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Abstract

Active stereo cameras that recover depth from structured

light captures have become a cornerstone sensor modal-

ity for 3D scene reconstruction and understanding tasks

across application domains. Active stereo cameras project

a pseudo-random dot pattern on object surfaces to extract

disparity independently of object texture. Such hand-crafted

patterns are designed in isolation from the scene statis-

tics, ambient illumination conditions, and the reconstruc-

tion method. In this work, we propose a method to jointly

learn structured illumination and reconstruction, parame-

terized by a diffractive optical element and a neural net-

work, in an end-to-end fashion. To this end, we introduce a

differentiable image formation model for active stereo, rely-

ing on both wave and geometric optics, and a trinocular re-

construction network. The jointly optimized pattern, which

we dub “Polka Lines,” together with the reconstruction net-

work, makes accurate active-stereo depth estimates across

imaging conditions. We validate the proposed method in

simulation and using with an experimental prototype, and

we demonstrate several variants of the Polka Lines patterns

specialized to the illumination conditions.

1. Introduction

Active depth cameras have become essential for three-

dimensional scene reconstruction and scene understanding,

with established and emerging applications across disci-

plines, including robotics, autonomous drones, navigation,

driver monitoring, human-computer interaction, virtual and

mixed reality, and remote conferencing. When combined

with RGB cameras, depth-sensing methods have made it

possible to recover high-fidelity scene reconstructions [23].

Such RGB-D cameras also allowed researchers to collect

large-scale RGB-D data sets that propelled work on funda-

mental computer vision problems, including scene under-

standing [44, 21] and action recognition [36]. However,

while depth cameras under controlled conditions with low

ambient light and little object motion are becoming reli-

able [1, 42], depth imaging in strong ambient light, at long

ranges, and for fine detail and highly dynamic scenes re-

mains an open challenge.

A large body of work has explored active depth sens-

ing approaches to tackle this challenge [18, 27, 4, 41],

with structure light and time-of-flight cameras being the

most successful methods. Pulsed time-of-flight sensors emit

pulses of light into the scene and measure the travel time

of the returned photons directly by employing sensitive sili-

con avalanche photo-diodes [51] or single-photon avalanche

diodes [5]. Although these detectors are sensitive to a single

photon, their low fill factor restricts existing LiDAR sensors

to point-by-point scanning with individual diodes, which

prohibits the acquisition of dense depth maps. Correlation

time-of-flight sensors [18, 25, 27] overcome this challenge

by indirectly estimating round-trip time from the phase of

temporally modulated illumination. Although these cam-

eras provide accurate depth for indoor scenes, they suf-

fer from strong ambient illumination and multi-path inter-

ference [45, 29], are limited to VGA resolution, and they

require multiple captures, which makes dynamic scenes a

challenge. Active stereo [55, 1, 2] has emerged as the only

low-cost depth sensing modality that has the potential to

overcome these limitations of existing methods for room-

sized scenes. Active stereo cameras equip a stereo camera

pair with an illumination module that projects a fixed pat-

tern onto a scene so that, independently of surface texture,

stereo correspondence can be reliably estimated. As such,

active stereo methods allow for single-shot depth estimates

at high resolutions using low-cost diffractive laser dot mod-

ules [1] and conventional CMOS sensor deployed in mass-

market products including Intel RealSense cameras [1] and

the Google Pixel 4 Phones [2]. However, although active

stereo has become a rapidly emerging depth-sensing tech-

nology, existing approaches struggle with extreme ambient

illumination and complex scenes, prohibiting reliable depth

estimates in uncontrolled in-the-wild scenarios.

These limitations are direct consequences of the pipeline

design of existing active stereo systems, which hand-

engineer the illumination patterns and the reconstruction al-

gorithms in isolation. Typically, the illumination pattern is

designed in a first step using a diffractive optical element

(DOE) placed in front of a laser diode. Existing dot pat-

terns resulting from known diffractive gratings, such as the

Dammann grating [10], are employed with the assumption

that generating uniform textures ensures robust disparity es-

timation for the average scene. Given a fixed illumination
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pattern, the reconstruction algorithm is then designed with

the goal of estimating correspondence using cost-volume

methods [7, 22] or learning-based methods [39, 12, 55, 38].

In this conventional design paradigm, the illumination pat-

tern does not receive feedback from the reconstruction algo-

rithm or the dataset of scenes, prohibiting end-to-end learn-

ing of optimal patterns, reconstruction algorithms, and cap-

ture configurations tailored to the scene.

In this work, we propose a method that jointly learns

illumination patterns and a reconstruction algorithm, pa-

rameterized by a DOE and a neural network, in an end-to-

end manner. The resulting optimal illumination patterns,

which we dub “Polka Lines”, together with the reconstruc-

tion network, allow for high-quality scene reconstructions.

Moreover, our method allows us, for the first time, to learn

environment-specific illumination patterns for active stereo

systems. The proposed method hinges on a differentiable

image formation model that relies on wave and geometric

optics to make the illumination and capture simulation ac-

curate and, at the same time, efficient enough for joint op-

timization. We then propose a trinocular active stereo net-

work that estimates an accurate depth map from the sensor

inputs. Unlike previous methods that only use binocular

inputs from the stereo cameras, our network exploits the

known illumination pattern, resulting in a trinocular stereo

setup which reduces reconstruction errors near occlusion

boundaries. We train the fully differentiable illumination

and reconstruction model in a supervised manner and fine-

tune the reconstruction for an experimental prototype in

a self-supervised manner. The proposed Polka Lines pat-

terns, together with the reconstruction network, allows us

to achieve state-of-the-art active stereo depth estimates for

a wide variety of imaging conditions.

Specifically, We make the following contributions:

• We introduce a novel differentiable image formation

model for active stereo systems based on geometric

and wave optics.

• We devise a novel trinocular active stereo network that

uses the known illumination pattern in addition to the

stereo inputs.

• We jointly learn optimal “Polka Lines” illumination

patterns via differentiable end-to-end optimization,

which can be specialized to specific illumination con-

ditions.

• We validate the proposed method in simulation and

with an experimental prototype. We demonstrate ro-

bust depth acquisition across diverse scene scenarios

from low light to strong illumination.

2. Related Work

Depth Imaging. Depth cameras can be broadly catego-

rized into two families, passive and active cameras. Pas-

sive methods exploit depth cues such as parallax [40, 13],

defocus [28], and double refraction [6, 33] that do not re-

quire illumination control. Passive methods often fail on

challenging scene parts, such as textureless surfaces, where

they can produce catastrophic depth estimation errors. Ac-

tive systems employ specialized illumination modules to

tackle textureless surfaces. Major directions include pulsed

and continuous-wave time-of-flight sensors [20, 19], gated

imaging [15], structured-light sensor [16, 52], and active

stereo systems [55]. Among these, active stereo is particu-

larly attractive as it promises robust single-shot depth imag-

ing at low system cost and small form factor. As such, active

stereo systems have successfully been deployed in mass-

market [1, 2]. However, existing active-stereo systems also

struggle in challenging environments with strong ambient

light and noisy inputs with varying scene reflectance. This

reduced accuracy partly originates from the blind, com-

partmentalized design process of the illumination pattern,

which often does not consider the reconstruction method,

scene statistics, and illumination conditions. In this work,

we close this gap by proposing to jointly optimize the illu-

mination patterns and the reconstruction method for active

stereo.

Illumination Patterns for Active Stereo. Designing an il-

lumination pattern is crucial for the accuracy of correspon-

dence matching in active stereo systems. Existing meth-

ods commonly employ Dammann gratings [10] and Verti-

cal Cavity Surface Emitting Lasers that result in locally-

distinct, but globally repetitive illumination patterns [30, 26,

1]. This heuristic design is blind to scene statistics, noise

levels, and the reconstruction method. Existing methods

have attempted to improve depth estimation by employing

alternative hand-crafted DOE designs [11, 49, 34] that rely

on alternative experts and heuristic metrics on the illumina-

tion patterns. We depart from these heuristic designs and

instead directly optimize the illumination pattern with the

depth reconstruction accuracy as a loss via end-to-end opti-

mization.

Active Stereo Depth Estimation. Depth reconstruction for

active-stereo systems aims to estimate accurate correspon-

dence between stereo images with the aid of projected illu-

mination patterns for feature matching. The corresponding

large body of work can be categorized into methods rely-

ing on classic patch-based correspondence matching [22, 7]

and recent learning-based methods [39, 12, 55, 38]. Zhang

et al. [55] proposed an active stereo network with self-

supervision, removing the cumbersome process of acquir-

ing training data, and improving depth estimation accuracy.
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All of these existing reconstruction methods are limited by

the fixed illumination pattern. As such, these methods have

to adapt to a given pattern and cannot vary the pattern to suit

different imaging conditions. We jointly optimize the illu-

mination and reconstruction module, allowing us to tailor

the pattern to the reconstruction method and scene statis-

tics. Moreover, departing from existing approaches, the

proposed trinocular reconstruction is the first that exploits

knowing illumination pattern itself.

Differentiable Optics. With the advent of auto-

differentiation frameworks [3, 37], jointly optimizing imag-

ing optics and reconstruction methods has shaped the de-

sign process of diverse vision systems [8, 50, 35, 47, 17,

53, 9, 43, 32, 46]. While existing methods have focused on

the imaging optics and primarily assume near-field propa-

gation, we instead optimize illumination optics, specifically

a DOE in front of a collimated laser, using far-field wave

propagation from a laser to the scene. At the same time,

we rely on ray optics to simulate stereo imaging via epipo-

lar geometry. This hybrid image formation, which exploits

both wave and geometric optics, allows us to efficiently sim-

ulate light transport in active stereo systems while being ef-

ficient enough for gradient-based end-to-end optimization.

We note that Wu et al. [54] proposed a depth-from-defocus

method with a learned aperture mask for structured-light

systems. However, this blur-based structured-light projec-

tion suffers from frequency-limited features. As such, it

is orthogonal to the proposed method, which optimizes a

diffraction pattern at the far field for active stereo. Related

optimization principles for illumination design can also be

found in reflectance imaging [24].

3. Differentiable Hybrid Image Formation

To jointly learn structured illumination patterns and re-

construction methods, we introduce a differentiable image

formation model for active stereo sensing. Active stereo

systems consist of stereo cameras and an illumination mod-

ule that codes light with a laser-illuminated DOE as shown

in Figure 1. The light transport of an active stereo system

can be divided into two parts: one describing the propa-

gation of the laser light into the scene with the output of

the illumination pattern cast onto the scene, and the other

describing the illumination returned from the scene to the

stereo cameras. We rely on wave optics for the former part

and geometric optics for the latter part, comprising the pro-

posed hybrid image formation model.

3.1. Modeling the Projected Illumination Pattern

Simulating light transport from an active stereo illumi-

nation module to a scene amounts to computing the illumi-

nation pattern projected onto the scene from the laser (Fig-

ure 1). Relying on wave optics, we represent the light emit-
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Figure 1. We simulate the illumination image projected by the

laser and the DOE using wave optics. We then simulate the stereo

images captured by cameras using geometric optics.

ted by the laser as amplitude A and phase φ at each discrete

spatial location x, y sampled with pitch u and with N ×N

resolution1.

Phase Delay on the DOE. The phase of the emitted light

wave is modulated when it passes through the DOE by φdelay

as φ ← φ + φdelay. The phase delay φdelay is related to the

height of the DOE h, the wavelength of the light λ, and the

refractive index of the DOE for that wavelength ηλ, that is

φdelay =
2π(ηλ − 1)

λ
h. (1)

Far-field Wave Propagation. Next, the light wave mod-

ulated by the DOE propagates into the scene. We model

this propagation using Fraunhofer far-field wave propaga-

tion because we assume that scene depth ranges from 0.4m
to 3m which is sufficiently larger than the wave spatial

extent uN = 1mm [14]. We implement this propaga-

tion operation by computing the Fourier transform F of the

complex-valued light wave U of amplitude A and phase φ

U ′ ← F(U), (2)

where U ′ is the propagated complex light wave. Finally,

the illumination pattern P in the scene is the intensity of the

propagated light wave, a squared magnitude of U ′

P ← |U ′|2. (3)

The resolution of the pattern P remains the same as that of

U , while the physical pixel pitch v of the pattern P changes

accordingly as v = λz
uN

, where z is the propagation dis-

tance [14]. Refer to the Supplemental Document for the

simulated illumination patterns corresponding to existing

DOE designs.

1u = 1 µm and N = 1000 in our experiments.
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Sampling the Illumination Pattern. A pixel in the simu-

lated illumination image P has the physical width of v =
λz
uN

at a scene depth z. At the same time, a camera pixel

maps to a width of p
f
z at the scene depth z via perspec-

tive unprojection, where f is the camera focal length, and

p is the pixel pitch of the camera. We resample the illumi-

nation image P to have the same pixel pitch as a camera

pixel pitch. We compute the corresponding scale factor as

follows

camera pixel size

illumination pattern pixel size
=

p
f
z

λ
uN

z
=

puN

fλ
. (4)

The scale factor puN
fλ

is applied to the illumination image

P ← resample(P, puN
fλ

), where resample is the bicubic

resampling operator.

Note that the depth dependency for the pixel sizes for

the illumination pattern and the camera disappears in the

scaling factor, meaning that the scale factor is independent

of the propagation distance of the light. This indicates that

the illumination pattern P can be applied to any scene re-

gardless of its depth composition, which facilitates efficient

simulation of the light transport.

3.2. Synthesis of Stereo Images

Once the illumination image P is computed, we then

simulate stereo images. While wave optics can describe this

procedure using Wigner distribution functions and far-field

wave propagation, this would be prohibitively expensive for

the proposed end-to-end optimization procedure, which re-

quires tens of thousands of iterations, each triggering mul-

tiple forward simulations. Instead, we use a geometric-

optics model representing light using intensity only, instead

of both phase and amplitude as in wave optics.

Light-matter Interaction and Measurement. Given the

illumination image P at the viewpoint of the illumination

module, we next simulate the light-matter interaction and

sensor measurement by the stereo cameras. In the following

model, we use disparity maps DL/R, reflectance maps IL/R,

and occlusion masks OL/R at the left and the right camera

viewpoints. Occlusion masks OL/R describe the visibility at

the viewpoints of the left/right camera with respect to the

illumination module.

We first warp the illumination image P to the left and

the right camera viewpoints using the disparity DL/R. We

incorporate the occlusion maps OL/R through element-wise

multiplication with the warped images, resulting in the final

illumination images seen at the stereo camera viewpoints

(P L and PR), that is,

P L/R = OL/R ⊙ warp(P,DL/R), (5)

where⊙ is the element-wise product and the operator warp

warps the illumination image P by the disparity DL/R.

We then compute scene response and sensor measure-

feature
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Figure 2. The proposed hybrid image formation model simulates

the stereo images from which we reconstruct a depth map using a

trinocular network. The loss is backpropagated to both the DOE

and the network, enabling joint optimization. Dotted boxes indi-

cate optimization parameters.

ment using a Lambertian reflectance model. We imple-

ment imaging parameters including sensor clipping, signal-

independent Gaussian noise, camera exposure, illumination

power, and ambient illumination. Altogether, this is de-

scribed by

JL/R = σ(γ(α+ βP L/R)IL/R + η), (6)

where JL/R are the simulated captured images for the left

and the right camera viewpoints. The term γ is the scalar

describing exposure and the sensor’s spectral quantum ef-

ficiency, α is the ambient light, β is the power of the laser

illumination, η is Gaussian noise, and σ is the intensity-

cropping function.

4. Trinocular Active Stereo Network

We depart from existing active stereo architectures that

take stereo images or a single illumination image as in-

puts [55, 38]. Instead, we exploit the fact that an active

stereo system provides stereo cues between the cameras but

also the illumination and camera pairs. Specifically, we

consider two baseline configurations in our active stereo

camera: a narrow-baseline configuration between the illu-

mination module and either of the two cameras, and one

wide-baseline pair consisting of the left and right cameras.

To take advantage of these two different baselines, we pro-

pose the following trinocular active stereo network, which

is illustrated in Figure 2.

Reconstruction Network. The proposed reconstruction

network receives the following inputs: a left-camera im-

age xL, a right-camera image xR, and an illumination im-

age xillum. During the training phase, our image formation

model synthetically generates these trinocular inputs; dur-

ing real-world testing, we directly use the calibrated sensor
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Figure 3. We evaluate our learned illumination pattern in simula-

tion and we outperform the hand-crafted illumination pattern (Intel

RealSense D415) and the ideal random pattern. Our learned Polka

Line pattern effectively focuses energy to promote feature match-

ing. The example shown here features an indoor environment.

inputs.

The proposed network first extracts feature tensors

yL/R/illum of the three input images using two convolutional

encoders: FEcam for the camera images and FEillum for the

illumination image, that is

yL = FEcam(xL),yR = FEcam(xR),
yillum = FEillum(xillum).

(7)

Next, we construct trinocular cost volumes for two separate

baselines. We define a feature cost volume Cwide for the

wide-baseline pair as

Cd
wide(x, y) = yL(x, y)− yR(x− d, y), (8)

where d is a disparity candidate. Similarly, the narrow-

baseline cost volume is defined between the left-camera fea-

tures yL and the illumination features yillum as

Cd
narrow(x, y) = yL(x, y)− yillum(x− d, y). (9)

We fuse the two cost volumes into a single cost volume

Cd
fused = Cd

wide + C d̂
narrow, (10)

where d̂ = d bwide

bnarrow
is the disparity scaled by the ratio be-
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Figure 4. The proposed trinocular reconstruction approach is

more robust at object boundaries than conventional binocular

methods, as it exploits cues between several camera and illumi-

nation pairs in a single active stereo system.

tween the wide baseline and the narrow baseline. Per-pixel

disparity probability is computed using a soft-max layer,

followed by disparity regression on the obtained probabil-

ity resulting from the low-resolution disparity estimate [55].

Finally, an edge-aware convolutional upsampler estimates a

disparity map DL
est for the left camera viewpoint at the orig-

inal resolution. For network details, we refer the reader to

the Supplemental Document.

Joint Learning. Denoting the network parameters as θ and

the phase delay for the DOE as φdelay, we solve the follow-

ing end-to-end joint optimization problem

minimize
φdelay,θ

Ls(D
L
est (φdelay, θ) , D

L), (11)

where Ls = MAE is the mean-absolute-error loss of the

estimated disparity supervised by the ground-truth dispar-

ity DL. Note that solving this optimization problem using

stochastic gradient methods is only made possible by for-

mulating the proposed image formation model and recon-

struction method as fully differentiable operations. We also

incorporate varying ambient illumination conditions into

our learning framework by controlling the following sim-

ulation parameters: ambient light power α and scalar γ in

Equation (6). We train three separate models for different

illumination configurations of generic, indoor, and outdoor

environments. For details, we refer the reader to the Sup-

plemental Document.

Dataset. Our method requires an active-stereo dataset of

disparity maps DL/R, NIR reflectance maps IL/R, and occlu-

sion masks OL/R at the left and the right camera viewpoints.

To obtain this dataset, we modify a synthetic passive-stereo

RGB dataset [31] which provides disparity maps DL/R but

not the NIR reflectance maps IL/R and the occlusion masks

OL/R. We obtain the NIR reflectance maps IL/R from the

RGB stereo images using the RGB-inversion method from

[15]. Next, we compute the occlusion masks OL/R of the
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Figure 5. By changing simulation parameters, the proposed end-

to-end optimization method can learn illumination patterns tai-

lored to indoor, outdoor, and generic environments.

stereo cameras with respect to the illumination module. We

horizontally shrink the stereo occlusion masks by half since

the illumination module lies halfway between the stereo

pair. Finally, we resize the images to the same resolution

as the illumination images.

5. Self-supervised Finetuning

To compensate for fabrication inaccuracies of the op-

timized DOE and the domain gap between the simulated

training images and the real captures, we finetune our recon-

struction network using a real-world dataset captured by our

prototype. To this end, we capture left and right IR image

pairs JL/R and obtain the illumination images P L/R by pro-

jecting patterns onto a diffuse textureless wall. However, for

the disparity maps and the occlusion masks, it is challeng-

ing to obtain corresponding ground truths in the real world.

Therefore, we adopt the self-supervised learning approach

previously proposed in [57, 55].

The key idea in the self-supervised training step is to find

disparity maps DL/R
est and validity maps V L/R

est that provide the

optimal reconstruction of the stereo images JL/R by warping

the other images JL/R with the disparity DL/R
est in consider-

ation of the validity V L/R
est . The validity maps are defined

as the opposite of the occlusion maps V L/R
est = 1 − OL/R

est .

In addition to the reconstruction network described in the

previous section, we introduce a validation network that es-

timates the validation maps. V L/R
est to account for occlusion.

For the loss functions, Lu encourages the network to esti-

mate disparity maps that reconstruct one stereo view from

the other view through disparity warping. Lv is the regular-

ization loss for the validity masks V L/R
est [55, 38]. Ld is the

disparity smoothness loss. We train the network parameters

of the trinocular reconstruction network and the validation

network on the captured stereo images and the illumination

image of the prototype. At the inference time, we mask out

the disparity estimates of pixels with low validity. For fur-

ther details, refer to the Supplemental Document.

extreme noisemoderate noise

0

1

le
ar

n
ed

 p
o

lk
a 

li
n

es

Figure 6. Optimized illumination for different noise levels. For

scenarios with strong ambient light, leading to low illumination

contrast, the illumination pattern is optimized to have higher-

intensity sparse dots than the moderate noise environment.

target illumination our di�erentiable model IFTA

0

1

Figure 7. The proposed differentiable image formation can be

used for designing a DOE that produces the desired illumination

pattern. Our method improves on state-of-the-art iterative FFT

methods [11] while allowing for design flexibility, see text.

6. Analysis

Before introducing our experimental prototype system,

we first evaluate the proposed end-to-end framework using

synthetic data.

Polka Lines Illumination Pattern. We evaluate the effec-

tiveness of our learned illumination, the Polka Lines pat-

tern, by comparing to heuristically-designed patterns: the

pseudo-random dot and the regularly spaced dot [1]. For

a fair comparison, we use our trinocular network architec-

ture for all patterns and finetune the reconstruction network

for each individual illumination pattern. The experiments in

Figure 3 validate that the proposed Polka Lines pattern out-

performs the conventional patterns in indoor environments.

For these synthetic experiments, we ensure that equal illu-

mination power is used for all illumination patterns. We

refer to the Supplemental Document for analysis in outdoor

environments. The proposed Polka Lines design is the re-

sult of the proposed optimization method. We can interpret

the performance of this pattern by analyzing the structure

of the Polka Lines patterns compared to heuristic patterns.

First, each dot in a line of dots has varying intensity levels,

in contrast to the constant-intensity heuristic patterns. We

attribute the improved performance in large dynamic ranges

to these varying dot intensities. Second, the orientations of

Polka Lines are locally varying, which is a discriminative

feature for correspondence matching. We refer to the Sup-

plemental Document for further discussion.

Trinocular Reconstruction Ablation Study. We validate

our trinocular reconstruction method by comparing it to

binocular methods such as Zhang et al.[56]. We build a

baseline model that ingests only binocular inputs of stereo

camera images by removing the illumination feature ex-
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Figure 9. The proposed prototype system consists of stereo NIR

cameras and an illumination module, where laser light is colli-

mated and modulated by a DOE. We fabricated three DOEs de-

signed for generic, indoor, and outdoor environments that can be

switched by a rotational mount. Calibrated illumination images

closely resemble our simulation; a dense low-intensity dot pattern

for the indoor, a sparse high-intensity dot pattern for the outdoor,

a dense varying-intensity dot pattern for the generic environment.

tractor. Figure 4 shows that the binocular reconstruction

method struggles, especially in occluded regions, where the

proposed trinocular approach provides stable estimates.

Environment-specific Illumination Design. Our end-to-

end learning method readily facilitates the design of illumi-

nation patterns tailored to specific environments by chang-

ing the environment parameters in Equation (6) and solving

Equation (11). We vary the ambient power α and the laser

power β to simulate indoor, outdoor, and hybrid “generic”

environments2. Figure 5 demonstrates that the illumination

pattern becomes dense with low-intensity dots in the indoor

case for dense correspondence, whereas the outdoor envi-

ronment promotes a sparse pattern with high-intensity dots

that stand out from the ambient light. In the generic envi-

ronment, we obtain “Polka Lines” with varying intensities

from low to high. We also evaluate the proposed method for

2We vary the parameter values depending on the environments: in-

door (α = 0.0, β = 1.5), outdoor (α = 0.5, β = 0.2), generic

(α ∈ [0, 0.5], β ∈ [0.2, 1.5])
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Figure 10. The experimental prototype accurately reconstructs the

depth of a textureless plane at distances from 0.4 m to 1.0 m.

two different noise levels, e.g., under strong ambient illumi-

nation, using the standard deviation values of 0.02 and 0.6

for the Gaussian noise term η. Figure 6 shows that the illu-

mination pattern becomes sparse with high intensity dotted

lines for the severe noise.

DOE Phase Profile Design. We can repurpose the pro-

posed method to design a DOE that produces a target far-

field illumination pattern when illuminated by a collimated

beam. Designing DOEs for structured illumination has ap-

plications beyond active stereo, including anti-fraud protec-

tion, projection marking, and surface inspection [48]. Fig-

ure 7 shows that we obtain reconstruction quality compa-

rable to state-of-the-art iterative FFT methods [11]. One

benefit of using our framework for DOE design is its flexi-

bility. For example, any additional phase-changing optical

element can readily be incorporated into the image forma-

tion model. Also, additional loss functions can be imposed,

e.g., enforcing smoothness of the DOE to reduce potential

fabrication inaccuracies. We refer to the Supplemental Doc-

ument for the optimization details.

7. Experimental Prototype Results

Experimental Prototype. Figure 9 shows our experimen-

tal prototype along with captures of the proposed Polka

Lines illumination pattern variants. We implement the pro-

posed system with two NIR cameras (Edmund Optics 37-

327) equipped with the objective lenses of 6mm focal

length (Edmund Optics 67-709). The pixel pitch of the
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Figure 11. The learned illumination pattern with varying-

intensity dots outperforms passive stereo and the commercial

hand-engineered pattern (Intel RealSense D415) for high dynamic

range scene conditions. Blue arrows indicate estimation artifacts.

We capture a V-shaped reflectance target (x-rite Pro Photo Kit).

cameras is 5.3 µm, and the stereo baseline is 55mm. We

employ a NIR laser with a center wavelength 850 nm, and

beam diameter of 1 mm. We use a laser diode (Thorlabs

L850P200), a laser diode socket (Thorlabs S7060R), a colli-

mation lens (Thorlabs LT200P-B), and a laser driver (Thor-

labs KLD101). We fabricate the optimized DOE with a 16-

level photolithography process. For fabrication details, we

refer to the Supplemental Document. The illumination pat-

tern from the fabricated DOE exhibits undiffracted zeroth-

order components that are superposed with the diffracted

pattern. While commercial mass-market lithography is

highly optimized, our small-batch manual lithography did

not meet the same fabrication accuracy. Although the fab-

rication accuracy is below commercial DOEs with high

diffraction efficiency, the measured illumination patterns

match their synthetic counterparts.

Depth Reconstruction. We measure the depth accuracy

of our prototype system by capturing planar textureless ob-

jects at known distances as shown in Figure 10. The esti-

mated depth using the Polka Lines pattern closely matches

the ground truth, with a mean absolute error of 1.4 cm in the

range from 0.4 m to 1 m. We demonstrate qualitative results

on diverse real-world scenes in Figure 8, which includes

complex objects, dynamic hand movement, textureless ob-

jects without ambient light, objects in sunlight, and mov-

ing person in dynamic outdoor environments. We showcase

video-rate depth imaging in the Supplemental Video.

Comparison. We compare our learned Polka Lines pattern

with the commercial Intel RealSense D415 pattern in Fig-

ure 11. The average illumination intensity of the Intel pat-

tern is adjusted to match that of the proposed system via ra-

diometric calibration using an integrating sphere (Thorlabs

S142C). Figure 11 shows that our intensity-varying pattern

is more robust to high dynamic range scenes than the In-

tel pattern, thanks to denser Polka dot patterns with a larger
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Figure 12. We capture a scene with low-reflectance planar ob-

jects. While passive stereo suffers at the textureless surface, the

proposed learned illumination enables effective depth reconstruc-

tion. The DOE learned for the generic environment contains a

wider range of pattern intensities than the DOE learned for indoor

scenes, enabling better depth estimation for these objects.

dynamic range. We note that the Intel pattern is of high fab-

rication quality and does not exhibit a severe zeroth-order

component (as does our fabricated DOE). We validate our

learned Polka Line variants for generic environments and

indoor environments in Figure 12. The generic variant fea-

tures a wide intensity range of dots, resulting in accurate

reconstruction for low-reflectance objects.

8. Conclusion

We introduce a method for learning an active stereo cam-

era, including illumination, capture, and depth reconstruc-

tion. Departing from hand-engineered illumination pat-

terns, we learn novel illumination patterns, the Polka Lines

patterns, that provide state-of-the-art depth reconstruction

and insights on the function of structured illumination pat-

terns under various imaging conditions. To realize this ap-

proach, we introduce a hybrid image formation model that

exploits both wave optics and geometric optics for effi-

cient end-to-end optimization, and a trinocular reconstruc-

tion network that exploits the trinocular depth cues of active

stereo systems. The proposed method allows us to design

environment-specific structured Polka Line patterns tailored

to the camera and scene statistics. We validate the effec-

tiveness of our approach with comprehensive simulations

and with an experimental prototype, outperforming conven-

tional hand-crafted patterns across all tested scenarios. In

the future, combined with a spatial light modulator, the pro-

posed method may not only allow for ambient illumination

specific patterns, but also semantically driven dynamic illu-

mination patterns that adaptively increase depth accuracy.
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Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-

war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-

nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-

berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-

tems, 2015.

[4] Supreeth Achar, Joseph R Bartels, William L’Red’ Whit-

taker, Kiriakos N Kutulakos, and Srinivasa G Narasimhan.

Epipolar time-of-flight imaging. ACM Transactions on

Graphics (ToG), 36(4):1–8, 2017.

[5] Brian F. Aull, Andrew H. Loomis, Douglas J. Young,

Richard M. Heinrichs, Bradley J. Felton, Peter J. Daniels,

and Deborah J. Landers. Geiger-mode avalanche photodi-

odes for three-dimensional imaging. 13(2):335–349, 2002.

[6] Seung-Hwan Baek, Diego Gutierrez, and Min H Kim. Bire-

fractive stereo imaging for single-shot depth acquisition.

ACM Transactions on Graphics, 35(6):194, 2016.

[7] Michael Bleyer, Christoph Rhemann, and Carsten Rother.

Patchmatch stereo-stereo matching with slanted support win-

dows. In Bmvc, volume 11, pages 1–11, 2011.

[8] Ayan Chakrabarti. Learning sensor multiplexing design

through back-propagation. In Advances in Neural Informa-

tion Processing Systems, pages 3081–3089, 2016.

[9] Julie Chang and Gordon Wetzstein. Deep optics for monoc-

ular depth estimation and 3d object detection. In IEEE Inter-

national Conference on Computer Vision (ICCV), 2019.
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