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Abstract

As airborne vehicles are becoming more autonomous

and ubiquitous, it has become vital to develop the capa-

bility to detect the objects in their surroundings. This paper

attempts to address the problem of drones detection from

other flying drones. The erratic movement of the source

and target drones, small size, arbitrary shape, large inten-

sity variations, and occlusion make this problem quite chal-

lenging. In this scenario, region-proposal based methods

are not able to capture sufficient discriminative foreground-

background information. Also, due to the extremely small

size and complex motion of the source and target drones,

feature aggregation based methods are unable to perform

well. To handle this, instead of using region-proposal based

methods, we propose to use a two-stage segmentation-based

approach employing spatio-temporal attention cues. Dur-

ing the first stage, given the overlapping frame regions, de-

tailed contextual information is captured over convolution

feature maps using pyramid pooling. After that pixel and

channel-wise attention is enforced on the feature maps to

ensure accurate drone localization. In the second stage,

first stage detections are verified and new probable drone

locations are explored. To discover new drone locations,

motion boundaries are used. This is followed by track-

ing candidate drone detections for a few frames, cuboid

formation, extraction of the 3D convolution feature map,

and drones detection within each cuboid. The proposed

approach is evaluated on two publicly available drone de-

tection datasets and outperforms several competitive base-

lines.

1. Introduction

Drones are actively being used in several daily life ap-

plications such as agriculture [8], wildfire fighting [34], in-

ventory applications [19], cinematography [16] and surveil-

lance [47, 28]. Due to a large-scale application of drones,

recently computer vision researchers have put forward sev-

eral new techniques for object detection [10], tracking [28],
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Figure 1. A comparison of our approach (PR) with state-of-the-

art object detectors: FCOS (FC) [36], Mask-RCNN (MR) [13],

MEGA (ME) [7], SLSA (SL) [39], and SCRDet (SC) [42]. In

this frame (1080×1920), there are four drones of sizes: 10×15,

11×22, 12×20, 6×17. The green bounding box represents the

ground truth and output of detectors are shown in black colors.

For the clarity, we have not shown all false positives. The pro-

posed approach provides better drone localization, reduces false

positives and improves recall.

agriculture monitoring [8] and human action recognition

[1, 2] in the imagery obtained through drones. In addition to

detecting different objects from a drone video, it is also im-

portant to detect the drone itself from a video captured by

another drone to avoid drone attacks [3], drone collisions

[33] and safe multi-drone flights [24, 32].

Detection of ground objects and aerial drones from drone

videos is a very challenging problem due to a large and

abrupt camera motion, arbitrary drone shape and view

changes, occlusion, and more importantly small object size.

Although a lot of recent research has been conducted to

detect and track ground objects and to detect human ac-

tion using drones [10, 47, 28, 1, 2, 35], limited work is

being done to detect drones from drone videos [24, 33].

To tackle the problem of drone detection, Li et al., [24]

proposed a new drone to drone detection dataset and em-

ployed handcrafted features for background estimation and

foreground moving objects detection. Similarly, Rozantsev

et al., [33] introduced a new challenging dataset of drones
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and air-crafts. They employed regression-based approaches

to achieve object-centric stabilization and perform cuboid

classification for detection purposes.

Usually flying drones occupy a few pixels in the video

frames. For instance, the average drone size respectively is

0.05% and 0.07% of the average frame size in drone detec-

tion datasets proposed in [24] and [33]. Note that this is

much smaller than that of PASCAL VOC (22.62%) and Im-

ageNet (19.94%). Small objects including drones usually

appear in the cluttered background and are oriented in dif-

ferent directions which makes its detection quite difficult.

This issue was also pointed out by Huang et al., in [17],

where they demonstrated that the mean Average Precision

(mAP) of small objects is much lower than that of larger

objects. Furthermore, the object detection performance fur-

ther worsens in the videos [7]. To address this, Noh et

al., [29] proposed a feature-level super-resolution-based ap-

proach that utilizes high-resolution target features for super-

vising a low-resolution model. However, this would require

the availability of both low and high-resolution drone im-

ages which are difficult to obtain in drone videos where the

drone is already flying at a far distance. Similarly, Yang

et al., [42] employed a region proposal-based multi-level

feature fusion approach to detect small objects and intro-

duce a new loss function to handle rotated objects. How-

ever, due to very small size objects, less salient, and clut-

tered backgrounds i.e., clouds, buildings, etc., it is diffi-

cult to obtain well-localized region proposals, specifically

in drone detection datasets. Through adversarial learning,

Wu et al., [40] proposed to learn domain-specific features

employing metadata (flying altitudes, weather, and view an-

gles). Given the recent low prices of drones, it is more use-

ful to use an RGB camera for detection and collision avoid-

ance purposes instead of relying on the expensive hardware

for metadata collection. Authors in [48, 27, 39] proposed to

use convolution feature aggregations across video frames to

achieve improved video object detection. Our experimen-

tal results and analysis reveal that although feature aggre-

gations [48, 27, 39] techniques work well for large video

object detection, for drone detection explicit motion infor-

mation is more useful.

In this paper, we propose a two-stage segmentation-

based approach to detect drones in cluttered backgrounds.

The first stage uses only the appearance cues while the sec-

ond stage exploits spatio-temporal cues. Given a video

frame, we divide it into overlapping frame regions. Each

frame region is passed through deep residual networks [14]

to obtain the convolution feature maps which are then fol-

lowed by pyramid pooling layers [44] to embed the con-

textual information. After that pixel-wise and channel-wise

attention is employed on the convolution feature maps to

discriminate drone boundaries from the background and

achieve improved drone localization. The purpose of the

second stage is to discover missing detections, remove

false detections, and confirm the true positive detections

by employing motion information. To discover the miss-

ing drones, we employ motion boundaries to find probable

drone locations. Given the detections from the first stage

and motion boundaries locations, we track each location

forward and backward for a few (eight) frames. After that,

cuboids are extracted across those tracks and are fed to a 3D

convolutional neural network [5] for spatio-temporal fea-

ture extraction. This is followed by pyramid pooling layers.

Similar to the first stage, we employ pixel and channel-wise

attention in the second stage as well to get the improved

localization. The proposed approach significantly outper-

forms several competitive baselines. In the experimental

section, we validate the efficacy of each step of the proposed

approach. The rest of the paper is organized as follows. Sec-

tion 2 provides a brief overview of the related developments

in small object detection including drones in video and im-

ages. Section 3 deals with our proposed methodology and

Section 4 covers experimental results. Finally, Section 5

concludes the paper.

2. Related work

Object Detection: Recent years have witnessed tremen-

dous strides in improving object recognition accuracy [13,

30, 31, 26, 4, 22] on complex benchmark datasets. Law et

al. [22] proposed a single-stage network where they detect

an object bounding box as a pair of key points. Also, the

authors introduced a novel corner pooling scheme for better

corners localization. To address the foreground-background

class imbalance in object detection datasets, Lin et al. [26]

presented a modified cross-entropy loss that reduces the

weights of the loss assigned to well-classified examples.

Similarly, Li et al., [25] pointed out the underperformance

of object detectors for long-tail distribution datasets. They

proposed a novel balanced group-softmax to modulate the

training process and ensure that the classifier is sufficiently

trained for all the classes. Cai et al., [4] put forward an idea

of multi-stage object detection where a sequence of detec-

tors trained with increasing intersection over union (IoU)

thresholds to achieve improved object localization. To fur-

ther improve object detection accuracy, authors in [12] in-

troduced a new feature fusion technique through multi-scale

features summation in a feature pyramid. Although impres-

sive detection results, most of these detectors have low de-

tection and localization accuracy for small objects.

Small Object Detection: To address the problem of small,

cluttered, and oriented objects, Li et al., [23] proposed to

use generative adversarial networks to decrease the gap of

feature representation of small and large objects. To further

improve feature representation for small objects, authors in

[29] proposed to jointly use the low and high-resolution fea-

ture maps of the same images during the training by match-
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Figure 2. Our pipeline is divided into two stages. Stage-1 extracts Resnet50* features from the overlapping regions of each frame followed

by pyramid pooling to retain global and local contextual information. Channel-wise and pixel-wise attention help in learning better

localization of drones. Resnet50* refers to the modifications that we have applied (ref Section 3.1). Stage-2 combines spatial information

with temporal data of the videos. Detections from stage-1 along with candidate regions discovered using motion boundaries are used as

candidate regions where UAV can exist. All the proposals are tracked for 8 frames in a forward and backward manner to generate cuboids

of size 224×224×8. Each cuboid is passed through the I3D network followed by the attention network to accurately locate drones within

each cuboid. In figure MD, TP, FP, and MB corresponds to missed detection, true positive, false positive, motion boundaries respectively.

ing the relative receptive fields between the pairs. Yang

et al., [42] proposed a multi-layer feature fusion technique

along with attention networks to achieve improved object

detection for cluttered and rotated objects. However, most

of these methods are region proposal based which are un-

able to capture sufficient foreground-background informa-

tion specifically when the objects are extremely small (such

as 0.05% or 0.07% of the average image size as in the case

of drone detection). A related problem to ours is the de-

tection of ground objects from drone images such as [41]

which proposed to detect clustered objects in aerial im-

ages. However, while detecting drones from a drone, tar-

get objects (drones) undergo fast, abrupt, and highly unpre-

dictable movements as compared to objects (car, human)

on the ground. Target objects can have arbitrary changing

shapes due to their rotation around any axis as compared

to the restricted movements of ground objects. Further-

more, as compared to ground objects, drones have much

smaller sizes, and the target objects appear/disappear more

frequently due to clouds.

Video Object Detection: Historically, taking a page from

object detection, several video-based object detectors were

introduced, including [48, 27, 39, 7]. The object detec-

tion accuracy degrades in the video due to several fac-

tors including motion blur, occlusion, and out of focus,

etc,. To address this Zhu et al., [48] proposed to include

the feature representation of each frame by aggregation of

nearby frames features using optical flow. Authors in [27]

improve feature aggregation speed using the Bottleneck-

LSTM layer. Instead of aggregating features from nearby

frames, Wu et al., [39] proposed to use whole sequence-

level features aggregation for improved video object detec-

tion. Recently, Chen et al., [7] utilized both the global se-

mantic and local localization information employing mem-

ory aggregation network and have shown impressive results

on several video object detection benchmarks. Although

impressive results, most of these methods are tested on stan-

dard video object detection datasets where the object covers

a significant portion of the video frame. Furthermore, mo-

tion is much more complex in drone videos as compared to

standard video object detection datasets.

Drones Detection: Recent low prices of drones will bring

more and more UAVs to the sky. To keep the prices and

weight of UAVs small, it is useful to detect other flying

drones using simple RGB cameras instead of expensive

radar systems. Therefore researchers have addressed the

problem of drone detection for different applications. Af-

ter obtaining a large number of spatio-temporal (s-t) tubes

at different spatial resolutions, Rozantsev et al., [33] em-

ploys two CNN models to obtain coarse and fine motion

stabilization in each s-t tube respectively. Next, they obtain

UAVs detection by classifying each s-t tube using a third

CNN. There are several differences between our method

and [33]. 1) Instead of using computationally expensive

region-based sliding windows at several scales, we em-

ploy an efficient fully convolutional segmentation-based ap-
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proach, 2) as compared to [33], our approach does not

need perfectly drone-centered cuboids and learn rich spatio-

temporal information using I3D, and 3) we employ attention

networks to improve feature representation for improved lo-

calization. Similarly, authors in [24, 43] detected moving

drones by subtracting background images and then identi-

fied UAVs using deeply learned classifiers. Furthermore,

they use Kalman filtering to get improved detection. Their

method uses a lot of parameters and thresholds which make

it irreproducible. Also, their reliance on background sub-

traction for moving object detection produces a lot of false

positives. Instead of using RGB images, some researchers

have also proposed to employ depth maps to achieve 3D lo-

calization [6, 38]. However, depth maps are quite expensive

to obtain in real-world scenarios and add the extra payload

to UAVs.

3. Proposed method

Our goal is to detect and localize drones in the video

frames which are captured by other flying drones. Our

proposed approach to tackle this challenging problem is

based on the three observations: (1) due to very small drone

size, region proposal based method may not be able to

capture enough discriminative foreground-background in-

formation, therefore the bottom-up segmentation based ap-

proach which classifies each pixel is preferable; (2) the

model should learn subtle visual differences between a

drone and the background (clouds, etc); (3) due to large

abrupt motion of target and source drones, the feature ag-

gregation methods may not be sufficient and we need to use

explicitly optical flow information as has been successfully

employed in several action recognition works [11]. In the

following, we first discuss details of the segmentation net-

work (Sec. 3.1), followed by the attention networks used

to get improved localization (Sec 3.2). Finally, we discuss

how we use motion information to discover missing detec-

tion and thus improve recall.

3.1. Stage1: Exploiting Spatial Cues

We start with appearance-based pixel classification to ac-

curately localize drones. For spatial feature computation,

we resort to deep residual networks [14]. However, given

the extremely small size of drones (0.05% or 0.07% of im-

age size), obtaining good discriminative features by utiliz-

ing the whole images is not possible. The standard 2D CNN

networks such as Resnet50 require a fixed size input image

(473×473). Therefore image resizing from high-resolution

image to low resolution (1080×1920 to 473×473) for fea-

ture computation can further decrease the spatial resolu-

tion of the drone to one or two pixels. Secondly, as the

network goes deeper, we lose local information. To ad-

dress this, we use two steps: 1) To avoid resizing the im-

age, we divide each frame into overlapping regions, 2) We

modify Resnet50 to keep local information intact as we go

deep in the network. Specifically, we extract features from

all four blocks of Resnet50 [14] and concatenate them to-

gether after spatial resizing of the first block to avoid di-

mension mismatch. Finally, we use 1×1 convolution to get

back the original dimension. We call modified Resnet50

as Resnet50*. Inspired by the use of pyramid pooling

[45] in several applications we employ pyramid pooling in

our framework. Specifically, after obtaining features from

Resnet50*, we apply the pyramid pooling using four differ-

ent kernel sizes and concatenate those multi-scale features

after up-sampling.

In experiments, we observe that although the above net-

work provides decent drone detection, in several cases,

it is unable to accurately detect and localize the drones.

Therefore, to make feature maps more focused on the fore-

ground, we use pixel and channel-wise attentions. Pixel and

channel-wise attention networks are described in the next

section.

3.2. Attention networks

Assuming the drone of size 16×11 (the average drone

size in [24]), by missing only a few pixels from both

sides, the intersection over union (IOU) drops to below

0.5. Therefore, it is crucial to get accurate localization

for true drone detection. To achieve this, we introduce de-

tailed pixel-wise and channel-wise attention on the convo-

lution feature maps. Recently, several attention networks

[37, 15, 42, 9] have been introduced for different computer

vision applications.

Channel-wise attention: Inspired by [15], we use a

channel-wise attention network to automatically learn to

give more weights to informative feature channels and sup-

press less informative ones. The architectural details of

channel-wise attention networks are given in Figure 3 (a).

This attention is achieved through channel-wise multiplica-

tion of attention vector with convolution feature maps.

C: 3x3
F: 1024

C: 3x3
F: 1024

C: 1x1
F: 512

C: 1x1
F: 2

C: 1x1
F: 1 Sigmoid

Softmax Smooth L1 LossUpsample

60

60

Batch Normalization

ReLU Activation

Dropout 10%

GT Mask

MaxPooling
60x60 FC: 256 FC: 512 Sigmoid

512

(b) Pixelwise attention network

(a) Channelwise attention network

Figure 3. Architectural details of (a) channel-wise and (b) pixel-

wise attention network, where ‘FC’ represents fully connected

layer with number of units in (a), ‘C’ and ‘F’ represent convo-

lution and number of filters respectively in (b).

Pixel-wise attention: Similar to channel-wise attention

vector, we generate pixel-wise attention matrix to assign
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a b c

Figure 4. Role of attention. (a) Input image. (b) without and (c)

with attention networks. Top two rows shows the examples where

attention networks helps the network to learn to give more weights

to the pixels associated with drones and the last row represents the

case where attention network suppress the non-drone pixels.

more weights to spatial location which corresponds to

drones and less weight to non-drone regions similar to

[9, 42]. The architectural details of the pixel attention net-

work are given in Figure 3 (b). To suppress background in-

formation, we perform element-wise multiplication of pixel

attention mask with all convolution maps channels. This

is followed by the addition of attention masks to give high

weights to regions containing useful information.

In the experiments, we observe that attention networks

significantly help in achieving better drone localization.

Note that the complete stage-1 is trained end-to-end where

attention is learned automatically through network architec-

ture, training data, and losses. Figure 4 demonstrates the

difference in the network outputs which training with and

without attention networks.

3.3. Losses

Drone detection datasets have two major challenges:

There exists a large drone versus non-drone class imbal-

ance i.e., the majority of pixels belong to the background

and only a few pixels (if any) occupy the drone. Secondly,

due to extremely small size drones, the only difference of

even 1 or 2 pixels between the detected box and ground

truth brings down the IoU score to less than 0.5. Therefore,

we use multiple losses to train our network. Specifically,

to address the class imbalance, focal loss [26] is used. and

Distance-IOU loss [46] is employed to achieve better IOU

localization. Distance-IOU not only minimizes the IOU be-

tween the ground truth and detected bounding boxes but

also reduces the distance between centers of two boxes. Fi-

nally, we use smooth-L1 loss [31] to jointly train pixel-wise

attention network as shown in Figure 3 (b).

3.4. Stage2: Exploiting Spatiotemporal Cues

The purpose of this stage is to confirm true detections,

reject the false detections and discover the missing detec-

tions of the stage-1. To find out the new probable drone

locations, we use motion gradients which is explained

below.

Motion boundaries: Drone can be characterized by

locations undergoing motion. However, since drone

detection datasets involve moving camera, simple optical

flow magnitude cannot be much useful. Therefore, we

propose to use optical flow gradients to capture the change

in motion. Specifically, given every three frames of a video,

we first stabilize them using key-points detection and then

compute forward and backward optical flow. After that

maximum motion gradients across all three frames are

computed as follows:

G = max(
√

u2
x
+ u2

y
,

√

v2
x
+ v2

y
), (1)

M = max(G0→1, G1→2, G2→1, G1→0), (2)

where ux, vx, uy , and vy are optical flow gradients along

x and y axis respectively, M show motion boundaries and

G0→1, G1→2, G2→1, G1→0 represents motion gradients be-

tween frames, 0→1, 1→2, 2→1, 1→0 respectively.

There are two limitations of motion boundaries: The

motion boundaries provide high magnitude across the

boundaries of drones and in most cases, do not completely

cover drones. Secondly, due to the underlying approxima-

tion of optical flow calculation, usually, the maximum of

optical flow gradient magnitude does not match exactly

with the moving drone. To address these issues, we dilate

the motion boundaries and then apply conditional random

field [20] to get the better localization of candidate drone

regions.

Cuboids formation: Given detections from stage-1 and

newly discovered locations obtained using motion bound-

aries, our next step is to extract spatio-temporal features

from all candidate drone locations. To this end, we initial-

ize the correlation tracker at each candidate location (in-

cluding stage-1 detections and newly discovered locations).

Due to small drone and complex camera motions, trajecto-

ries tend to drift away from their initial location within a

few frames, therefore, we restrict trajectory length to eight

7071



Figure 5. Samples frames from NPS-drone [24] dataset. The green

boxes enclose drones.

frames. Specifically, given the candidate drone location,

tracking is done three frames forward and four frames back-

ward. Note that tracking is done after the motion stabiliza-

tion of the corresponding eight frames. To capture contex-

tual information across candidate location and to compen-

sate for the trajectory drifting, N × N patches are extracted

from video frames across each track, resulting in a cuboid

of size N×N×8. Finally, to extract spatio-temporal fea-

tures from each cuboid, we employ the Inflated-3D (I3D)

network [5]. We choose I3D due to its fast speed, small

memory consumption, and excellent capability of captur-

ing detailed spatio-temporal characteristics. To make the

size of the cuboid consistent with that of the standard

I3D network input dimensions, we use bilinear interpola-

tion on each patch to resize the cuboid from N×N×8 to

224×224×8. 3D Convolution features are extracted from

the third last layer of the I3D network which has dimen-

sions of 14×14×480. To have consistency with the stage-1,

we use bilinear interpolation to resize the feature maps to

60 ×60×480. This is followed by 2D convolution layers to

convert 60×60×480 to 60×60×2048 feature maps. Exper-

imentally, we have also tried patch superresolution and fea-

ture map superresolution instead of resizing using bilinear

interpolation, however, we did not observe any performance

improvement.

Finally, spatio-temporal convolution feature maps of

each cuboid are aggregated across different scales using

spatial pyramid pooling. This is followed by attention net-

works and network losses as discussed in Section 3.2

4. Experiments

The main goal of our experiments is to verify that the

proposed approach accurately localize drone in moving

camera videos. To this end, we perform extensive experi-

ments on two challenging drone datasets and compare our

approach with several competitive approaches, and analyze

different components of the proposed approach.

4.1. Implementation details

In this section, we provide implementation details of our

approach. During stage-1, we divide each frame into nine

Figure 6. Samples frames from FL-drone [33] dataset. The green

boxes enclose drones.

overlapping patches for NPS-Drones dataset [24] and into

four overlapping patches for FL-Drones dataset [33]. For

both datasets, stage-1 is trained end to end from scratch,

while for stage-2, a pre-trained I3D network with frozen

weights is used for feature extractions. For the NPS-Drones

dataset, a fixed 100×100 patch size is extracted across the

drone to make a cuboid while in the FL-Drones dataset size

of the patch corresponds to the size of the drone. In all the

experiments, we use Adam [18] optimizer with an initial

learning rate of 0.001 without the decay parameter.

A simple correlational tracker is employed during cuboid

formation. We remove candidate locations (provided by

motion boundaries), which are smaller or bigger than the

maximum and minimum size of drones in the training data

respectively. To improve training, we have also used hard-

negative mining. In a post-processing step, we remove de-

tections that only appear for a single frame.

Evaluation metrics: Following the related works, we eval-

uate the performance of our approach and baselines us-

ing precision, recall, F1-score, and average precision (AP)

where every frame is treated as an individual image for eval-

uation. We evaluate all the methods on every 4th frame of

the testing data.

4.2. Datasets

We evaluate our approach on two drones datasets. Each

of them is briefly introduced below.

NPS-Drones [24]: This dataset is published by Naval Post-

graduate School (NPS) and is publicly available1. The

dataset contains 50 videos that were recorded at HD resolu-

tions (1920×1080 and 1280×760) using GoPro-3 cameras

mounted on a custom delta-wing airframe. The minimum,

average and maximum size of drones are 10 × 8, 16.2 ×

11.6, and 65 × 21, respectively. The total number of frames

in the dataset are 70250. In the experiments, the first 40

videos are used for training and validation and the last 10

videos are used for the testing.

FL-Drones [33]: The second drone dataset used in the pa-

per was introduced by Rozantsev et al. [33]. This dataset

1https://engineering.purdue.edu/˜bouman/UAV_

Dataset/
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Figure 7. This figure shows the variability of drone shape and size

in two datasets: NPS-drone [24] (first two rows) and FL-drone

[33] (last two rows) datasets. The green boxes present the ground

truth bounding boxes.

is quite challenging due to extreme illumination, pose, and

size changes. This dataset contains indoor and outdoor

samples and the flying drones have variable shapes, and

their shape is barely retained even in consecutive frames.

Drones get mixed up in the background due to small size

and intense lighting conditions coupled with complex back-

ground. The minimum, average, and maximum sizes of

drones are: 9×9, 25.5×16.4, and 259×197, respectively

and frames resolutions are 640×480 and 752×480. This

dataset contains 14 videos with a total of 38948 frames. As

suggested by the authors [33], half of the data is used for

the training, and the other half is used for the testing.

Sample frames and drones from both datasets are shown

in Figure 5, Figure 6 and, Figure 7. Note that there are sev-

eral frames in both datasets without any drone. It is inter-

esting to know that the majority of original annotations re-

leased by the authors of [33, 24] are not precise and bound-

ing boxes are much bigger than that of actual drones. To ad-

dress this, we have re-annotated both datasets again. Given

that number of frames in both datasets are more than 100K,

re-annotation took significant time. The examples of im-

proved annotations are shown in Figure 8. These improved

annotations will be released.

Method Precision Recall F1 score AP

SCRDet-H [42] 0.81 0.74 0.77 0.65

SCRDet-R [42] 0.79 0.71 0.75 0.61

FCOS [36] 0.88 0.84 0.86 0.83

Mask-RCNN [13] 0.66 0.91 0.76 0.89

MEGA [7] 0.88 0.82 0.85 0.83

SLSA [39] 0.47 0.67 0.55 0.46

Proposed 0.92 0.91 0.92 0.89
Table 1. Quantitative comparison of the proposed approach with

several state of the art approaches on the NPS dataset [24].

.

0.37 0.48 0.65 0.560.280.65

0.19 0.170.14 0.24 0.37 0.29

0.25 0.11 0.15 0.23 0.410.43

Figure 8. In the figure, we show the examples of our improved

annotations. The blue boxes show the originally released anno-

tations by the authors and the red boxes show our annotations

done. The first three columns show the images from the NPS-

drone dataset [24] and the last three columns are images from the

FL-drone dataset [33]. Under each image, we show the IOU be-

tween new and old annotations.

Method Precision Recall F1 score AP

SCRDet-H [42] 0.54 0.62 0.58 0.52

SCRDet-R [42] 0.55 0.62 0.58 0.52

FCOS [36] 0.69 0.70 0.69 0.62

Mask-RCNN [13] 0.76 0.68 0.72 0.68

MEGA [7] 0.71 0.72 0.71 0.65

SLSA [39] 0.57 0.72 0.64 0.61

Proposed 0.84 0.76 0.80 0.72
Table 2. Quantitative comparison of the proposed approach with

several state of the art approaches on the FL-Drones dataset [33].

.

4.3. Comparison with the Stateoftheart

We compare the proposed approach with recently pro-

posed approaches such as fully convolutional one-stage ob-

ject detector [36], cluttered and rotated small object detector

[42], instance segmentation [13], and video object detectors

[7, 39]. For comparison purposes, all the baseline methods

are finetuned using the pre-trained weights available with

public codes. Specifically, SLSA [39], FCOS [36], MEGA

[7], and SCRDet [42] are finetuned using corresponding pa-

pers’ pretrained weights and MASK-RCNN [13] is fine-

tuned using Resnet50 weights trained on ImageNet. I3D

has the weights obtained through training on Kinetics. Due

to computational power limitations, all of the methods that

we compared with are trained for iterations ranging from

80, 000 to 100, 000 using a single Nvidia 1080Ti GPU.

The quantitative comparison of proposed approach with

the baselines over both drone detection datasets are shown

in Table 1 and Table 2. The results demonstrate that our

approach significantly outperforms the recent baselines on

different evaluation metrics.
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4.4. Ablation studies

Component analysis: We analyze different components of

the proposed approach to verify their effectiveness. The ex-

perimental results in Table 3 enforce that each component

of our approach is important and contributes toward final

accuracy.

Method Precision Recall F1 score

CE 0.87 0.82 0.85

L 0.88 0.84 0.86

L+ CA 0.88 0.86 0.87

L+ PA 0.89 0.85 0.87

Stage-1 0.92 0.88 0.90

Stage-1+Stage-2 0.92 0.91 0.92
Table 3. Ablation study of different components of our method

on NPS dataset. The first row shows the proposed approach em-

ploying only cross-entropy loss (CE). The second row represents

results incorporating focal loss and Distance-IOU loss (L). The

third row demonstrates results employing channel-wise attention

(L+ CA). After that we show results using pixel-wise attention

(L+ PA). Finally, the last two rows show results after stage-1 and

stage-2 respectively.

Two Stage Approach: As shown in Table 3 and Fig 9,

we observe that two-stage approach produce much better

detection results as compared to 1-stage approach by

discovering and classifying difficult drone locations. We

have also tried multiple frames in 1-stage similar to [21] but

achieved very low detection accuracy (below F1-score=40).

We believe that due to the large and complex target and

source drone motion, the 1-stage multiple frames approach

is unable to learn to detect drones.

Failure cases: Since the proposed approach tries to

detect drones based on appearance and motion cues, the

drones with slow motion and indistinguishable shape

are hard to detect. Figure 10 show failure cases of our

approach.

5. Conclusion

One of the most important challenges associated with

drone use is collision avoidance or safe multi-drone flights.

Therefore, it is crucial to develop robust computer vision

methods that can detect and enable collision avoidance

using inexpensive cameras. We have presented a two-stage

approach for drone detection from other flying drones em-

ploying spatio-temporal cues. Instead of relying on region

proposal-based methods, we have used a segmentation-

based approach for accurate drone detection using pixel

and channel-wise attention. In addition to using appearance

information, we have also exploited motion information

a b
Figure 9. Qualitative comparison of one stage versus two stage de-

tection results. (a) shows the detection results for stage-1 and (b)

represents the detection results of two stage approach. Red boxes

represent detection and blues boxes are just for better visualiza-

tions. The first stage misses one drone in each example.

a b
Figure 10. Failure cases of our method. Miss detections and cor-

rect detections are shown by green and red boxes respectively.

Outer boxes are just for better visualizations. The drones with

indistinguishable shape and motion are hard to detect. (a) and

(b) represent samples from NPS-Drones [24] and FL-Drones [33]

datasets respectively.

between frames to get a better recall. We observe that for

drones to drones videos, the two-stage approach performs

better than the one-stage approach. Thorough comparisons

with the state of the arts and detailed ablation studies

validate the framework and the ideas proposed in this work.
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