
What’s in the Image?

Explorable Decoding of Compressed Images

Yuval Bahat and Tomer Michaeli

Technion - Israel Institute of Technology, Haifa, Israel

{yuval.bahat@campus,tomer.m@ee}.technion.ac.il

Abstract

The ever-growing amounts of visual contents captured

on a daily basis necessitate the use of lossy compression

methods in order to save storage space and transmission

bandwidth. While extensive research efforts are devoted to

improving compression techniques, every method inevitably

discards information. Especially at low bit rates, this in-

formation often corresponds to semantically meaningful vi-

sual cues, so that decompression involves significant am-

biguity. In spite of this fact, existing decompression algo-

rithms typically produce only a single output, and do not

allow the viewer to explore the set of images that map to the

given compressed code. In this work we propose the first

image decompression method to facilitate user-exploration

of the diverse set of natural images that could have given

rise to the compressed input code, thus granting users the

ability to determine what could and what could not have

been there in the original scene. Specifically, we develop

a novel deep-network based decoder architecture for the

ubiquitous JPEG standard, which allows traversing the set

of decompressed images that are consistent with the com-

pressed JPEG file. To allow for simple user interaction,

we develop a graphical user interface comprising several

intuitive exploration tools, including an automatic tool for

examining specific solutions of interest. We exemplify our

framework on graphical, medical and forensic use cases,

demonstrating its wide range of potential applications.

1. Introduction

With surveillance systems so widely used and social net-

works ever more popular, the constant growth in the capac-

ity of daily captured visual data necessitates using lossy

compression algorithms (e.g. JPEG, H.264), that discard

part of the recorded information in order to reduce stor-

age space and transmission bandwidth. Over the years,

extensive research has been devoted to improving com-

pression techniques, whether by designing better decoders

for existing encoders, or by devising new compression-

decompression (CODEC) pairs, that enable higher percep-

tual quality even at low bit-rates. However, in any lossy

compression method, the decoder faces inevitable ambigu-

ity. This ambiguity is particularly severe at low bit-rates,

which are becoming more prevalent with the ability to main-

tain perceptual quality at extreme compression ratios [1].

This is exemplified in Fig. 1 in the context of the JPEG stan-

dard. Low bit-rate compression may prevent the discrimina-

tion between different animals, or the correct identification

of a shirt pattern, a barcode, or text. Yet, despite this in-

herent ambiguity, existing decoders do not allow the user to

explore the abundance of plausible images that could have

been the source of a given compressed code.

Recently, there has been growing research focus on mod-

els that can produce diverse outputs for any given input, for

image synthesis [2, 3, 4], as well as for image restoration

tasks, e.g. denoising [5], compression artifact reduction [6]

and super-resolution [7, 8, 9]. The latter group of works

took another step, and also allowed users to interactively

traverse the space of high-resolution images that correspond

to a given low-resolution input. In this paper, we propose

the first method to allow users to explore the space of natural

images that corresponds to a compressed image code. We

specifically focus on the ubiquitous JPEG standard, though

our approach can be readily extended to other image and

video compression formats.

A key component of our method is a novel JPEG de-

compression network architecture, which predicts the quan-

tization errors of the DCT coefficients and is thus guaran-

teed to produce outputs that are consistent with the com-

pressed code. This property is crucial for enabling reliable

exploration and examining what could and what could not

have been present in the underlying scene. Our scheme has

a control input signal that can be used to manipulate the

output. This, together with adversarial training, allows our

decoder to generate diverse photo-realistic outputs for any

given compressed input code.

We couple our network with a graphical user interface

(GUI), which lets the user interactively explore the space of

2908



JPEG Alternative outputs by our method that match the compressed code

Figure 1. Ambiguity in JPEG decompression. A compressed JPEG file can correspond to numerous different plausibly looking images.

These can vary in color, texture, and other structures that encode important semantic information. Since multiple images map to the same

JPEG code, any decoder that outputs only a single reconstruction, fails to convey to the viewer the ambiguity regarding the encoded image.

Automatically exploring all possible 

(consistent) digit identities

JPEG DnCNN Ours (neutral)AGARNet

0 1 2 3 4 5 6 7 8 9

Non-compressed 

(ground truth) digit

Figure 2. Automatic exploration. Upon marking an ambiguous character in the image, our GUI harnesses a pre-trained digit classifier

to propose optional (consistent) reconstructions corresponding to the possible digits 0 − 9 (see details in Sec. 5). This feature is valuable

in many use cases (e.g. forensic), as it can assist in both revealing and resolving decompression ambiguities; although pre-exploration

decoding of the hour digit (yellow rectangle) by all methods (top row) may suggest it is 7, our automatic exploration tool produces

perceptually plausible decodings as both 7 and 2 (green rectangles), thus uncovering the hidden ambiguity and even preventing false

identification, as the correct hour digit (in the pre-compressed image, bottom left) was indeed 2.

consistent and perceptually plausible reconstructions. The

user can attempt to enforce contents in certain regions of the

decompressed image using various tools (see e.g. Fig. 3).

Those trigger an optimization problem that determines the

control signal best satisfying the user’s constraints. Particu-

larly, our work is the first to facilitate automatic user explo-

ration, by harnessing pre-trained designated classifiers, e.g.

to assess which digits are likely to correspond to a com-

pressed image of a digital clock (see Fig. 2).

Our explorable JPEG decoding approach is of wide ap-

plicability. Potential use cases range from allowing a user to

restore lost information based on prior knowledge they may

have about the captured image, through correcting unsat-

isfying decompression outputs (demonstrated in Fig. 8), to

situations where a user wants to test specific hypotheses re-

garding the original image. The latter setting is particularly

important in forensic image analysis and in medical image

analysis, as exemplified in Figs. 2 and 4, respectively.

2. Related Work
Diverse and explorable image restoration Recently,

there is growing interest in image restoration methods that

can generate a diverse set of reconstructions for any given

input. Prakash et al. [5] proposed to use a variational au-

toencoder for diverse denoising. Guo et al. [6] addressed

diverse decompression, allowing users to choose between

different decompressed outputs for any input compressed

image. In the context of super-resolution, the GAN-based

PULSE method [10] can produce diverse outputs by using

different latent input initializations, while the methods in

[7, 8, 9] were the first to allow user manipulation of their

super-resolved outputs. Note that among these methods,

only [7] guarantees the consistency of all its outputs with

the low-resolution input, which is a crucial property for re-

liable exploration, e.g. when a user is interested in assessing

the plausibility of a specific solution of interest.

Though we borrow some ideas and mechanisms from ex-

2909



JPEG
Our unedited 

decoding
Consistent imprinting Local variance reduction

𝜎
Figure 3. Example exploration process. Our GUI enables the user to explore the enforcement of various properties on any selected region

within the image. Unlike existing editing methods that only impose photo-realism, ours seeks to conform to the user’s edits while also

restricting the output to be perfectly consistent with the compressed code.

JPEG

Medically implausible 

appearances

Exploring plausibility of mole sizes

Figure 4. Medical application example. A dermatologist ex-

amining a suspected mole on a new patient may turn to existing

patient photos containing this mole, to study its development. As

the mole appearance in such images may often be degraded due to

compression, our method can assist diagnosis by allowing explo-

ration of the range of possible mole shapes and sizes. Please see

corresponding editing processes in supplementary.

plorable super-resolution [7], this work is the first to dis-

cuss the need and propose a framework for performing ex-

plorable image decompression, which is a fundamentally

more challenging task. While in super-resolution, the set of

consistent solutions is a linear subspace that has zero vol-

ume in the space of all high-resolution images (just like a

2D plane has zero volume within 3D space), image com-

pression involves quantization and so induces a set of con-

sistent reconstructions with nonzero volume (just like a

cube occupies nonzero volume in 3D space). We therefore

introduce various novel mechanisms, including a funda-

mentally different consistency enforcing architecture, novel

editing tools tailored for image decompression, and an au-

tomatic exploration tool (see Fig. 2), that is invaluable for

many applications (e.g. forensics). Though ours is the first

JPEG decompression method aiming for perceptual quality

that is guaranteed to generate consistent reconstructions, we

note that Sun et al. [11] proposed a consistent decompres-

sion scheme, but which is aimed at minimizing distortion

rather than maximizing photo-realism (thus outputting the

mean of the plausible explanations to the input).

Improved JPEG decompression Many works proposed

improved decompression techniques for existing compres-

sion standards [12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

Specifically for JPEG, classical artifact reduction (AR)

methods [12, 13, 14] attempted different heuristics, like

smoothing DCT coefficients [13] or relying on natural im-

age priors like sparsity, in both DCT and pixel domains [14].

Deep convolutional AR networks (first proposed by Dong

et al. [22]) learn to minimize a reconstruction error with re-

spect to ground truth reference images, and operate either

in the pixel [22, 23, 19, 20], DCT [24, 11] or both domains

[25, 26, 6, 27, 21]. Some recent AR methods [28, 29, 30]

use a generative adversarial network (GAN) scheme [31]

for encouraging more photo-realistic results, which we too

employ in our framework. Our design (like [19, 20, 21])

is oblivious to the quality factor (QF) parameter, and can

therefore handle a wide range of compression levels. In

contrast, other methods are trained for a fixed QF setting,

which is problematic not only because it requires training a

different model for each QF, but also since QF by itself is

an ambiguous parameter, as its conversion into compression

level varies across implementations.

3. Our Consistent Decoding Model

To enable exploration of our decompression model’s out-

puts, we need to verify they are both perceptually plausible

and consistent with the given compressed code. To satisfy

the first requirement, we adopt the common practice of uti-

lizing an adversarial loss, which penalizes for deviations

from the statistics of natural images. To satisfy the con-

sistency requirement, we introduce a novel network design

that is specifically tailored for the JPEG format. The JPEG

encoding scheme works in the Y −Cb−Cr color space and

uses separate pipelines for the luminance (Y ) and chromi-

nance (Cb,Cr) channels. Our model supports color images,

however for clarity we start by describing the simpler case

of gray-scale images. The non-trivial treatment of color is

deferred to Sec. 4. We begin with a brief description of the

relevant components in the JPEG compression pipeline, be-

fore describing our network design.

3.1. JPEG compression

The encoding process is shown at the left hand side of

Fig. 5. It starts by dividing the input image x, which is

2910



2
D

 C
o

n
v

S
ig

m
o

id

D
C

T

R
o

u
n

d

R
esh

ap
e

R
esh

ap
e

In
v

erse-D
C

T

DecompressionCompression

Our Y model

÷ ×.jpg

D
eco

d
e

E
n

co
d

e

Control signal 𝑧

2
D

 C
o

n
v

B
atch

 n
o

rm

L
eak

y
 R

eL
U

2
D

 C
o

n
v

B
atch

 n
o

rm

L
eak

y
 R

eL
U

Figure 5. Gray-scale JPEG compression scheme and our model. Our network (inside the blue rectangle) is incorporated into the JPEG

decompression pipeline in a way that guarantees the consistency of its outputs with the JPEG file content, while yielding a significant

perceptual quality gain compared to images decompressed using the standard pipeline. An additional input signal z is incorporated to

allow manipulating the output. Please refer to the description in Sec. 3.

assumed to be of size1 8m × 8n, into an m × n array of

non-overlapping 8× 8 blocks. For each 8× 8 block X , the

encoder computes its DCT, XD = DCT(X), and divides it

element-wise by a pre-defined matrix M ∈ Z
8×8 to obtain

a block of normalized DCT coefficients XN = XD ⊘M .

Finally, the entries of XN are rounded to yield a block

of quantized coefficients XQ = round(XN ). The blocks

{XQ} are stored into the JPEG file alongside matrix M us-

ing some additional lossless processing steps. Note that the

matrix M comprises the per-coefficient quantization inter-

vals, determined as a function of the scalar QF parameter.

However, this function varies between JPEG implementa-

tions, and therefore the QF itself is ambiguous and insuffi-

cient for extracting the image.

3.2. Our decoder design

Our decoder network is shown at the right hand side of

Fig. 5. Our network operates in the DCT domain. Namely,

for each 8 × 8 block XQ extracted from the file, our net-

work outputs an estimate X̂D of the corresponding block

XD. The decoded image is then constructed by applying in-

verse DCT on the predicted DCT blocks {X̂D}. To predict

XD, we first generate a prediction X̂N of the normalized

coefficients XN , and then multiply it element-wise by M ,

so that X̂D = X̂N ⊙M . Since information loss during im-

age encoding is only due to the rounding step, we consider a

reconstructed block X̂N to be consistent with the quantized

block XQ when it satisfies X̂N = XQ + ∆, with an 8 × 8
matrix ∆ whose entries are all in [−0.5, 0.5). We therefore

design our network to predict this ∆ for each block, and we

confine its entries to the valid range using a shifted Sigmoid

function. This process guarantees that the decoded image is

perfectly consistent with the compressed input code.

Predicting the residual ∆ for each block XQ is done

as follows. We arrange the blocks {XQ} to occupy

1We assume integer m and n only for simplicity. Arbitrary image sizes

are also supported.

the channel dimension of an m × n × 64 tensor xQ,

so that each block retains its relative spatial position

w.r.t. the other blocks in the image. We then input this

tensor to a network comprising Nℓ layers of the form

2-D convolution→ batch normalization→ leaky ReLU,

followed by an additional 2-D convolution and a Sigmoid.

All convolution kernels are 3 × 3. The last convolution

layer outputs 64 channels, which correspond to the residual

blocks {∆}. Compared to operating in the pixel domain,

the receptive field of this architecture is 8× larger in each

axis, thus allowing it to exploit larger scale cues.

An important distinction of our network is the ability to

manipulate its output, which facilitates our goal of perform-

ing explorable image decompression. This is enabled by in-

corporating a control input signal, which we feed to the net-

work in addition to the quantized input xQ. We define our

control signal z ∈ R
m×n×64 to have the same dimensions

as xQ, so as to allow intricate editing abilities. Following

the practice in [7], we concatenate z to the input of each of

the Nℓ layers of our network, to promote faster training.

We train our model following the general procedure

of [7]. As an initialization step, we train it to minimize

the L1 distance between ground truth uncompressed train-

ing images, and the corresponding outputs of our network,

while randomly drawing the QF parameter for each image.

Once initialized, training continues without utilizing any

full-reference loss terms like L1 or VGG, which is made

possible thanks to the inherent consistency guarantee of our

design. These full-reference loss terms are known to bias

the output towards the (overly-smoothed) average of all pos-

sible explanations to the given compressed code, and are

thus not optimal for the purpose of exploration. We instead

minimize the following weighted combination of loss terms

to guide our model:

LAdv + λRangeLRange + λMapLMap. (1)

Here, LAdv is an adversarial loss, which encourages the re-

2911



In
v
erse-

D
C

T
 8×

8

Decompression

Control signal 𝑧
Y

model ×

D
C

T
 1

6×
1

6

÷

×

In
v
erse-

D
C

T
 1

6×
1

6
.jpg

× output

×
Z

ero
-p

ad
 to

 

1
6×

1
6

C
b
C
r

model

Figure 6. Our full image decompression scheme. We employ separate models (blue rectangles) to compensate for the quantization errors

of the luminance and chroma channels. Both models share the same internal design depicted in Fig. 5, and receive the same control signal

z, to allow coordinated editing. Please refer to the full description in Sec. 4.

constructed coefficient blocks X̂D to follow the statistics of

their natural image counterparts. In particular, we employ

a Wasserstein GAN loss with spectral normalization [32]

and gradient penalty [33], and use the same model archi-

tecture for both generator and critic (except for substituting

batch normalization with layer normalization in the latter),

following the recommendations in [33]. The second loss

term, LRange, helps prevent model divergence by penalizing

for pixel values outside [16, 235], which is the valid range

of luminance values in the Y − Cb − Cr color space. We

use LRange =
1
k
‖x̂− clip[16,235]{x̂}‖1, where k = 64 ·m ·n

is the number of pixels in the image.

The last loss term in (1) is associated with the control

signal input z, which at exploration (test) time should allow

traversing the space of plausible consistent decompressed

images. We therefore use LMap = minz ‖ψ(xQ, z)−x‖1 to

(i) prevent our network ψ from ignoring its input z, as well

as to (ii) guarantee our network can produce each ground

truth natural image x in our training set using some z. This

is in addition to the adversarial loss LAdv, which encourages

the network’s output corresponding to any input z to be per-

ceptually plausible. Within each training step, we first com-

pute z∗ = argminz{LMap} using 10 iterations, and then

use the fixed z∗ for the minimization of all loss terms in (1).

3.3. Training details

We train our model with the Adam optimizer on 1.15M

images from the ImageNet training set [34], using batches

of 16 images. The initialization and consecutive training

phases last 6 and 12 epochs and employ learning rates of

10−4 and 10−5, respectively. Batches in the latter phase are

fed twice, once with a random z and once with the optimal

z∗ minimizing LMap (see details in the Supp.). We set λRange

and λMap to 200 and 0.1, respectively. To create training in-

put codes, we compress the GT training images utilizing a

quantization interval matrix M = 50 · Qbaseline/QF, where

Qbaseline is the example baseline table in the JPEG standard

[35] and QF is independently sampled from a uniform dis-

tribution over [5, 49] for each image2. We use Nℓ = 10
layers for both the generator and the critic models, using

320 output channels for all convolution operations but the

last. We employ a conditional critic, by concatenating the

generator’s input xQ to our critic’s input, as we find it to

accelerate training convergence.

4. Handling Color Channels

Let us denote the channels of a color image x by xY ,

xCb, and xCr. The chroma channels (Cb and Cr) of natural

images tend to contain mostly low frequency content. The

JPEG format exploits this fact, by allowing to subsample

those channels in the pixel space. The subsampled channels

are then divided into 8× 8 blocks, whose DCT coefficients

are quantized using matrix M c, similarly to the luminance

channel. These quantized blocks, denoted by {XCb
Q } and

{XCr
Q }, are stored in the color JPEG file alongside their lu-

minance channel counterparts {XY
Q}. This process results

in lost chroma information, which like its luminance coun-

terpart, may correspond to semantically meaningful visual

cues. Our framework allows exploring both the luminance

and the chrominance of the image, as depicted in Fig. 6.

Here we use the most aggressive “4:2:0” subsampling

configuration of JPEG, corresponding to subsampling the

chroma channels by a factor of 2 in both axes. We re-

construct the chroma channels using an additional network,

which handles the chroma information loss due to quanti-

zation. While we can use the same process employed in

the luminance case to handle the chroma quantization, ac-

counting for subsampling requires some modifications. Be-

2QFs in the range [50, 100] induce lower data loss, and are thus less

interesting for explorable decoding. The effect of control signal z in such

high QFs is only minor, thanks to our framework’s consistency guarantee.

2912



JPEG
Our (consistent) explorable decodings

Unedited Adding a fly Adding a worm

Figure 7. Exploring plausible explanations. Artifacts in the given compressed image (left) are removed by our method (middle-left) prior

to any exploration. We can then use our GUI to produce different explanations to the kitten’s attention, by imprinting, e.g. a tiny fly or a

worm onto the unedited image. These alternative reconstructions perfectly match the JPEG code when re-compressed. Please refer to the

Supp. for a visualization of the control signals z corresponding to each output.

JPEG Output by DnCNN Our edited resultOur unedited output

Figure 8. Correcting unpleasing decompression. Existing artifact removal methods like DnCNN [19] (middle-left), are often able to

ameliorate compressed images (left), but do not allow editing their output. In contrast, outputs by our method (middle-right) can be edited

by a user to yield superior results (right), which are guaranteed to match the input JPEG code if re-compressed.

fore elaborating on these modifications, we begin by briefly

describing the relevant steps in the JPEG chroma pipeline.

4.1. Alternative modeling of chroma subsampling

Ideally, we would have liked to inform the chroma re-

construction network of the luminance information, by con-

catenating the luminance and chroma codes. However, this

is impractical due to the spatial dimension mismatch result-

ing from the chroma subsampling. To overcome this hurdle,

we remodel the above described subsampling pipeline using

an approximated pipeline as follows.

In natural image chroma channels, almost all content is

concentrated at the low frequencies (e.g., in the BSD-100

dataset [36], an average of 99.99998% of the energy in each

16× 16 chroma channel DCT block, is concentrated in the

upper-left 8 × 8 sub-block). For such low-frequency sig-

nals, the above mentioned subsampling procedure incurs

neglieible aliasing. Thus, the 8 × 8 DCT blocks of the

subsampled channels can be assumed (for all practical pur-

poses) to have been constructed by first computing the DCT

of each 16× 16 block of the original chroma channels, and

then extracting from it only the 8 × 8 block of coefficients

corresponding to the low-frequency content. The rest of the

process is modeled without modification. As we show in the

Supplementary, the differences between images processed

using the actual and approximated pipelines are negligible

(e.g. the PSNR between the two is 88.9dB over BSD-100).

4.2. Modifying our design to support subsampling

Given a compressed input code, we first reconstruct the

luminance channel, as described in Sec. 3. The recon-

structed luminance image x̂Y is then fed into a chroma de-

coding network together with the quantized chroma blocks

from the JPEG file, to obtain the final decoded color image.

Since the quantized 8 × 8 blocks of the chroma chan-

nels in fact correspond to 16 × 16 blocks of the image, our

network operates on 16 × 16 blocks. Specifically, for the

luminance channel x̂Y , we compute DCT coefficients for

each 16 × 16 block and reshape them into a tensor with

162 = 256 channels. The 8 × 8 chroma blocks stored in

the file are zero-padded to be 16 × 16 in size (so that the

high frequencies are all zeros) and then also reshaped into

tensors with 256 channels (see Fig. 6). The luminance ten-

sor is concatenated with the chrominance tensors to form a

single tensor with 3× 256 = 768 channels3. This tensor is

then fed into our chroma network, which uses the same ar-

chitecture described in Sec. 3, only with 160 channels in the

internal layers. This network yields error estimate blocks ∆

3In practice, we discard the channels corresponding to the zero-

padding, which are all zeros.

2913



of size 8× 8, which are added to the quantized blocks XCb
Q

and XCr
Q , and multiplied by M c. The resulting blocks are

zero-padded to 16×16 (setting the high frequencies to zero)

and converted back to pixel-space using inverse DCT. These

reconstructed chroma channels are then combined with the

luminance channel to yield the reconstructed color image.

We feed the same control input signal z to both luminance

and chroma models, to allow a coordinated editing effect.

5. Exploration Tools and Use Cases

Having trained both luminance and chroma models, we

facilitate user exploration by employing a graphical user

interface (GUI) comprising different editing tools. Our

GUI runs on an NVIDIA GeForce 2080 GPU, and allows

interactive exploration in real time. Specifically, once a

compressed image code xQ is loaded from a JPEG file, a

user can manipulate the output of our decoding network,

x̂ = ψ(xQ, z), by first marking a region to be edited and

then choosing among different available tools. Those en-

able the user to attempt enforcing various properties on

x̂. Each editing tool triggers a process of solving z∗ =
argminz f(ψ(xQ, z)) behind the scenes, for some objec-

tive function f , which is optimized using the Adam opti-

mizer. The result is a modified output image ψ(xQ, z
∗),

which is guaranteed to be consistent with the compressed

code xQ (due to our network’s architecture) and to have a

natural appearance (due to the parameters of φ which have

been shaped at train time to favor natural outputs). Exam-

ples for such images x̂ are depicted in Fig. 7.

We introduce a very useful automatic exploration tool,

which given an image region, presents optional reconstruc-

tions corresponding to each digit d ∈ {0, . . . , 9}, by utiliz-

ing f(·) = Classifierd(·), the output of a pre-trained digit

classifier [37] corresponding to digit d (see example use

case in Fig. 2). This tool can easily be extended to domains

other than digits, by using the appropriate classifiers.

Besides classifier-driven exploration, we also borrow ob-

jective functions from [7] and modify them for the JPEG

decompression case, as well as add several JPEG-specific

objectives to allow tuning local hue and saturation. The full

set of available objective functions facilitates a wide range

of operations, including manipulating local image variance

(e.g. using f(·) = (Var(·) − c)2 for some desired vari-

ance level c), performing piece-wise smoothing (e.g. using

f(·) = TV(·)), propagating patches from source to target

regions, modifying periodic patterns and more.

Another particularly useful group of tools allows embed-

ding many forms of graphical user input, including vari-

ous scribbling tools (similar to Microsoft-Paint), modifying

local image brightness and even imprinting visual content

from an external image. These tools act in two phases (cor-

responding to the middle pair of images in Fig. 3). They

first enforce consistency of the desired input with the com-

pressed image code, by projecting the scribbled (or im-

printed) image onto the set of images that are consistent

with the compressed code xQ. Namely, each block of DCT

coefficientsXscribbled
D of the scribbled image is modified into

Xscribbled
D ←

(

clip[− 1

2
, 1
2
]

(

Xscribbled
D ⊘M−XQ

)

+XQ

)

⊙M.

(2)

This is the left of the middle pair in Fig. 3. In the second

phase, an optimization process over z traverses the learned

natural image manifold, searching for the output image that

is closest to the consistent scribbled input. This is the right

of the middle pair in Fig. 3. Variants of these tools provide

many other features, including automatically searching for

the most suitable embedding location, from a consistency

standpoint. Please refer to the supplementary material for

detailed descriptions of all tools provided by our GUI.

Our exploration framework is applicable in many do-

mains and use cases, which we demonstrate through a se-

ries of representative examples4. Fig. 8 depicts a visually

unsatisfying decoded JPEG image (left). Utilizing an arti-

fact removal method yields some improvement, but signifi-

cant improvement is achieved by allowing a user to edit the

image, harnessing specific prior knowledge about the ap-

pearance of sand dunes. Another important application in-

volves exploring the range of plausible explanations to the

compressed image code, like the different appearances of

the shirt in Fig. 1 or the focus of the kitten’s attention in

Fig. 7. Our framework can also be used to investigate which

details could have comprised the original image. This is

particularly important in medical and forensic settings. We

demonstrate examples of exploring corrupted text in Fig. 2,

and examining a mole in a medical use case in Fig. 4. More

examples can be found in the supplementary.

6. Experiments

This work primarily focuses on introducing explorable

image decompression, which we demonstrate on various

use cases. Nevertheless, outputs of our framework are per-

ceptually pleasing even prior to any user exploration or edit-

ing, as we show in Fig. 9 in comparison with DnCNN [19]

and AGARNet [21], the only AR methods handling a range

of compression levels (like ours) whose code is available

online. Fig. 10 (left) further demonstrates the perceptual

quality advantage of our method (Ours, GAN), by compar-

ing NIQE [38] perceptual quality scores5, evaluated on the

4Compressed images in our examples are produced by applying the

JPEG compression pipeline to uncompressed images, though our method

is designed to allow exploration of existing compressed codes.
5The no-reference NIQE measure is most suitable for our case, as it

does not take into account the GT uncompressed images corresponding to

the input JPEG code, which are as valid a decoding as any other output

of our network, thanks to its inherent consistency. Nonetheless, the ad-

vantage of our method remains clear even when considering full-reference

perceptual quality metrics, as we show in the Supp. using LPIPS [39].

2914



JPEG DnCNN Ours (min. distortion)AGARNet Ours (perceptual)

Figure 9. Qualitative comparison. Our GAN-trained image decompression model is primarily intended to allow consistent user explo-

ration, especially for very low QFs, which induce larger ambiguities. Nonetheless, as demonstrated here on severely compressed images

(QF=5), even pre-edited outputs (corresponding to random z inputs) of our model (right) yield significant perceptual quality gains relative

to the JPEG decompression pipeline (left), as well as compared to results by the DnCNN [19] & AGARNet [21] AR methods, and a variant

of our model trained to minimize distortion (middle columns). Please refer to the supplementary for additional visual comparisons.

0 10 20 30 40 50
QF

4

6

8

10

12

NI
QE

Ground truth
JPEG
DnCNN
AGARNet
Ours, L1
Ours, GAN

0 10 20 30 40 50
QF

22

24

26

28

30

32

PS
NR JPEG

DnCNN
AGARNet
Ours, L1
Ours, GAN

Figure 10. Quantitative evaluation. Comparing our exploration model (Ours, GAN), and its variant trained to minimize distortion (Ours,

L1), with the DnCNN [19] and AGARNet [21] AR methods on the BSD-100 [36] dataset, in terms of perceptual quality (left, lower is

better) and image distortion (right, higher is better). Please refer to the Supp. for more comparisons and additional details.

BSD-100 [36] dataset. Finally, our consistency-preserving

architecture produces state of the art results even when tack-

ling the traditional (non-diverse, non-explorable) compres-

sion artifact removal task. Fig. 10 (right) presents a compar-

ison between DnCNN and AGARNet, which aim for min-

imal distortion, and a variant of our model trained using

only the L1 penalty, i.e. the initialization phase in Sec. 3.2.

Our model (Ours, L1) compares favorably to the competi-

tion, especially on severely compressed images (low QFs).

Please refer to the Supp. for additional details and compar-

isons, including evaluation on the LIVE1 [40] dataset.

7. Conclusion

We presented a method for user-interactive JPEG decod-

ing, which allows exploring the set of naturally looking im-

ages that could have been the source of a compressed JPEG

file. Our method makes use of a deep network architecture

which operates in the DCT domain, and guarantees consis-

tency with the compressed code by design. A control input

signal enables traversing the set of natural images that are

consistent with the compressed code. Like most decom-

pression works, our framework is tailored to JPEG. How-

ever, the proposed concept is general, and can be applied to

other compression standards, by identifying and addressing

their respective sources of information loss. We demon-

strated our approach in various use cases, showing its wide

applicability in creativity, forensic, and medical settings.

Acknowledgements This research was supported by the

Israel Science Foundation (grant 852/17) and by the Tech-

nion Ollendorff Minerva Center.

2915



References

[1] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer,

Radu Timofte, and Luc Van Gool. Generative adversarial

networks for extreme learned image compression. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 221–231, 2019. 1

[2] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Dar-

rell, Alexei A Efros, Oliver Wang, and Eli Shechtman. To-

ward multimodal image-to-image translation. In Advances

in Neural Information Processing Systems, pages 465–476,

2017. 1

[3] Wengling Chen and James Hays. Sketchygan: Towards di-

verse and realistic sketch to image synthesis. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 9416–9425, 2018. 1

[4] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh

Singh, and Ming-Hsuan Yang. Diverse image-to-image

translation via disentangled representations. In Proceedings

of the European Conference on Computer Vision, pages 35–

51, 2018. 1

[5] Mangal Prakash, Alexander Krull, and Florian Jug. Divnois-

ing: Diversity denoising with fully convolutional variational

autoencoders. arXiv preprint arXiv:2006.06072, 2020. 1, 2

[6] Jun Guo and Hongyang Chao. One-to-many network for vi-

sually pleasing compression artifacts reduction. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3038–3047, 2017. 1, 2, 3

[7] Yuval Bahat and Tomer Michaeli. Explorable super resolu-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2716–2725, 2020. 1,

2, 3, 4, 7

[8] Marcel Christoph Bühler, Andrés Romero, and Radu Timo-

fte. DeepSEE: Deep disentangled semantic explorative ex-

treme super-resolution. arXiv preprint arXiv:2004.04433,

2020. 1, 2

[9] Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and

Radu Timofte. SRFlow: Learning the super-resolution space

with normalizing flow. arXiv preprint arXiv:2006.14200,

2020. 1, 2

[10] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi,

and Cynthia Rudin. Pulse: Self-supervised photo upsam-

pling via latent space exploration of generative models. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2437–2445, 2020. 2

[11] Mengdi Sun, Xiaohai He, Shuhua Xiong, Chao Ren, and

Xinglong Li. Reduction of jpeg compression artifacts based

on dct coefficients prediction. Neurocomputing, 384:335–

345, 2020. 3

[12] Kiryung Lee, Dong Sik Kim, and Taejeong Kim. Regression-

based prediction for blocking artifact reduction in jpeg-

compressed images. IEEE Transactions on Image Process-

ing, 14(1):36–48, 2004. 3

[13] Tao Chen, Hong Ren Wu, and Bin Qiu. Adaptive postfil-

tering of transform coefficients for the reduction of blocking

artifacts. IEEE transactions on circuits and systems for video

technology, 11(5):594–602, 2001. 3

[14] Xianming Liu, Xiaolin Wu, Jiantao Zhou, and Debin Zhao.

Data-driven sparsity-based restoration of jpeg-compressed

images in dual transform-pixel domain. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5171–5178, 2015. 3

[15] Yehuda Dar, Alfred M Bruckstein, Michael Elad, and Raja

Giryes. Postprocessing of compressed images via sequen-

tial denoising. IEEE Transactions on Image Processing,

25(7):3044–3058, 2016. 3

[16] Xianming Liu, Gene Cheung, Xiaolin Wu, and Debin Zhao.

Random walk graph laplacian-based smoothness prior for

soft decoding of jpeg images. IEEE Transactions on Image

Processing, 26(2):509–524, 2016. 3

[17] Xueyang Fu, Zheng-Jun Zha, Feng Wu, Xinghao Ding, and

John Paisley. Jpeg artifacts reduction via deep convolutional

sparse coding. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2501–2510, 2019. 3

[18] Alexander G Ororbia, Ankur Mali, Jian Wu, Scott

O’Connell, William Dreese, David Miller, and C Lee Giles.

Learned neural iterative decoding for lossy image compres-

sion systems. In Data Compression Conference, pages 3–12.

IEEE, 2019. 3

[19] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a gaussian denoiser: Residual learning of

deep cnn for image denoising. IEEE Transactions on Image

Processing, 26(7):3142–3155, 2017. 3, 6, 7, 8

[20] Simone Zini, Simone Bianco, and Raimondo Schettini. Deep

residual autoencoder for blind universal jpeg restoration.

IEEE Access, 8:63283–63294, 2020. 3

[21] Yoonsik Kim, Jae Woong Soh, and Nam Ik Cho. Agarnet:

Adaptively gated jpeg compression artifacts removal net-

work for a wide range quality factor. IEEE Access, 8:20160–

20170, 2020. 3, 7, 8

[22] Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou

Tang. Compression artifacts reduction by a deep convolu-

tional network. In Proceedings of the IEEE International

Conference on Computer Vision, pages 576–584, 2015. 3

[23] Pavel Svoboda, Michal Hradis, David Barina, and Pavel

Zemcik. Compression artifacts removal using convolutional

neural networks. arXiv preprint arXiv:1605.00366, 2016. 3

[24] Jaeyoung Yoo, Sang-ho Lee, and Nojun Kwak. Image

restoration by estimating frequency distribution of local

patches. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, June 2018. 3

[25] Zhangyang Wang, Ding Liu, Shiyu Chang, Qing Ling,

Yingzhen Yang, and Thomas S Huang. D3: Deep dual-

domain based fast restoration of jpeg-compressed images.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2764–2772, 2016. 3

[26] Jun Guo and Hongyang Chao. Building dual-domain repre-

sentations for compression artifacts reduction. In Proceed-

ings of the European Conference on Computer Vision, pages

628–644. Springer, 2016. 3

2916



[27] Xiaoshuai Zhang, Wenhan Yang, Yueyu Hu, and Jiaying

Liu. Dmcnn: Dual-domain multi-scale convolutional neural

network for compression artifacts removal. In IEEE Inter-

national Conference on Image Processing, pages 390–394.

IEEE, 2018. 3

[28] Leonardo Galteri, Lorenzo Seidenari, Marco Bertini, and Al-

berto Del Bimbo. Deep generative adversarial compression

artifact removal. In Proceedings of the IEEE International

Conference on Computer Vision, pages 4826–4835, 2017. 3

[29] Leonardo Galteri, Lorenzo Seidenari, Marco Bertini, and

Alberto Del Bimbo. Deep universal generative adversarial

compression artifact removal. IEEE Transactions on Multi-

media, 21(8):2131–2145, 2019. 3

[30] Dong-Wook Kim, Jae-Ryun Chung, Jongho Kim, Dae Yeol

Lee, Se Yoon Jeong, and Seung-Won Jung. Constrained ad-

versarial loss for generative adversarial network-based faith-

ful image restoration. ETRI, 41(4):415–425, 2019. 3

[31] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances in

Neural Information Processing Systems, pages 2672–2680,

2014. 3

[32] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative ad-

versarial networks. arXiv preprint arXiv:1802.05957, 2018.

5

[33] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In Advances in Neural Information Pro-

cessing Systems, pages 5767–5777, 2017. 5

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 5

[35] Gregory K Wallace. The jpeg still picture compression

standard. IEEE transactions on consumer electronics,

38(1):xviii–xxxiv, 1992. 5

[36] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In Proceedings of the IEEE International Con-

ference on Computer Vision, volume 2, pages 416–423, July

2001. 6, 8

[37] Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha

Arnoud, and Vinay Shet. Multi-digit number recognition

from street view imagery using deep convolutional neural

networks. arXiv preprint arXiv:1312.6082, 2013. 7

[38] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Mak-

ing a “completely blind” image quality analyzer. IEEE Sig-

nal Processing Letters, 20(3):209–212, 2012. 7

[39] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2018. 7

[40] HR Sheikh. Live image quality assessment database release

2. http://live. ece. utexas. edu/research/quality, 2005. 8

2917


