 25.1 70.8 42.6 14.5 76.9 5.9 12.5 1.2 14.0 28.6 36.1

PyCDA [47] 86.7 24.8 80.9 21.4 27.3 30.2 26.6 21.1 86.6 28.9 58.8 53.2 17.9 80.4 18.8 22.4 4.1 9.7 6.2 37.2

PIT [53] 86.2 35.0 82.1 31.1 22.1 23.2 29.4 28.5 79.3 31.8 81.9 52.1 23.2 80.4 29.5 26.9 30.7 20.5 1.2 41.8

FDA [80] 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2

LDR [77] 90.1 41.2 82.2 30.3 21.3 18.3 33.5 23.0 84.1 37.5 81.4 54.2 24.3 83.0 27.6 32.0 8.1 29.7 26.9 43.6

FADA [70] 92.3 51.1 83.7 33.1 29.1 28.5 28.0 21.0 82.6 32.6 85.3 55.2 28.8 83.5 24.4 37.4 0.0 21.1 15.2 43.8

CD-AM [78] 90.1 46.7 82.7 34.2 25.3 21.3 33.0 22.0 84.4 41.4 78.9 55.5 25.8 83.1 24.9 31.4 20.6 25.2 27.8 44.9

SA-I2I [55] 91.1 46.4 82.9 33.2 27.9 20.6 29.0 28.2 84.5 40.9 82.3 52.4 24.4 81.2 21.8 44.8 31.5 26.5 33.7 46.5

Baseline (ours) 81.5 28.6 79.5 23.2 21.1 31.3 28.2 18.5 75.6 14.9 72.2 58.0 17.1 81.1 19.7 26.3 13.7 12.9 2.1 37.1

SAC (ours) 90.0 53.1 86.2 33.8 32.7 38.2 46.0 40.3 84.2 26.4 88.4 65.8 28.0 85.6 40.6 52.9 17.3 13.7 23.8 49.9

Backbone: ResNet-101

PyCDA† [47] 90.5 36.3 84.4 32.4 28.7 34.6 36.4 31.5 86.8 37.9 78.5 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4

CD-AM [78] 91.3 46.0 84.5 34.4 29.7 32.6 35.8 36.4 84.5 43.2 83.0 60.0 32.2 83.2 35.0 46.7 0.0 33.7 42.2 49.2

FADA [70] 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2

LDR [77] 90.8 41.4 84.7 35.1 27.5 31.2 38.0 32.8 85.6 42.1 84.9 59.6 34.4 85.0 42.8 52.7 3.4 30.9 38.1 49.5

FDA [80] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

SA-I2I [55] 91.2 43.3 85.2 38.6 25.9 34.7 41.3 41.0 85.5 46.0 86.5 61.7 33.8 85.5 34.4 48.7 0.0 36.1 37.8 50.4

PIT [53] 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6

IAST [54] 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5

RPT† [83] 89.2 43.3 86.1 39.5 29.9 40.2 49.6 33.1 87.4 38.5 86.0 64.4 25.1 88.5 36.6 45.8 23.9 36.5 56.8 52.6

Baseline (ours) 80.2 29.3 76.8 23.8 21.9 37.7 35.4 21.1 79.8 21.3 75.0 59.5 17.5 83.5 22.4 33.4 13.0 30.7 12.3 40.8

SAC (ours) 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8

(†) denotes the use of PSPNet [85] instead of DeepLabv2 [10].

Table 2. Per-class IoU (%) comparison on GTA5 → Cityscapes adaptation, evaluated on the Cityscapes validation set.

FADA [70] requires 4 Tesla P40 GPUs with 24GB mem-

ory). Note that the momentum network is always in evalua-

tion mode, has gradient tracking disabled, hence adds only

around 35% memory overhead. For the momentum net-

work, we fix γψ = 0.99 and T = 100 in all our experi-

ments. For the other hyperparameters, we use γχ = 0.99,

ζ = 0.75, β = 10−3 and λ = 3. Appendix C.2 provides

further detail on hyperparameter selection, as well as a sen-

sitivity analysis of our framework w.r.t. ζ and β. The infer-

ence follows the usual procedure of a single forward pass

through the segmentation network at the original image res-

olution without any post-processing.

4.2. Comparison to state of the art

We compare our approach to the current state of the

art on the two domain adaptation scenarios: GTA5 →
Cityscapes in Table 2 and SYNTHIA → Cityscapes in

Table 3. For a fair comparison, all numbers originate

from single-scale inference. In both cases, our approach,

denoted as SAC (“Self-supervised Augmentation Consis-

tency”), substantially outperforms our baseline (i.e. the

source-only loss model with ABN, see Sec. 3.4), and, in

fact, sets a new state of the art in terms of mIoU. Impor-

tantly, while the ranking of previous works depends on the

backbone choice and the source data, we reach the top rank

consistently in all settings.

GTA5 → Cityscapes (Table 2). Our method achieves a

clear improvement over the best published results [55, 83]

of +3.4% and +1.2% using the VGG-16 and ResNet-101

backbones, respectively. Note that RPT [83] and SA-I2I

[55] have a substantially higher model complexity. RPT

[83] uses PSPNet [85], which has a higher upper bound

than DeepLabv2 in a fully supervised setup (e.g., +5.7%
IoU on PASCAL VOC [85]); it requires extracting super-

pixels and training an encoder-decoder LSTM, thus increas-

ing the model capacity and the computational overhead.

SA-I2I [55] initialises from a stronger baseline, BDL [46],

and relies on a style transfer network and adversarial train-

ing. While both RPT [83] and SA-I2I [55] require multiple

rounds of training, 3 and 6 (from BDL [46]), respectively,

we train with the target loss in a single pass. Notably, com-

pared to the previous best approach for VGG with a ResNet

evaluation, SA-I2I [55], our improvement with ResNet-101

is substantial, +3.4%, and is comparable to the respective

margin on VGG-16.

SYNTHIA → Cityscapes (Table 3). Here, the result is

consistent with the previous scenario. Our approach attains

state-of-the-art accuracy for both backbones, improving by

7.6% and 1.4% with VGG-16 and ResNet-101 backbones

over the best results previously published [55, 83]. Again,

our method with ResNet-101 outperforms the previous best

method with full evaluation, PyCDA [47], by 5.9% IoU.
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Method road sidew build wall fence pole light sign veg sky pers ride car bus moto bicy mIoU13 mIoU

Backbone: VGG-16

PyCDA [47] 80.6 26.6 74.5 2.0 0.1 18.1 13.7 14.2 80.8 71.0 48.0 19.0 72.3 22.5 12.1 18.1 — 35.9

PIT [53] 81.7 26.9 78.4 6.3 0.2 19.8 13.4 17.4 76.7 74.1 47.5 22.4 76.0 21.7 19.6 27.7 — 38.1

FADA [70] 80.4 35.9 80.9 2.5 0.3 30.4 7.9 22.3 81.8 83.6 48.9 16.8 77.7 31.1 13.5 17.9 — 39.5

FDA [80] 84.2 35.1 78.0 6.1 0.4 27.0 8.5 22.1 77.2 79.6 55.5 19.9 74.8 24.9 14.3 40.7 — 40.5

CD-AM [78] 73.0 31.1 77.1 0.2 0.5 27.0 11.3 27.4 81.2 81.0 59.0 25.6 75.0 26.3 10.1 47.4 — 40.8

LDR [77] 73.7 29.6 77.6 1.0 0.4 26.0 14.7 26.6 80.6 81.8 57.2 24.5 76.1 27.6 13.6 46.6 — 41.1

SA-I2I [55] 79.1 34.0 78.3 0.3 0.6 26.7 15.9 29.5 81.0 81.1 55.5 21.9 77.2 23.5 11.8 47.5 — 41.5

Baseline (ours) 60.7 26.9 67.1 8.3 0.0 33.5 11.9 18.3 66.4 70.4 52.1 16.1 64.6 15.5 11.5 26.4 39.1 34.4

SAC (ours) 77.9 38.6 83.5 15.8 1.5 38.2 41.3 27.9 80.8 83.0 64.3 21.2 78.3 38.5 32.6 62.1 56.2 49.1

Backbone: ResNet-101

ADVENT [69] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 — 41.2

PIT [53] 83.1 27.6 81.5 8.9 0.3 21.8 26.4 33.8 76.4 78.8 64.2 27.6 79.6 31.2 31.0 31.3 — 44.0

PyCDA† [47] 75.5 30.9 83.3 20.8 0.7 32.7 27.3 33.5 84.7 85.0 64.1 25.4 85.0 45.2 21.2 32.0 — 46.7

CD-AM [78] 82.5 42.2 81.3 — — — 18.3 15.9 80.6 83.5 61.4 33.2 72.9 39.3 26.6 43.9 52.4 —

FDA [80] 79.3 35.0 73.2 — — — 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5 —

LDR [77] 85.1 44.5 81.0 — — — 16.4 15.2 80.1 84.8 59.4 31.9 73.2 41.0 32.6 44.7 53.1 —

SA-I2I [55] 87.7 49.7 81.6 — — — 19.3 18.5 81.1 83.7 58.7 31.8 73.3 47.9 37.1 45.7 55.1 —

FADA [70] 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 — 45.2

IAST [54] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 — 49.8

RPT† [83] 88.9 46.5 84.5 15.1 0.5 38.5 39.5 30.1 85.9 85.8 59.8 26.1 88.1 46.8 27.7 56.1 — 51.2

Baseline (ours) 63.9 25.9 71.0 11.0 0.2 36.9 7.6 20.0 72.9 75.5 46.7 16.7 74.5 15.8 20.8 21.7 41.0 36.3

SAC (ours) 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 89.3 63.6 25.4 86.9 35.6 30.4 53.0 59.3 52.6

(†) denotes the use of PSPNet [85] instead of DeepLabv2 [10]. mIoU13 is the average IoU over 13 classes (i.e. excluding “wall”, “fence” and “pole”).

Table 3. Per-class IoU (%) comparison on SYNTHIA → Cityscapes adaptation, evaluated on the Cityscapes validation set.

∆ mIoU Configuration

-8.0 41.9 No augmentation consistency

-6.4 43.5 No momentum net (γψ = 0, T = 1)

-3.9 46.0 No photometric noise

-2.6 47.3 No multi-scale fusion

-2.4 47.5 No focal loss (λ = 0)

-1.9 48.0 Min. entropy fusion (vs. averaging)

-1.7 48.2 No class-based thresholding (β → 0)

-1.6 48.3 No confidence regularisation

-1.5 48.4 No importance sampling

-0.6 49.3 No horizontal flipping

0.0 49.9 Full framework (VGG-16)

Table 4. Ablation study. We use the GTA5 → Cityscapes setting

with the VGG-based model to study the effect of the components

of our framework by individually removing each. We report the

mean IoU for the Cityscapes validation split.

Remarkably, in both settings our approach is more ac-

curate or competitive with many recent works [65, 70, 77]

even when using a weaker backbone, i.e. VGG-16 instead

of ResNet-101. This is significant, as these improvements

are not due to increased training complexity or model ca-

pacity, in contrast to these previous works. Additional re-

sults, including the evaluation on Cityscapes test, are shown

in Appendices C and D.

4.3. Ablation study

To understand what makes our framework effective, we

conduct an ablation study using the GTA5 → Cityscapes

setting with the VGG-16 backbone. We independently

switch off each component and report the results in Table 4.

We find that two components, augmentation consistency

and the momentum network, play a crucial role. Disabling

the momentum network leads to a 6.4% IoU decrease,

while abolishing augmentation consistency leads to a drop

of 8.0% IoU. Recall that augmentation consistency com-

prises three augmentation techniques: photometric noise,

multi-scale fusion and random flipping. We further assess

their individual contributions. Training without the photo-

metric jitter deteriorates the IoU more severely, by 3.9%,

compared to disabling the multi-scale fusion (−2.6%) or

flipping (−0.6%). We hypothesise that encouraging model

robustness to photometric noise additionally alleviates the

inductive bias inherited from the source domain to rely on

strong appearance cues (e.g., colour and texture), which can

be substantially different from the target domain.

Following the intuition that high-confidence predictions

should be preferred [65], we study an alternative imple-

mentation of the multi-scale fusion. For overlapping pix-

els, instead of averaging the predictions, we pool the pre-

diction with the minimum entropy. The accuracy drop by

1.9% is somewhat expected. Averaging predictions via data

augmentation has previously been shown to produce well-

calibrated uncertainty estimates [1]. This is important for

our method, since it relies on the confidence values to se-

lect the predictions for use in self-supervision. Importance

sampling contributes 1.5% IoU to the total accuracy. This
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Figure 5. Qualitative examples. Our approach rectifies an appreciable amount of erroneous predictions from the baseline.

is surprisingly significant despite that our estimates χc,l are

only approximate (cf. Sec. 3.4), but the overall benefit is in

line with previous work [29]. Recall from Eq. (3) that our

confidence thresholds are computed per class to encourage

lower values for long-tail classes. Disabling this scheme

is equivalent to setting β → 0 in Eq. (3), which reduces

the mean IoU by 1.7%. This confirms our observation that

the model tends to predict lower confidences for the classes

occupying only few pixels. Similarly, the loss in Eq. (6)

without the focal term (λ = 0) and confidence regularisa-

tion (mc∗,n = 1) are 2.4% and 1.6% IoU inferior. This is a

surprisingly significant contribution at a negligible compu-

tational cost.

4.4. Qualitative assessment

Fig. 5 presents a few qualitative examples, compar-

ing our approach to the naive baseline (i.e. source-only

loss with ABN). Particularly prominent are the refinements

of the classes “road”, “sidewalk” and “sky”, but even

small-scale elements improve substantially (e.g., “person”,

“fence” in the leftmost column). This is perhaps not sur-

prising, owing to our multi-scale training and the threshold-

ing technique, which initially ignores incorrectly predicted

pixels in self-supervision (as they initially tend to have low

confidence). Remarkably, the segment boundaries tend to

align well with the object boundaries in the image, although

our framework has no explicit encoding of spatial priors,

which was previously deemed necessary [15, 68, 81, 83].

We believe that enforcing semantic consistency with data

augmentation makes our method less prone to the contex-

tual bias [62], often blamed for coarse boundaries.

5. Conclusion

We presented a simple and accurate approach for domain

adaptation of semantic segmentation. With ordinary aug-

mentation techniques and momentum updates, we achieve

state-of-the-art accuracy, yet make no sacrifice of the mod-

est training or model complexity. No components of our

framework are strictly specialised; they build on a relatively

weak and broadly applicable assumption (cf. Sec. 1). Al-

though this work focuses on semantic segmentation, we are

keen to explore the potential of the proposed techniques for

adaptation of other dense prediction tasks, such as optical

flow, monocular depth, panoptic and instance segmentation,

or even compositions of these multiple tasks.
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