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Abstract

We propose a novel joint lossy image and residual

compression framework for learning ℓ∞-constrained near-

lossless image compression. Specifically, we obtain a lossy

reconstruction of the raw image through lossy image com-

pression and uniformly quantize the corresponding resid-

ual to satisfy a given tight ℓ∞ error bound. Suppose that

the error bound is zero, i.e., lossless image compression,

we formulate the joint optimization problem of compress-

ing both the lossy image and the original residual in terms

of variational auto-encoders and solve it with end-to-end

training. To achieve scalable compression with the error

bound larger than zero, we derive the probability model

of the quantized residual by quantizing the learned prob-

ability model of the original residual, instead of training

multiple networks. We further correct the bias of the de-

rived probability model caused by the context mismatch be-

tween training and inference. Finally, the quantized resid-

ual is encoded according to the bias-corrected probability

model and is concatenated with the bitstream of the com-

pressed lossy image. Experimental results demonstrate that

our near-lossless codec achieves the state-of-the-art per-

formance for lossless and near-lossless image compression,

and achieves competitive PSNR while much smaller ℓ∞ er-

ror compared with lossy image codecs at high bit rates.

1. Introduction

Image compression is a ubiquitous technique in com-

puter vision. For certain applications with stringent de-

mands on image fidelity, such as medical imaging or image

archiving, the most reliable choice is lossless image com-

pression. However, the compression ratio of lossless com-

pression is upper-bounded by Shannon’s source coding the-

orem [36], and is typically between 2:1 and 3:1 for practical

lossless image codecs [50, 47, 37, 14, 5, 38]. To improve

the compression performance while keeping the reliability
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of the decoded images, ℓ∞-constrained near-lossless image

compression is developed [6, 15, 2, 47, 51] and standardized

in traditional codecs, e.g., JPEG-LS [47] and CALIC [51].

Different from lossy image compression with Peak Signal-

to-Noise Ratio (PSNR) or Multi-Scale Structural SIMilar-

ity index (MS-SSIM) [45, 46] distortion measures, ℓ∞-

constrained near-lossless image compression requires the

maximum reconstruction error of each pixel to be no larger

than a given tight numerical bound. Lossless image com-

pression is a special case of near-lossless image compres-

sion, when the tight error bound is zero.

With the fast development of deep neural networks

(DNNs), learning-based lossy image compression [40, 3,

39, 41, 34, 24, 4, 31, 27, 22, 8, 7, 23, 25, 29] has achieved

tremendous progress over the last four years. Most re-

cent methods for lossy image compression adopt variational

auto-encoder (VAE) architecture [17, 18] based on trans-

form coding [11], where the rate is modeled by the entropy

of quantized latent variables and the reconstruction distor-

tion is measured by PSNR or MS-SSIM. Through end-to-

end rate-distortion optimization, the state-of-the-art meth-

ods, such as [7], can achieve comparable performance with

the lastest compression standard Versatile Video Coding

(VVC) [32]. However, the above transform coding scheme

cannot be directly employed on near-lossless image com-

pression, because it is difficult for DNN-based transforms to

satisfy a tight bound on the maximum reconstruction error

of each pixel, even without quantization. Invertible trans-

forms, such as integer discrete flow [13] or wavelet-like

transform [25], are possible solutions to lossless compres-

sion but not to general near-lossless compression.

In this paper, we propose a new joint lossy image and

residual compression framework for learning near-lossless

image compression, inspired by the traditional “lossy plus

residual” coding scheme [10, 26, 2]. Specifically, we obtain

a lossy reconstruction of the raw image through lossy im-

age compression and uniformly quantize the corresponding

residual to satisfy the given ℓ∞ error bound τ . Suppose that

the error bound τ is zero, i.e., lossless image compression,

we formulate the joint optimization problem of compress-
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ing both the lossy image and the original residual in terms of

VAEs [17, 18], and solve it with end-to-end training. Note

that our VAE model is novel, different from transform cod-

ing based VAEs [3, 39, 4] for simply lossy image compres-

sion or bits-back coding based VAEs [42, 19] for lossless

image compression.

To achieve scalable near-lossless compression with error

bound τ > 0, we derive the probability model of the quan-

tized residual by quantizing the learned probability model

of the original residual at τ = 0, instead of training mul-

tiple networks. Because residual quantization leads to the

context mismatch between training and inference, we fur-

ther propose a bias correction scheme to correct the bias of

the derived probability model. An arithmetic coder [48] is

adopted to encode the quantized residual according to the

bias-corrected probability model. Finally, the near-lossless

compressed image is stored including the bitstreams of the

encoded lossy image and the quantized residual.

Our main contributions are summarized as follows:

• We propose a joint lossy image and residual compression

framework to realize learning-based lossless and near-

lossless image compression. The framework is inter-

preted as a VAE model and can be end-to-end optimized.

• We realize scalable compression by deriving the proba-

bility model of the quantized residual from the learned

probability model of the original residual, instead of

training multiple networks. A bias correction scheme fur-

ther improves the compression performance.

• Our codec achieves the state-of-the-art performance

for lossless and near-lossless image compression, and

achieves competitive PSNR while much smaller ℓ∞ er-

ror compared with lossy image codecs at high bit rates.

2. Related Work

Learning-based Lossy Image Compression. Early

learning-based methods [40, 41] for lossy image compres-

sion are based on recurrent neural networks (RNNs). Fol-

lowing [3, 39], most recent learned methods [34, 24, 4, 31,

27, 22, 8, 7, 23, 25, 29] adopt convolutional neural networks

(CNNs) and can be interpreted as VAEs [17, 18] based on

transform coding [11]. In our joint lossy image and residual

compression framework, we take advantage of the advanced

transform (network structures), quantization and entropy

coding techniques in the existing learning-based methods

for lossy image compression.

Learning-based Lossless Image Compression. Given

the strong connections between lossless compression and

unsupervised learning, auto-aggressive models [33, 43, 35],

flow models [13], bits-back coding based VAEs [42, 19] and

other specific models [28, 30, 25], are introduced to approx-

imate the true distribution of raw images for entropy cod-

ing. Previous work [30] uses traditional BPG lossy image

codec [5] to compress raw images and proposes a CNN to

further compress residuals, which is a special case of our

framework. Beyond [30], our lossy image compressor and

residual compressor are jointly optimized through end-to-

end training and are interpretable as a VAE model.

Near-lossless Image Compression. Basically, previ-

ous methods for near-lossless image compression can be

divided into three categories: 1) pre-quantization: adjust-

ing raw pixel values to the ℓ∞ error bound, and then com-

pressing the pre-processed images with lossless image com-

pression, e.g., near-lossless WebP [14]; 2) predictive cod-

ing: predicting subsequent pixels based on previously en-

coded pixels, then quantizing predication residuals to sat-

isfy the ℓ∞ error bound, and finally compressing the quan-

tized residuals, e.g., [6, 15], near-lossless JPEG-LS [47]

and near-lossless CALIC [51]; 3) lossy plus residual cod-

ing: similar to 2), but replacing predictive coder with lossy

image coder, and both the lossy image and the quantized

residual are encoded, e.g., in [2].

In this paper, we propose a joint lossy image and residual

compression framework for learning-based near-lossless

image compression, inspired by lossy plus residual cod-

ing. To the best of our knowledge, we propose the first

deep-learning-based near-lossless image codec. Recently,

CNN-based soft-decoding methods [52, 53] are proposed

to improve the reconstruction performance of near-lossless

CALIC [51]. However, these methods should belong to im-

age reconstruction rather than image compression.

3. Scalable Near-lossless Image Compression

3.1. Overview of Compression Framework

Given a tight ℓ∞ bound τ ∈ {0, 1, 2, . . .}, near-lossless

codecs compress a raw image satisfying the following dis-

tortion measure:

Dnll(x, x̂) = ‖x− x̂‖∞ = max
i,c

|xi,c − x̂i,c| ≤ τ (1)

where x and x̂ are a raw image and its near-lossless recon-

structed counterpart. xi,c and x̂i,c are the pixels of x and x̂,

respectively. i denotes the i-th spatial position in 2D raster-

scan order, and c denotes the c-th channel.

In order to realize the ℓ∞ error bound (1), we propose

a near-lossless image compression framework by integrat-

ing lossy image compression and residual compression. We

first obtain a lossy reconstruction x̃ of the raw image x

through lossy image compression. Lossy image compres-

sion methods, such as traditional [44, 37, 14, 5] or learned

methods [24, 4, 31, 27, 22, 8, 7, 23, 25], can achieve high

PSNR results at relatively low bit rates, but it is difficult for

these methods to ensure a tight error bound τ of each pixel

in x̃. We then compute the residual r = x− x̃ and suppose

that r is quantized to r̂. Let x̂ = x̃ + r̂, the reconstruction

error x− x̂ is equivalent to the quantization error r− r̂ of r.
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Thus, we adopt a uniform residual quantizer whose bin size

is 2τ + 1 and quantized value is [47, 51]:

r̂i,c = sgn(ri,c)(2τ + 1)⌊(|ri,c|+ τ)/(2τ + 1)⌋ (2)

where sgn(·) denotes the sign function. ri,c and r̂i,c are the

elements of r and r̂, respectively. With (2), we now have

|ri,c − r̂i,c| ≤ τ for each r̂i,c in r̂, satisfying the tight error

bound (1). Finally, we encode r̂ and concatenate it with the

compressed x̃, and send them to the decoder.

To compress both the lossy image x̃ and the quantized

residual r̂ effectively leads to a challenging joint optimiza-

tion problem. In the following subsections, we first propose

an end-to-end trainable VAE model [17, 18] to solve the

joint optimization problem with τ = 0. Then, we propose a

scalable compression scheme with bias correction for τ > 0
based on the learned VAE model.

3.2. Joint Lossy Image & Residual Compression

Before addressing the joint compression of the lossy im-

age x̃ and the quantized residual r̂ with variable τ , we first

solve the special case of near-lossless image compression

with τ = 0, i.e., lossless image compression.

Problem Formulation. Assuming that raw images are

sampled from an unknown probability distribution p(x),
the compression performance of lossless image compres-

sion depends on how well we can approximate p(x) with

an underlying model pθ(x). We adopt the latent vari-

able model which is formulated by a marginal distribution

pθ(x) =
∫
pθ(x,y)dy. y is an unobserved latent variable

and θ denote the parameters of this model.

Since directly learning the marginal distribution pθ(x) is

typically intractable, one alternative way is to optimize the

evidence lower bound (ELBO) via VAEs [17, 18]. By intro-

ducing an inference model qφ(y|x) to approximate the pos-

terior pθ(y|x), we can rewrite the logarithm of the marginal

likelihood pθ(x) as:

log pθ(x) = Eqφ(y|x) log
pθ(x,y)

qφ(y|x)
︸ ︷︷ ︸

ELBO

+Eqφ(y|x) log
qφ(y|x)

pθ(y|x)
︸ ︷︷ ︸

Dkl(qφ(y|x)||pθ(y|x))

(3)

where Dkl(·||·) is the Kullback-Leibler (KL) divergence.

φ denote the parameters of the inference model qφ(y|x).
Since Dkl(qφ(y|x)||pθ(y|x)) ≥ 0 and log pθ(x) ≤ 0,

ELBO is the lower bound of log pθ(x).
From (3), we can minimize the expectation of neg-

ative ELBO as a proxy for the expected codelength

Ep(x)[− log pθ(x)]. In our compression framework, we first

adopt lossy image compression based on transform coding

[11], and the expectation of negative ELBO can be refor-

mulated as follows:

Ep(x)Eqφ(ŷ|x) [− log pθ(x|ŷ)− log pθ(ŷ)] (4)

where ŷ is quantized from continuous y and y is trans-

formed from x. Like [4], we relax the quantization of y

by adding noise from U(− 1
2 ,

1
2 ), and assume qφ(ŷ|x) =

∏

i,c U(yi,c−
1
2 , yi,c+

1
2 ). Thus, log qφ(ŷ|x) = 0 is dropped

from (4). For simply lossy image compression, such as

[4, 31, 8, 7], the first and second terms of (4) are considered

as the distortion loss and the rate loss, respectively. Only ŷ

needs to be encoded.

Beyond lossy image compression, we further take resid-

ual compression into consideration. For each x and all

(x̃, r) pairs satisfying x̃ + r = x, we have pθ(x|ŷ) =
∑

x̃+r=x
pθ(x̃, r|ŷ) ≥ pθ(x̃, r|ŷ). Hence, we substitute

pθ(x̃, r|ŷ) for pθ(x|ŷ), leading to the upper bound of (4).

Let pθ(x̃, r|ŷ) = pθ(x̃|ŷ) · pθ(r|x̃, ŷ), we have:

Ep(x)Eqφ(ŷ|x)




−

✘
✘

✘
✘
✘✘✿

0
log pθ(x̃|ŷ)− log pθ(r|x̃, ŷ)

︸ ︷︷ ︸

Rr

− log pθ(ŷ)
︸ ︷︷ ︸

Rŷ






(5)

The lossy reconstruction x̃ is computed by the inverse trans-

form of ŷ and quantization. As the quantization is re-

laxed by adding uniform noise from U(− 1
2 ,

1
2 ), we have

log pθ(x̃|ŷ) = 0. The second term Rr and the third term

Rŷ of (5) are the rates of encoding r and ŷ, respectively.

Notice that no distortion loss of lossy image compression

is specified in (5). Therefore, we can embed arbitrary lossy

image compressors and optimize (5) to achieve lossless im-

age compression. A special case is the previous lossless

image compression method [30], in which the BPG lossy

image compressor [5] with a learned quantization parameter

classifier optimizes − log pθ(ŷ) and a CNN-based residual

compressor optimizes − log pθ(r|x̃).
Network Design and Optimization. To realize (5), we

propose our network architecture in Fig. 1(a). For lossy

image compression, we employ the hyper-prior model pro-

posed in [4], where side information ẑ is extracted to model

the distribution of ŷ. We employ the residual and attention

blocks similar to [7, 12] in the encoder and decoder. De-

tailed structure of the lossy image compressor is described

in the supplementary material. Rŷ is thus extended by

Rŷ,ẑ = Ep(x)Eqφ(ŷ,ẑ|x) [− log pθ(ŷ|ẑ)− log pθ(ẑ)] (6)

where Rŷ,ẑ is the cost of encoding both ŷ and ẑ.

Denote by u = gu(ŷ), where the feature u is extracted

from ŷ by gu(·). Denote by x̃ = gx̃(ŷ), where the lossy

reconstruction x̃ is inversely transformed from ŷ by gx̃(·).
gu and gx̃ share the decoder, and only the last convolutional

layers are different, as shown in Fig. 1(a). We interpret u as

the feature of the residual r given x̃ and ŷ (u shares the

same height and width with r and has 64 channels). As

r = x−x̃, we can compute r and further consider the causal

context Cr of r during encoding. Rr is thus extended by

Rr = Ep(x)Eqφ(ŷ,ẑ|x) [− log pθ(r|u, Cr)] (7)
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Figure 1. (a) Overview of network architecture. (b) Probability inference of the quantized residual r̂ without bias correction. (c) Probability

inference of the quantized residual r̂ with bias correction. (d) Legend with descriptions for notations in (a)-(c).

(a) (b)

Figure 2. Entropy parameter estimation sub-network. Given u

and Cr, (a) estimates parameters of discrete logistic mixture like-

lihoods corresponding to entropy model in Fig. 1(a). (b) is the

detailed structure of estimator in (a). All 1× 1 convolutional lay-

ers except the last layer have 128 channels. The last convolutional

layer has 3 ·K channels.

where the causal context Cri ∈ Cr is shared by ri,c of all

channels. Cri is extracted from r<i,c by a 5 × 5 masked

convolutional layer [31] with 64 channels. r<i,c denote the

residuals encoded before ri,c. For RGB images with three

channels, we have

pθ(r|u, Cr) =
∏

i

pθ(ri,1, ri,2, ri,3|ui, Cri) (8)

We further model the probability mass function (PMF) of

the residual r with discrete logistic mixture likelihood [35,

28, 30]. We use a channel autoregression over ri,1, ri,2, ri,3

and reformulate pθ(ri,1, ri,2, ri,3|ui, Cri) as

pθ(ri,1, ri,2, ri,3|ui, Cri) = pθ(ri,1|ui, Cri)· (9)

pθ(ri,2|ri,1, ui, Cri) · pθ(ri,3|ri,1, ri,2, ui, Cri)

As shown in Fig. 2, we introduce a sub-network to estimate

entropy parameters, including mixture weights πk
i,c, means

µk
i,c, variances σk

i,c and mixture coefficients βi,t. We choose

a mixture of K = 5 logistic distributions. k denotes the

index of the k-th logistic distribution. t denotes the channel

index of β. The channel autoregression over ri,1, ri,2, ri,3
is implemented by updating the means using:

µ̃k
i,1 = µk

i,1, µ̃k
i,2 = µk

i,2 + βi,1 · ri,1,

µ̃k
i,3 = µk

i,3 + βi,2 · ri,1 + βi,3 · ri,2 (10)

With πk
i,c, µ̃k

i,c and σk
i,c, we have

pθ(ri,c|ri,<c, ui, Cri) ∼

K∑

k=1

πk
i,c logistic(µ̃

k
i,c, σ

k
i,c) (11)

where logistic(·) is the logistic distribution. For discrete

ri,c, we evaluate pθ(ri,c|ri,<c, ui, Cri) as [35, 28, 30]:

K∑

k=1

πk
i,c

[

S

(

r+i,c − µ̃k
i,c

σk
i,c

)

− S

(

r−i,c − µ̃k
i,c

σk
i,c

)]

(12)

where S(·) denotes the sigmoid function. r+i,c = ri,c + 0.5

and r−i,c = ri,c − 0.5.
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Figure 3. PMF quantization corresponding to residual quantization

(2) with τ = 1. Each red number is the value of the quantized

residual r̂i,c. The probability of each quantized value is the sum

of the probabilities of the values in the same bin.

Besides rate terms Rŷ,ẑ and Rr, we add a distortion term

Dls(x, x̃) = Ep(x)Ei,c(xi,c − x̃i,c)
2 to minimize the mean

square error (MSE) between raw image x and lossy recon-

struction x̃. As discussed in [4], minimizing MSE loss is

equivalent to learning a lossy image compressor that fits

residual r to a zero-mean factorized Gaussian distribution.

However, the discrepancy between the real distribution of r

and the Gaussian distribution could be large. Thus, a more

sophisticated entropy model is proposed to encode r. The

full loss function for learning near-lossless image compres-

sion with τ = 0, i.e., lossless image compression, is

L(θ,φ) = Rŷ,ẑ +Rr + λ ·Dls (13)

where λ controls the “rate-distortion” trade-off. When λ =
0, x̃ becomes a latent variable without any constraints. It

leads to the best lossless compression performance but is

not suitable for our near-lossless image compression with

τ > 0. We choose λ = 0.03 empirically in our codec.

Experiments with different λ’s are conducted in Sec. 4.4.

3.3. Probability Inference of Quantized Residuals

We next propose a scheme to achieve scalable near-

lossless image compression with τ > 0. For variable ℓ∞
error bound τ , we keep the lossy reconstruction x̃ fixed and

quantize the residual r to r̂ by (2). Instead of training mul-

tiple networks for variably quantized r̂, we derive the prob-

ability model of r̂ from the learned probability model of r

at τ = 0. The resulting cost of encoding r̂, denoted by Rτ
r̂

,

is reduced significantly with the increase of τ .

Given τ and the learned PMF pθ(ri,c|ri,<c, ui, Cri),
p̂θ(r̂i,c|ri,<c, ui, Cri) of quantized r̂i,c can be computed by

the following PMF quantization:

p̂θ(r̂i,c|ri,<c, ui, Cri) =

r̂i,c+τ
∑

v=r̂i,c−τ

pθ(v|ri,<c, ui, Cri) (14)

An illustrative example is shown in Fig. 3. Together with

(8) and (9), we can derive the probability model p̂θ(r̂|u, Cr)
of r̂, which is ideal given the learned pθ(r|u, Cr) of r.

Figure 4. Conditional convolutional layer for bias correction. Dif-

ferent outputs can be produced conditioned on τ ∈ {1, 2, . . . , 5}.

However, encoding r̂ with p̂θ(r̂|u, Cr) results in unde-

codable bitstreams, since the original residual r is unknown

to the decoder. p̂θ(r̂i,c|ri,<c, ui, Cri) cannot be evaluated

without ri,<c and causal context Cri . Instead, we evalu-

ate PMF using the quantized residual r̂. Because of the

mismatch between training (with r) and inference (with r̂)

phases, it leads to a biased PMF pθ(ri,c|r̂i,<c, ui, Cr̂i) of

ri,c. We then evaluate p̂θ(r̂i,c|r̂i,<c, ui, Cr̂i) with (14) and

derive p̂θ(r̂|u, Cr̂) for the encoding of r̂. The above proba-

bility inference scheme is sketched in Fig. 1(b).

3.4. Bias Correction

Because of the potential discrepancy between the ideal

p̂θ(r̂|u, Cr) and the biased p̂θ(r̂|u, Cr̂), encoding r̂ with

p̂θ(r̂|u, Cr̂) degrades the compression performance. We

further propose a bias correction scheme to close the gap

between the ideal p̂θ(r̂|u, Cr) and the biased p̂θ(r̂|u, Cr̂),
while the resulting bitstreams are still decodable.

The components of the proposed bias corrector are illus-

trated in Fig. 1(a). The masked convolutional layer in the

bias corrector is shared with that in the residual compres-

sor. The conditional entropy model has the same structure

as the entropy model illustrated in Fig. 2, but replaces the

convolutional layers with the conditional convolutional lay-

ers [43, 8] illustrated in Fig. 4.

During training, we generate random τ ∈ {1, 2, . . . , N}
and quantize r to r̂ with (2). We choose N = 5 in this pa-

per. Given u and the extracted context Cr̂, we use the con-

ditional entropy model to estimate − log pϕ(r|u, Cr̂) con-

ditioned on different τ , and minimize

L(ϕ) = Ep(x)Eqφ(ŷ,ẑ|x)

[

log
pθ(r|u, Cr))

pϕ(r|u, Cr̂)

]

(15)

where ϕ denote the parameters of the conditional entropy

model. − log pθ(r|u, Cr) is estimated by the entropy model

in the residual compressor. L(ϕ) can be considered as
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an approximate KL-divergence or relative entropy [9] be-

tween pθ(r|u, Cr) and pϕ(r|u, Cr̂). Because the entropy

model receives the context Cr extracted from the original

residual r and is only trained with τ = 0, pθ(r|u, Cr)
approximates the true distribution p(r|x̃, ŷ) better than

pϕ(r|u, Cr̂). Thus, − log pθ(r|u, Cr) is the lower bound

of − log pϕ(r|u, Cr̂) on average.

The probability inference scheme with bias correction

is sketched in Fig. 1(c). For τ = 0, we choose the en-

tropy model to estimate pθ(r|u, Cr) to encode r. For

τ ∈ {1, 2, . . . , 5}, we choose the conditional entropy

model to estimate pϕ(r|u, Cr̂) and derive p̂ϕ(r̂|u, Cr̂) with

(14) to encode r̂. As p̂ϕ(r̂|u, Cr̂) approximates the ideal

p̂θ(r̂|u, Cr) better than the biased p̂θ(r̂|u, Cr̂), the com-

pression performance can be improved. Since evaluating

p̂ϕ(r̂|u, Cr̂) is independent of r, the resulting bitstreams

are decodable. We analyze the efficacy of the proposed bias

correction scheme in Sec. 4.4.

Training Strategy. Bias corrector is trained together

with the lossy image compressor and the residual compres-

sor, but minimizing (15) only updates the parameters of

the conditional entropy model as shown in Fig. 1(a). The

masked convolutional layer is shared with that in the resid-

ual compressor, thus can be updated by minimizing (13).

This leads to three advantages: 1) achieving the target con-

ditional entropy model; 2) circumventing the relaxation of

residual quantization; 3) avoiding degrading the estimation

of pθ(r|u, Cr) caused by training with mixed τ .

4. Experiments

4.1. Experimental Setup

Training. We train on DIV2K high resolution train-

ing dataset [1] consisting of 800 2K resolution color im-

ages. Although DIV2K is originally built for image super-

resolution task, it contains large numbers of high-quality

images that is suitable for training our near-lossless codec.

The images are first cropped into 27958 samples with the

size of 256 × 256. To augment training data and prevent

overfitting on noise, we use bicubic method to downscale

each sample with a random factor selected from [0.6, 1.0]
and further randomly crop the downscaled sample to 128×
128 during training. Our near-lossless codec is optimized

for 400 epochs using Adam [16] with minibatches of size

16. The learning rate is set to 1 × 10−4 for the first 350

epochs and decays to 1×10−5 for the remaining 50 epochs.

Evaluation. We evaluate our near-lossless codec on four

datasets: 1) Kodak dataset [20] consists of 24 uncompressed

768 × 512 color images. 2) DIV2K high resolution val-

idation dataset [1] consists of 100 2K resolution color im-

ages. 3) CLIC professional validation dataset (CLIC.p) [49]

consists of 41 color images taken by professional photogra-

phers. 4) CLIC mobile validation dataset (CLIC.m) [49]

Codec Kodak DIV2K CLIC.p CLIC.m

PNG 4.35 4.23 3.93 3.93

JPEG-LS 3.16 2.99 2.82 2.53

CALIC 3.18 3.07 2.87 2.59

JPEG2000 3.19 3.12 2.93 2.71

WebP 3.18 3.11 2.90 2.73

BPG 3.38 3.28 3.08 2.84

FLIF 2.90 2.91 2.72 2.48

L3C − 3.09 2.94 2.64

RC − 3.08 2.93 2.54

Ours 3.04 2.81 2.66 2.51

Table 1. Compression performance (bpsp) of the proposed near-

lossless image codec with τ = 0, compared to other lossless image

codecs on Kodak, DIV2K, CLIC.p and CLIC.m datasets.

Codec τ∗ Kodak DIV2K CLIC.p CLIC.m

JPEG-

LS

1 2.90 2.62 2.34 2.44

2 2.30 2.07 1.80 1.89

4 1.68 1.53 1.28 1.35

CALIC

1 2.75 2.45 2.18 2.28

2 2.14 1.88 1.62 1.70

4 1.51 1.31 1.07 1.13

WebP

nll

1 2.41 2.45 2.26 2.11

2 2.01 2.04 1.89 1.85

4 1.82 1.83 1.73 1.75

Ours

w/ bc

1 1.84 1.72 1.60 1.53

2 1.38 1.29 1.15 1.10

4 0.92 0.89 0.74 0.72

Table 2. Compression performance (bpsp) of the proposed near-

lossless image codec (w/ bias correction) with τ > 0, compared

to near-lossless JPEG-LS, near-lossless CALIC and near-lossless

WebP on Kodak, DIV2K, CLIC.p and CLIC.m datasets. ∗The er-

ror bounds of near-lossless WebP are powers of two.

consists of 61 color images taken using mobile phones. Im-

ages in CLIC.p and CLIC.m are typically 2K resolution but

some of them are of small sizes.

4.2. Performance Evaluation at τ = 0

We first evaluate the compression performance of the

proposed near-lossless image codec at τ = 0, measured

by bits per subpixel (bpsp). Each RGB pixel has 3 sub-

pixels. We compare with seven traditional lossless image

codecs, i.e., PNG, JPEG-LS [47], CALIC [50], JPEG2000

[37], WebP [14], BPG [5], FLIF [38], and two the state-of-

the-art learned lossless image codecs, i.e., L3C [28] and RC

[30]. Unlike ours, L3C [28] and RC [30] are trained on a

much larger dataset (300,000 images from the Open Images

dataset [21]). We report the compression performance of

L3C [28] and RC [30] published by their authors.

As reported in Table 1, our codec achieves the best per-

formance on DIV2K validation dataset, which shares the
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Figure 5. Rate-distortion curves of the proposed near-lossless im-

age codec (w/ bias correction) with τ > 0 compared to other near-

lossless image codecs and lossy image codecs on Kodak dataset.

(a) bpsp-ℓ∞ error curves. (b) bpsp-PSNR curves.
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Figure 6. Bit rates of each image compressed by the proposed near-

lossless image codec with τ = {0, 1, . . . , 5} on Kodak dataset.

same domain with the training dataset. Our codec achieves

the best performance on CLIC.p, and the second best per-

formance on Kodak and CLIC.m, only secondary to FLIF.

The results demonstrate that the jointly learned lossy im-

age compressor and residual compressor with τ = 0 can

effectively model pθ(x) and can be generalized to various

domains of natural images. This provides a solid foundation

for the near-lossless image compression with τ > 0.

4.3. Performance Evaluation at τ > 0

We next evaluate the compression performance of the

proposed near-lossless image codec (with bias correction)

at τ > 0. We compare with near-lossless JPEG-LS [47],

near-lossless CALIC [51] and near-lossless WebP (WebP

nll) [14]. Besides, we compare with six traditional lossy

image codecs, i.e., JPEG [44], JPEG2000 [37], WebP [14],

BPG [5], lossy FLIF [38] and VVC [32]. Recent learned

lossy image codecs published online are trained at relatively

low bit rates (≤ 2 bpp ≈ 0.67 bpsp on Kodak). We re-

implement and train two recent learned lossy image codecs,

i.e., Ballé-hyper [4] and Minnen-joint [31], at high bit rates

(≥ 0.8 bpsp on Kodak) for comparison.
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Figure 7. Compression performance of the proposed near-lossless

image codec without bias correction, with bias correction and with

the ideal p̂θ(r̂|u, Cr) on Kodak dataset.

Near-lossless WebP simply adjusts pixel values to the

ℓ∞ error bound τ and compresses the pre-processed images

losslessly. Near-lossless JPEG-LS and CALIC adopt pre-

dictive coding schemes, and encode the prediction residuals

quantized by (2). The predictors and the probability mod-

els used in near-lossless JPEG-LS and CALIC are hand-

crafted, which are not effective enough. More effectively,

our near-lossless codec is based on jointly trained lossy im-

age compressor and residual compressor. We employ (2) to

realize the error bound τ and the probability models of the

quantized residuals can be derived from the learned residual

compressor with τ = 0. Therefore, our codec outperforms

near-lossless JPEG-LS, CALIC and WebP by a wide mar-

gin, as shown in Table 2.

The rate-distortion performance of all codecs on Kodak

dataset is reported in Fig. 5. In terms of ℓ∞ error defined

in (1), our codec consistently yields the best results among

all codecs, as shown in Fig. 5(a). Besides ℓ∞ error, we also

compare PSNR of all codecs, as shown in Fig. 5(b). Our

codec is better than or comparable with JPEG, near-lossless

JPEG-LS, near-lossless CALIC, WebP, near-lossless WebP,

BPG (4:2:0) and lossy FLIF. Our codec is surpassed by

JPEG2000, BPG (4:4:4), VVC, Ballé-hyper and Minnen-

joint. Overall, our codec achieves competitive performance

at bit rates higher than 0.8 bpsp, although PSNR is not our

optimization objective.

4.4. Ablation Study

Scalability. In Fig. 6, we show the bit rates of each im-

age compressed by the proposed near-lossless image codec

with τ = {0, 1, . . . , 5} on Kodak dataset. Rŷ,ẑ, on aver-

age, accounts for about 18% of Rŷ,ẑ + Rr at τ = 0. With

the increase of τ , the bit rate Rτ
r̂

of the quantized residual r̂

is significantly reduced. Especially the τ = 1 mode saves

about 40% bit rates compared with the τ = 0 lossless image

compression mode.

Bias Correction. In Fig. 7, we demonstrate the efficacy

of bias correction at τ > 0. Because of the discrepancy

between the ideal p̂θ(r̂|u, Cr) and the biased p̂θ(r̂|u, Cr̂),
encoding r̂ with p̂θ(r̂|u, Cr̂) (without bias correction) de-

grades the compression performance. Instead, we encode r̂
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(a) Raw Image (b) lossy x̃ (λ = 0) (c) lossy x̃ (λ = 0.03) (d) nll x̂ (λ, τ = 0, 5) (e) nll x̂ (λ, τ = 0.03, 5)

(f) Raw Image (g) lossy x̃ (λ = 0.01) (h) lossy x̃ (λ = 0.03) (i) nll x̂ (λ, τ = 0.01, 5) (j) nll x̂ (λ, τ = 0.03, 5)

Figure 8. Visualizing the effects of different λ’s on the lossy reconstruction x̃ and the near-lossless (nll) reconstruction x̂. The images are

best viewed in full size on screen.

λ Total Rate Rŷ,ẑ Rr x̃ (PSNR)

0 2.93 0.05 2.88 24.09

0.01 3.00 0.42 2.58 37.55

0.03 3.04 0.55 2.49 39.29

0.05 3.06 0.62 2.44 39.91

Table 3. The effects of different λ’s on the learned near-lossless

image codec with τ = 0 on Kodak dataset.

with p̂ϕ(r̂|u, Cr̂) (with bias correction) resulting in lower

bit rates. With the increase of τ , the PMF of r is quantized

by larger bins and becomes coarser. Thus, the compression

performance with bias correction approaches the “ideal”.

However, the gap between the compression performance

without bias correction and the “ideal” remains large, as the

discrepancy between p̂θ(r̂|u, Cr) and p̂θ(r̂|u, Cr̂) is also

magnified with the increasing τ . Note that the compression

performance of our codec without bias correction is also

better than near-lossless JPEG-LS, CALIC and WebP.

Discussion on different λ’s. The λ in (13) adapts the

rate of losslessly encoding the raw image x and the distor-

tion of the lossy reconstruction x̃. In Table 3, we evaluate

the effects of different λ ∈ {0, 0.01, 0.03, 0.05} on Kodak

dataset. With the increase of λ, the PSNR of x̃ is improved

but the bpsp of encoding x also becomes higher. If we

simply do lossless image compression (τ = 0), we should

choose λ = 0. The x̃ is learned by the network without

any hand-crafted constraints, leading to the best compres-

sion performance.

However, λ = 0 is not suitable for our near-lossless

codec with τ > 0. As the average PSNR of the x̃ is 24.09

dB, the magnitude of r = x − x̃ is large. To quantize such

large residuals with large τ results in blocking artifacts in

the near-lossless reconstruction x̂. As shown in Fig. 8(b), x̃

with λ = 0 is blurry. If τ = 5, the quantization bin size is

large, i.e., 2τ+1 = 11, resulting in blocking artifacts in x̂ in

Fig. 8(d). For λ = 0.01, we also observe small artifacts in

x̂ caused by quantization with large τ , as shown in Fig. 8(i).

In our codec, we choose λ = 0.03, which is the best trade-

off between compression performance and visual quality in

the experiments. As shown in Fig. 8(e) and Fig. 8(j), we

observe no artifacts in x̂ compared with λ = 0, 0.01.

5. Conclusion

In this paper, we propose a joint lossy image and residual

compression framework to learn a scalable ℓ∞-constrained

near-lossless image codec. With our codec, a raw image

is first compressed by the lossy image compressor, and the

corresponding residual is then quantized to satisfy variable

ℓ∞ error bounds. To compress the variably quantized resid-

uals, the probability models of the quantized residuals are

derived from the learned probability model of the original

residual, which is realized by the residual compressor in

conjunction with the bias corrector. Experimental results

demonstrate the state-of-the-art performance of our near-

lossless image codec.

Acknowledgement

This work was supported by National Natural Science Founda-

tion of China under Grants 61922027, 61827804 and U20B2052,

National Key Research and Development Project under Grant

2019YFE0109600, China Postdoctoral Science Foundation under

Grant 2020M682826.

11953



References

[1] Eirikur Agustsson and Radu Timofte. NTIRE 2017 chal-

lenge on single image super-resolution: dataset and study. In

IEEE Conf. Comput. Vis. Pattern Recog. Worksh., July 2017.

6

[2] Rashid Ansari, Nasir D. Memon, and Ersan Ceran. Near-

lossless image compression techniques. Journal of Elec-

tronic Imaging, 7(3):486 – 494, 1998. 1, 2
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