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Abstract

Scene text recognition (STR) task has a common prac-

tice: All state-of-the-art STR models are trained on large

synthetic data. In contrast to this practice, training STR

models only on fewer real labels (STR with fewer labels) is

important when we have to train STR models without syn-

thetic data: for handwritten or artistic texts that are diffi-

cult to generate synthetically and for languages other than

English for which we do not always have synthetic data.

However, there has been implicit common knowledge that

training STR models on real data is nearly impossible be-

cause real data is insufficient. We consider that this com-

mon knowledge has obstructed the study of STR with fewer

labels. In this work, we would like to reactivate STR with

fewer labels by disproving the common knowledge. We con-

solidate recently accumulated public real data and show

that we can train STR models satisfactorily only with real

labeled data. Subsequently, we find simple data augmen-

tation to fully exploit real data. Furthermore, we improve

the models by collecting unlabeled data and introducing

semi- and self-supervised methods. As a result, we obtain

a competitive model to state-of-the-art methods. To the best

of our knowledge, this is the first study that 1) shows suf-

ficient performance by only using real labels and 2) in-

troduces semi- and self-supervised methods into STR with

fewer labels. Our code and data are available: https:

//github.com/ku21fan/STR-Fewer-Labels.

1. Introduction

Reading text in natural scenes is generally divided into

two tasks: detecting text regions in scene images and rec-

ognizing the text in the regions. The former is referred to

as scene text detection (STD), and the latter as scene text

recognition (STR). Since STR can serve as a substitute for

manual typing performed by humans, we frequently em-

ploy STR for various purposes: translation by recognizing

foreign languages, street sign recognition for autonomous

driving, various card recognition to input personal informa-

tion, etc. Unlike optical character recognition (OCR), which

focuses on reading texts in cleaned documents, STR also

addresses irregular cases in our lives, such as curved or per-

spective texts, occluded texts, texts in low-resolution im-

ages, and texts written in difficult font.

To address these irregular cases, prior works have devel-

oped STR models comprising deep neural networks. For ex-

ample, to address curved or perspective texts, image trans-

formation modules have been proposed to normalize them

into horizontal images [41, 60, 55]. Qiao et al. [38] has inte-

grated a pretrained language model into STR models to rec-

ognize occluded text. Wang et al. [53] and Mou et al. [33]

have introduced a super-resolution module into STR models

to handle low-resolution images.

While prior works have improved STR models, the study

of training STR models only on fewer real labels (STR

with fewer labels) is insufficient. After emerging large syn-

thetic data [15] in 2014, the study of STR with fewer la-

bels has decreased. All state-of-the-art methods use large

synthetic data to train STR models instead of sole real

data [40, 41, 23, 60, 24, 1, 55, 52, 50, 56, 26, 38, 57, 33].

Implicit common knowledge has been made; training STR

models only on real data results in low accuracy because

the amount of real data is very small. This common knowl-

edge may have hindered studies on STR with fewer labels.

STR with fewer labels is important when we have to

train STR models without synthetic data. In practical ap-

plications, generating synthetic data close to real data can

be difficult depending on the target domain, such as hand-

written text or artistic text. In the other case, when we have

to recognize languages other than English, there are not al-

ways synthetic data for them. Generating appropriate syn-

thetic data for them is difficult for those who do not know

target languages.

In this paper, we would like to reactivate STR with fewer

labels for such cases. As a first step, we disprove the com-

mon knowledge by showing that we can train STR mod-

els satisfactorily only with real labels. This is not previ-

ously feasible. Because the real data was small, STR mod-
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Figure 1: Accuracy vs. number of accumulated real labeled

data. Every two years, public real data has been accumu-

lated. In our experiments, we find that accuracy obtained

using real data approaches that obtained using synthetic

data, along with increment of real data. CRNN [40] and

TRBA [1] are VGG-based and ResNet-based STR models,

respectively.

els trained on real data had low accuracy, as shown in Fig-

ure 1. However, the public real data are accumulated every

two years. We consolidate accumulated real data (276K),

and find that the accuracy of STR models [40, 1] trained on

them is close to that of synthetic data (16M). Namely, we

can train STR models only on real data instead of synthetic

data. It is high time to change the prevalent perspective from

“We don’t have enough real data to train STR models” to

“We have enough real data to train STR models”. It is also

a good time to study STR with fewer labels.

To improve STR with fewer labels, we find simple yet

effective data augmentations to fully exploit real data. In ad-

dition, we collect unlabeled data and introduce a semi- and

self-supervised framework into the STR. With extensive ex-

periments, we analyze the contribution of them and demon-

strate that we can obtain a competitive model to state-of-

the-art methods by only using real data. Furthermore, we

investigate if our method is also useful when we have both

synthetic and real data.

2. Common Practice in STR Dataset

According to a benchmark study [1], obtaining enough

real data is difficult because of the high labeling cost. Thus,

STR models are generally trained on large synthetic data

instead of real data. Real data has been used for evaluation.

2.1. Synthetic Datasets for Training

There are two major synthetic datasets.

MJSynth (MJ) [15] is generated for STR, and it contains

9M word boxes. Each word is generated from a 90K English

lexicon and over 1,400 Google Fonts, as shown in Figure 2a.

(a) MJ word boxes (b) ST scene image

Figure 2: Examples of two major synthetic datasets.

SynthText (ST) [11] is originally generated for scene text

detection. The texts are rendered onto scene images, as

shown in Figure 2b. For STR, we crop the texts in scene

images and use them for training. ST has 7M word boxes.

2.2. Real Benchmark Datasets for Evaluation

Six real datasets have been used to evaluate STR models.

Street View Text (SVT) [51] is collected from Google

Street View, and contains texts in street images. It contains

257 images for training and 647 images for evaluation.

IIIT5K-Words (IIIT) [31] is crawled from Google image

searches with query words such as “billboards” and “movie

posters.” It contains 2,000 images for training and 3,000 im-

ages for evaluation.

ICDAR2013 (IC13) [19] is created for the ICDAR 2013

Robust Reading competition. It contains 848 images for

training and 1,015 images for evaluation.

ICDAR2015 (IC15) [18] is collected by people who wear

Google Glass, and thus, many of them contain perspective

texts and some of them are blurry. It contains 4,468 images

for training and 2,077 images for evaluation.

SVT Perspective (SP) [37] is collected from Google Street

View, similar to SVT. Unlike SVT, SP contains many per-

spective texts. It contains 645 images for evaluation.

CUTE80 (CT) [39] is collected for curved text. The im-

ages are captured by a digital camera or collected from the

Internet. It contains 288 cropped images for evaluation.

They are generally divided into regular (SVT, IIIT, IC13)

and irregular (IC15, SP, CT) datasets. The former mainly

contains horizontal texts, while the latter mainly contains

perspective or curved texts.

3. Consolidating Public Real Datasets

Recently, public real data has been sufficiently accumu-

lated to train STR models, as shown in Figure 1. We con-

solidate the training set of public real datasets from 2011

to 2019. Table 1 lists datasets. Figure 3 shows the exam-

ples of word boxes. Before using the original data directly

for training, we conduct some preprocessing on datasets for

our task. We summarize the processes in §3.3, and details

are in the supplementary materials.
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(a) Year 2011 (b) Year 2013 (c) Year 2015 (d) Year 2017 (e) Year 2019

Figure 3: Examples of accumulated real labeled data. More examples are provided in the supplementary materials.

3.1. Real Labeled Datasets Have Increased

Recently, many irregular texts are accumulated as shown

in Year 2015, 2017, and 2019 in Figure 3. They can make

STR models more robust. Many real labeled datasets are re-

leased from ICDAR competitions: IC13, IC15, RCTW, ArT,

LSVT, MLT19, and ReCTS (7 of 11 datasets in Table 1).

ICDAR competitions are held every two years, and real la-

beled datasets have also increased in number. We summa-

rize real labeled datasets for every two years.

(a) Year 2011 (SVT) and (b) Year 2013 (IIIT, IC13): Most

of images are horizontal texts in the street.

(c) Year 2015 (IC15): Images captured by Google Glass

under movement of the wearer, and thus many are per-

spective texts, blurry, or low-resolution images.

(d) Year 2017 (COCO, RCTW, Uber):

COCO-Text (COCO) [49] is created from the MS

COCO dataset [25]. As the MS COCO dataset is not

intended to capture text, COCO contains many oc-

cluded or low-resolution texts.

RCTW [42] is created for Reading Chinese Text in

the Wild competition. Thus many are Chinese text.

Uber-Text (Uber) [62] is collected from Bing Maps

Streetside. Many are house number, and some are text

on signboards.

(e) Year 2019 (ArT, LSVT, MLT19, ReCTS):

ArT [6] is created to recognize Arbitrary-shaped Text.

Many are perspective or curved texts. It also includes

Totaltext [7] and CTW1500 [28], which contain many

rotated or curved texts.

LSVT [47, 46] is a Large-scale Street View Text

dataset, collected from streets in China, and thus many

are Chinese text.

MLT19 [34] is created to recognize Multi-Lingual

Text. It consists of seven languages: Arabic, Latin,

Chinese, Japanese, Korean, Bangla, and Hindi.

ReCTS [61] is created for the Reading Chinese Text

on Signboard competition. It contains many irregular

texts arranged in various layouts or written with unique

fonts.

# of word boxes

Dataset Conf. Year Original Processed

Real labeled datasets (Real-L)

(a) SVT [51] ICCV 2011 257 231

(b)
IIIT [31] BMVC 2012 2,000 1,794

IC13 [19] ICDAR 2013 848 763

(c) IC15 [18] ICDAR 2015 4,468 3,710

(d)

COCO [49] arXiv 2016 43K 39K

RCTW [42] ICDAR 2017 65K 8,186

Uber [62] CVPRW 2017 285K 92K

(e)

ArT [6] ICDAR 2019 50K 29K

LSVT [47] ICDAR 2019 383K 34K

MLT19 [34] ICDAR 2019 89K 46K

ReCTS [61] ICDAR 2019 147K 23K

Total − − 1.1M 276K

Real unlabeled datasets (Real-U)

Book32 [14] arXiv 2016 3.9M 3.7M

TextVQA [44] CVPR 2019 551K 463K

ST-VQA [3] ICCV 2019 79K 69K

Total − − 4.6M 4.2M

Table 1: Number of training set in public real datasets.

3.2. Real Unlabeled Datasets

We consolidate three unlabeled datasets for semi- and

self-supervised learning. They contain scene images and do

not have word region annotation. Thus, we use a pretrained

text detector to crop words. We use the detector [27], which

is not trained on synthetic data and won the ReCTS compe-

tition1. Details are in the supplementary materials.

Book32 [14] is collected from Amazon Books, and con-

sists of 208K book cover images in 32 categories. It con-

tains many handwritten or curved texts.

TextVQA [44] is created for text-based visual question

answering. It consists of 28K OpenImage V3 [21] images

from categories such as “billboard” and “traffic sign.”

ST-VQA [3] is created for scene text-based visual question

answering. It includes IC13, IC15, and COCO, and thus we

excluded them.

1https://rrc.cvc.uab.es/?ch=12&com=evaluation&task=3
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3.3. Preprocessing Real Datasets

We conduct following processes before using real data:

Excluding duplication between datasets Some well-

known datasets (ICDAR03 (IC03) [29], MLT17 [35], and

TotalText [7]) are excluded because they are included in

other datasets: IC13 inherits most of IC03, MLT19 includes

MLT17, and ArT includes TotalText. Also, CT and ArT

have 122 duplicated word boxes, and we exclude them.

Collecting only English words Some datasets are made

for Chinese text recognition (RCTW, ArT, LSVT, ReCTS)

or multilingual text recognition (MLT19). Thus they con-

tain languages other than English. We only use words which

consist of alphanumeric characters and symbols.

Excluding don’t care symbol Some texts have “*” or “#”,

which denotes “do not care about the text” or “characters

hard to read.” We exclude the texts containing them.

Excluding vertical or ± 90 degree rotated texts Some

datasets such as Uber-Text [62] contain many vertical texts

or ± 90° rotated texts. We mainly focus on horizontal texts

and thus exclude vertical texts. The images whose texts

have more than two characters and whose height is greater

than the width are excluded. For unlabeled data, the images

whose height is greater than the width are excluded.

Splitting training set to make validation set Most real

datasets do not have validation set. Thus we split the train-

ing set of each dataset into training and validation sets.

In addition, we exclude texts longer than 25 characters

following common practice [1].

4. STR With Fewer Labels

In this section, we describe the STR models and semi-

and self-supervised learning. Although real data has in-

creased as mentioned in §3.1, real data is still fewer than

synthetic data at about 1.7% of synthetic data. To com-

pensate for the low amount of data, we introduce a semi-

and self-supervised learning framework to improve the STR

with fewer labels. This is inspired by other computer vision

tasks with fewer labels (high-fidelity image generation [30]

and ImageNet classification [59]).

4.1. STR Model Framework

According to [1], STR is performed in four stages:

1. Transformation (Trans.): normalizes the perspective

or curved text into a horizontal text. This is generally

done by the Spatial Transformer Network (STN) [16].

2. Feature extraction (Feat.): extracts visual feature rep-

resentation from the input image. This is generally per-

formed by a module composed of convolutional neural

networks (CNNs), such as VGG [43] and ResNet [13].

(b) TRBA

ResNet

BiLSTM

Attention

“SNACK”

VGG

BiLSTM

TPS

CTC

(a) CRNN

None

Image 

Trans.

Feat.

Seq.

Pred.

“SNAoT”

Figure 4: Illustration of CRNN [40] and TRBA [1].

3. Sequence modeling (Seq.): converts visual features to

contextual features that capture context in the sequence

of characters. This is generally done by BiLSTM [10].

4. Prediction (Pred.): predicts the character sequence

from contextual features. This is generally done by a

CTC [9] decoder or attention mechanism [2].

For our experiments, we adopt two widely-used models

from the STR benchmark [1]: CRNN[40] and TRBA[1], as

illustrated in Figure 4. CRNN consists of None, VGG, BiL-

STM, and CTC for each stage. CRNN has lower accuracy

than state-of-the-art methods, but CRNN is widely chosen

for practical usage because it is fast and lightweight. TRBA

consists of a thin-plate spline [4] transform-based STN

(TPS), ResNet, BiLSTM, and Attention for each stage. As

TRBA uses ResNet and attention mechanism, it is larger

and slower than CRNN but has higher accuracy.

4.2. Semi­Supervised Learning

Recently, various semi-supervised methods have been

proposed and improved the performance with unlabeled

data, particularly in image classification tasks [22, 48, 32,

59]. Since large synthetic data is used for STR to compen-

sate for the lack of data instead of using unlabeled data,

studies on training STR with unlabeled data are rare. To the

best of our knowledge, there is only one study that uses un-

labeled data for the STR benchmark [17]. We introduce two

simple yet effective semi-supervised methods for STR.

Pseudo-Label (PL) [22] is a simple approach that uses

unlabeled data. The process is as follows: 1) Train the

model on labeled data. 2) Using the trained model, make

predictions on unlabeled data and use them as pseudola-

bels. 3) Combine labeled and pseudolabeled data, and re-

train the model on them. Figure 5a illustrates PL. Concur-

rent work [17] also uses PL on the Book32 dataset. The

researchers combine pseudolabeled and synthetic data, and

use them as a training set.
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(a) Pseudo-Label (PL) (b) Mean Teacher (MT)

Figure 5: Illustration of Pseudo-Label [22] and mean teacher [48]. +, EMA, and MSE denote union of labeled and unlabeled

data, exponential moving average, and mean squared error, respectively.

Mean Teacher (MT) [48] is a method that uses consis-

tency regularization. The process is as follows: 1) Prepare a

model and a copy of the model. 2) Use the former as a stu-

dent model and the latter as a teacher model. 3) Apply two

random augmentations η and η′ on the same mini-batch. 4)

Input the former to the student model and the latter to the

teacher model. 5) Calculate the mean squared error loss on

their outputs. 6) Update the student model. 7) Update the

teacher model with an exponential moving average (EMA)

of the student model. Figure 5b illustrates MT.

4.3. Self­Supervised Learning

Recently, self-supervised methods have shown promis-

ing results in computer vision tasks [8, 12, 5]. Self-

supervised learning is generally conducted in two stages:

1) Pretrain the model with a surrogate (pretext) task. 2) Us-

ing pretrained weights for initialization, train the model for

the main task. The pretext task is generally conducted on

unlabeled data, and by learning a pretext task, the model

obtains better feature maps for the main task. In this study,

we investigated two widely-used methods, RotNet [8] and

MoCo [12].

RotNet [8] predicts the rotation of images as a pretext task.

The task is simple: rotate input images at 0, 90, 180, and

270 degrees, and the model recognizes the rotation applied

to the image.

Momentum Contrast (MoCo) [12] is a contrastive learn-

ing method that can be applied to various pretext tasks. Fol-

lowing [12], we use an instance discrimination task [54] as

a pretext task. The task consists of the following steps: 1)

Prepare a model and a copy of the model. 2) Use the for-

mer as a query encoder and the latter as a momentum en-

coder. 3) Apply two random augmentations η and η′ on the

same mini-batch. 4) Input the former into a query encoder

to make encoded queries q. 5) Input the latter into a mo-

mentum encoder to make encoded keys k. 6) Calculate the

contrastive loss, called InfoNCE [36], on pairs of a query q

and a key k. For a pair of q and k, if they are derived from

the same image, assign a positive, otherwise negative label.

7) Update the query encoder. 8) Update the momentum en-

coder with an moving average of the query encoder.

5. Experiment and Analysis

In this section, we present the results of our main exper-

iments using STR with fewer real labels with a semi- and

self-supervised learning framework.

5.1. Implementation Detail

We summarize our experimental settings. More details

of our settings are in our supplementary materials.

Model and training strategy We use the code of the STR

benchmark repository2[1], and use CRNN and TRBA as

described in §4.1. We use the Adam [20] optimizer and

the one-cycle learning rate scheduler [45] with a maximum

learning rate of 0.0005. The number of iterations is 200K,

and the batch size is 128. As shown in Table 1, the number

of training sets is imbalanced over the datasets. To over-

come the data imbalance, we sample the same number of

data from each dataset to make a mini-batch.

Dataset and model selection To train models on real data,

we use the union of 11 real datasets (Real-L) listed in Ta-

ble 1. After preprocessing described in §3.3, we have 276K

training and 63K validation sets, and use them for training.

In all our experiments, we use the 63K validation set for

model selection: select the model with the best accuracy on

the validation set for evaluation. We validate the model ev-

ery 2,000 iterations, as in [1]. To train models on synthetic

data, we use the union of MJ (9M) and ST (7M). For semi-

and self-supervised learning, we use the union of 3 real un-

labeled datasets (Real-U, 4.2M) listed in Table 1.

Evaluation metric We use word-level accuracy on six

benchmark datasets, as described in §2.2. The accuracy is

calculated only on the alphabet and digits, as done in [41].

We calculate the total accuracy for comparison, which is the

accuracy of the union of six benchmark datasets (7,672 in

total). In our study, accuracy indicates total accuracy. For

all experiments, we run three trials with different initializa-

tions and report averaged accuracies.

2https://github.com/clovaai/deep-text-recognition-benchmark
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Dataset name and # of data

Method Year Train data
IIIT SVT IC13 IC15 SP CT Total

3000 647 1015 2077 645 288 7672

R
ep

o
rt

ed
re

su
lt

s

ASTER [41] 2018 MJ+ST 93.4 89.5 91.8 76.1 78.5 79.5 86.4

ESIR [60] 2019 MJ+ST 93.3 90.2 91.3 76.9 79.6 83.3 86.8

MaskTextSpotter [24] 2019 MJ+ST 95.3 91.8 95.3 78.2 83.6 88.5 89.1

ScRN [55] 2019 MJ+ST 94.4 88.9 93.9 78.7 80.8 87.5 88.2

DAN [52] 2020 MJ+ST 94.3 89.2 93.9 74.5 80.0 84.4 86.9

TextScanner [50] 2020 MJ+ST 93.9 90.1 92.9 79.4 84.3 83.3 88.3

SE-ASTER [38] 2020 MJ+ST 93.8 89.6 92.8 80.0 81.4 83.6 88.2

RobustScanner [57] 2020 MJ+ST 95.3 88.1 94.8 77.1 79.5 90.3 88.2

PlugNet [33] 2020 MJ+ST 94.4 92.3 95.0 82.2 84.3 85.0 89.8

O
u

r
ex

p
er

im
en

t

CRNN-Original [40] 2015 MJ 78.2 80.8 86.7 − − − −

CRNN-Baseline-synth MJ+ST 84.3 78.9 88.8 61.5 64.8 61.3 75.8

CRNN-Baseline-real Real-L 83.5 75.5 86.3 62.2 60.9 64.7 74.8

CRNN-PR Real-L+U 89.8 84.3 90.9 73.1 74.6 82.3 83.4

TRBA-Original [1] 2019 MJ+ST 87.9 87.5 92.3 71.8 79.2 74.0 82.8

TRBA-Baseline-synth MJ+ST 92.1 88.9 93.1 74.7 79.5 78.2 85.7

TRBA-Baseline-real Real-L 93.5 87.5 92.6 76.0 78.7 86.1 86.6

TRBA-PR Real-L+U 94.8 91.3 94.0 80.6 82.7 88.1 89.3

Table 2: Accuracy of STR models on six benchmark datasets. We show the results reported in original papers. We present our

results of CRNN and TRBA: Reproduced models (Baseline-synth), models trained only on real labels (Baseline-real), and our

best setting (PR, combination of Pseudo-Label and RotNet). TRBA-PR has a competitive performance with state-of-the-art

models. MJ, ST, Real-L, and Real-L+U denote MJSynth, SynthText, union of 11 real labeled datasets, and union of 11 real

labeled and 3 unlabeled datasets in Table 1, respectively. In each column, top accuracy is shown in bold.

5.2. Comparison to State­of­the­Art Methods

Table 2 lists the results of state-of-the-art methods and

our experiments. For a fair comparison, we list the meth-

ods that use only MJ and ST for training, and evaluate six

benchmarks: IIIT, SVT, IC13-1015, IC15-2077, SP, and CT.

Our reproduced models (Baseline-synth) has higher ac-

curacies than in the original paper because we use dif-

ferent settings such as larger datasets (8M to 16M for

CRNN and 14.4M to 16M for TRBA), different optimizer

(Adam instead of AdaDelta [58]), and learning rate schedul-

ing. Baseline-real is the model only trained on 11 real

datasets. CRNN-Baseline-real has an accuracy close to that

of CRNN-Synth (74.8% to 75.8%), and TRBA-Baseline-

real surpasses TRBA-Synth (86.6% over 85.7%).

TRBA with our best setting (TRBA-PR) trained on only

real data has a competitive performance of 89.3% with

state-of-the-art methods. PR denotes the combination of

Pseudo-Label and RotNet. PR improves Baseline-real by

+8.6% for CRNN and +2.7% for TRBA, and results in

higher accuracy than Baseline-synth. In the following sec-

tions, we analyze our best setting with ablation studies.

5.3. Training Only on Real Labeled Data

In this section, we present the results of training STR

models only on real labeled data.

Accuracy depending on dataset increment Table 1 shows

the increment of real data, and Figure 1 shows the accuracy

improvement. For 2019, when the number of the real train-

ing set is 276K, the accuracy of CRNN and TRBA trained

only on real labeled data is close to that of synthetic data.

This indicates that we have enough real labeled data to train

STR models satisfactorily, although the real labeled data is

only 1.7% of the synthetic data.

These results indicate that we need at least from 146K

(Year 2017) to 276K (Year 2019) real data for training STR

models. However, according to [1], the diversity of the train-

ing set can be more important than the number of training

sets. We use 11 datasets, which denotes high diversity, and

thus we cannot simply conclude with “276K is enough.”

To investigate the significance of real data, we also con-

duct an experiment that uses only 1.74% of synthetic data

(277K images), which is a similar amount to our real data.

This results in approximately 10% lower accuracy than

Baseline-real (65.1% vs. 74.8% for CRNN and 75.9% vs.

86.6% for TRBA). This indicates that real data is far more

significant than synthetic data.

3118



Augmentation CRNN TRBA

Baseline-real 74.8 86.6

+ Blur 75.7 86.8

+ Crop 78.8 87.1

+ Rot 79.5 86.2

+ Blur + Crop 79.1 87.5

+ Blur + Rot 79.5 86.1

+ Crop + Rot 80.0 86.7

+ Blur + Crop + Rot 78.9 86.6

Baseline-synth 75.8 85.7

+ Aug. 73.4 85.2

Table 3: Improvement by simple data augmentations. Aug.

denotes the best augmentation setting in our experiments.

Improvement by simple data augmentations Since our

goal is to train an STR model with fewer labels, to compen-

sate for them, we find effective data augmentations. Most

STR methods do not use data augmentations [40, 41, 60, 1,

52, 38, 57, 33]. We suppose that they do not use data aug-

mentation because the synthetic data already includes aug-

mented data. In that case, if we apply further data augmen-

tation above on already augmented data, then the results can

be worse. For example, applying a 45° rotation on the syn-

thetic text, which was already rotated 45°, makes horizontal

text to 90° rotated text. This can produce worse results.

However, if we use real data that do not contain data aug-

mentations, then we can easily make improvements by data

augmentation. We investigate simple data augmentations.

Specifically, we use the Gaussian blur (Blur) to cope with

blurry texts. We use a high ratio cropping (Crop), which

slightly cuts the top, bottom, left, and right ends of the text,

making STR models robust, and a rotation (Rot) for rotated,

perspective, or curved texts. The intensity of each augmen-

tation affects the performance. We find the best intensities

for them. Table 3 shows the results of augmentations with

best intensity and their combination. The experiments with

varying intensities of augmentations are in the supplemen-

tary materials.

Combinations of simple augmentations successfully im-

proves the STR models. For CRNN, the best setting (Aug.)

is the combination of Crop and Rot, which improves the

accuracy by 5.2% from Baseline-real. For TRBA, the best

setting (Aug.) is the combination of Blur and Crop, which

improves the accuracy by 0.9% from Baseline-real.

We also apply the Aug. to Baseline-synth, and the accu-

racy decreases. We presume that the combination of already

augmented data in synthetic data and Aug. can be harmful to

the performance. For a similar case in our controlled exper-

iments, the combination of Blur, Crop, and Rot has a lower

accuracy than the combination of Crop and Rot. These re-

sults indicate that the addition of augmentation can be harm-

Method CRNN TRBA

Baseline-real + Aug. 80.0 87.5

+ PL 82.8 (+2.8) 89.2 (+1.7)

+ MT 79.8 (-0.2) 87.1 (-0.4)

+ RotNet 81.3 (+1.3) 87.5

+ MoCo 80.8 (+0.8) 86.7 (-0.8)

+ PL + RotNet 83.4 (+3.4) 89.3 (+1.8)

Table 4: Ablation study on semi- and self-supervised meth-

ods. Gaps of at least 1.0 points are shown in green.

ful to the performance depending on the elements.

5.4. Semi­ and Self­Supervised Learning

In addition to data augmentations, we further improve

STR models by using unlabeled data (Real-U, listed in Ta-

ble 1) with semi- and self-supervised methods, as described

in §4. Table 4 shows the results.

Pseudo-Label (PL) and Mean Teacher (MT): PL boosts

the accuracy by 2.8% for CRNN and 1.7% for TRBA. MT

decreases the accuracy by -0.2% for CRNN and -0.4% for

TRBA.

RotNet and MoCo: Following the common practice that

pretrains CNN part of the model [8, 12], we pretrain VGG

for CRNN and ResNet for TRBA. We find that when we

pretrain both TPS and ResNet in TRBA, the accuracy de-

creases sharply: -11.8% with RotNet and -5.9% with MoCo.

Thus, we only pretrain ResNet in TRBA.

For CRNN, RotNet and MoCo improve the accuracy by

1.3% and 0.8%, respectively. RotNet is slightly more effec-

tive than MoCo. For TRBA, RotNet marginally improves

the accuracy by +0.09% (87.45% to 87.54%) and MoCo

decreases the accuracy by -0.8%.

Combination of semi- and self-supervised methods The

semi- and self-supervised methods in our experiments are

independent, and thus we can combine them for further im-

provement. We select PL and RotNet for the combination

because they have better accuracy than MT and MoCo, re-

spectively. The PL method can be improved with a more

accurate pretrained model to predict pseudolabels. We use

RotNet as the more accurate model. Specifically, PL and

RotNet are combined as follows: 1) Initialize the models

with weights trained by the pretext task of RotNet. 2) Use

RotNet to predict pseudolabels. Table 4 shows the results of

the combination.

The combination of PL and RotNet has higher accuracy

than solely using PL or RotNet. This successfully improves

the accuracy by +3.4% from Baseline-real with Aug. for

CRNN and +1.8% for TRBA. Our best setting (PR) is the

combination of Aug., PL, and RotNet.
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Figure 6: Accuracy vs. amount of real labeled data.

5.5. Varying Amount of Real Labeled Data

Although Figure 1 shows the accuracy depending on

dataset increment, the results are entangled with two fac-

tors: the amount of labeled data and the diversity of datasets.

We investigate the effect of the amount of labeled data by

proportionally reducing each labeled dataset while main-

taining the diversity of datasets (11 datasets). The amount

of unlabeled data is fixed. Figure 6 shows the results.

Baseline-real is drastically dropped -13.2% in accuracy

for CRNN and -27.0% for TRBA, with varying data ratios

of 40% to 20%. This shows that an accuracy cliff would

appear here. When our best augmentation setting (Aug.) is

applied, the accuracy improves fairly, especially with ratios

of 20%, by +13.0% for CRNN and +20.0% for TRBA.

PR with unlabeled data can substitute over 221K labeled

data for CRNN and 110K labeled data for TRBA. CRNN-

PR with a ratio of 20% exceeds Baseline-real with a ratio

of 100% by 2.0%. TRBA-PR with a ratio of 60% exceeds

Baseline-real with a ratio of 100% by 0.4%.

The diversity of datasets can be more important than the

amount of labeled data. Comparing the Baseline with ra-

tio 40% (110K) to Year 2017 (146K) in Figure 1, while the

former has less data than the latter, the former has higher

diversity than the latter (11 datasets vs. 7 datasets). The for-

mer has higher accuracy than the latter: 66.6% vs. 65.1%

for CRNN and 78.2% vs. 75.1% for TRBA.

5.6. Training on Both Synthetic and Real Data

In real scenarios, there is a case in which we have large

synthetic data for the general domain and only fewer real

data for the target domain. We investigate if our best setting

(PR) is also useful for this case by comparing other options.

Fine-tuning on real data Transfer learning with simple

fine-tuning is a feasible option for such a case. We con-

Method Train Data CRNN TRBA

Fine-tuning

Baseline-synth MJ+ST 75.8 85.7

+ FT Real-L 82.1 90.0

+ FT w/PR Real-L+U 76.6 87.5

From scratch

Baseline-real Real-L 74.8 86.6

Baseline-real Real-L+MJ+ST 79.8 89.1

PR Real-L+U 83.4 89.3

PR Real-L+U+MJ+ST 84.2 90.0

Table 5: Training on both synthetic and real data.

duct training STR models on large synthetic data (MJ and

ST, 16M) and then fine-tuning on fewer real data (Real-L,

276K) for 40K iterations.

Training from scratch Another option is training STR

models on both of them from scratch. We use the union of

11 real labeled and 2 synthetic datasets as a training set.

Table 5 shows the results. Fine-tuning on real labeled

data improves the accuracy by +6.3% for CRNN and +4.3%

for TRBA. Unexpectedly, fine-tuning with PR increases the

accuracy (+0.8% for CRNN and +1.8% for TRBA) but has

lower accuracy than fine-tuning only on real labeled data

(76.6% vs. 82.1% for CRNN and 87.5% vs. 90.0% for

TRBA). This indicates that using semi- and self-supervised

methods during fine-tuning can be harmful.

PR has higher accuracy than Baseline-real with synthetic

data. This shows that we can substitute the synthetic data

with semi- and self-supervised methods that use unlabeled

data. For CRNN, PR with synthetic data has higher accu-

racy than the other settings. This indicates that PR can be

useful for training STR models when both large synthetic

data and fewer real data are available.

6. Conclusion

Since STR models have been trained on large synthetic

data, training STR models on fewer real labels (STR with

fewer labels) has not been sufficiently studied. In this pa-

per, we have focused on STR with fewer labels. STR with

fewer labels is considered difficult because there are only

thousands of real data, resulting in low accuracy. However,

this is no longer the case. We have shown that public real

data has been accumulated over the years. Although accu-

mulated real data is only 1.7% of the synthetic data, we can

train STR models sufficiently by using it. We have further

improved the performance by using simple data augmen-

tations and introducing semi- and self-supervised methods

with millions of real unlabeled data. This work is a stepping

stone toward STR with fewer labels, and we hope this work

will facilitate future work on this topic.
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