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1Hong Kong University of Science and Technology 2École Polytechnique 3City University of Hong Kong

{xbaiad,zluoag,lzhouai,hchencf,llibb,zhuam,taicl}@cse.ust.hk hongbofu@cityu.edu.hk

Abstract

Removing outlier correspondences is one of the critical

steps for successful feature-based point cloud registration.

Despite the increasing popularity of introducing deep learn-

ing techniques in this field, spatial consistency, which is

essentially established by a Euclidean transformation be-

tween point clouds, has received almost no individual at-

tention in existing learning frameworks. In this paper, we

present PointDSC, a novel deep neural network that ex-

plicitly incorporates spatial consistency for pruning out-

lier correspondences. First, we propose a nonlocal fea-

ture aggregation module, weighted by both feature and spa-

tial coherence, for feature embedding of the input corre-

spondences. Second, we formulate a differentiable spectral

matching module, supervised by pairwise spatial compati-

bility, to estimate the inlier confidence of each correspon-

dence from the embedded features. With modest computa-

tion cost, our method outperforms the state-of-the-art hand-

crafted and learning-based outlier rejection approaches on

several real-world datasets by a significant margin. We also

show its wide applicability by combining PointDSC with

different 3D local descriptors. [code release]

1. Introduction

The state-of-the-art feature-based point cloud registra-

tion pipelines commonly start from local feature extraction

and matching, followed by an outlier rejection for robust

alignment. Although 3D local features [4, 39, 18, 27, 32]

have evolved rapidly, correspondences produced by feature

matching are still prone to outliers, especially when the

overlap of scene fragments is small. In this paper, we focus

on developing a robust outlier rejection method to mitigate

this issue.

Traditional outlier filtering strategies can be broadly

classified into two categories, namely the individual-based

and group-based [67]. The individual-based approaches,

such as ratio test [40] and reciprocal check [10], identify

inlier correspondences solely based on the descriptor simi-

larity, without considering their spatial coherence. In con-

Figure 1: Taking advantage of both the superiority of tradi-

tional (e.g. SM [36]) and learning methods (e.g. DGR [16]),

our approach integrates important geometric cues into deep

neural networks and efficiently identifies inlier correspon-

dences even under high outlier ratios.

trast, the group-based methods usually leverage the under-

lying 2D or 3D scene geometry and identify inlier cor-

respondences through the analysis of spatial consistency.

Specifically, in a 2D domain, the spatial consistency only

provides a weak relation between points and epipolar lines

[13, 9, 73]. Instead, in a 3D domain, the spatial consistency

is rigorously defined between every pair of points by rigid

transformations, serving as one of the most important geo-

metric properties that inlier correspondences should follow.

In this paper, we focus on leveraging the spatial consistency

in outlier rejection for robust 3D point cloud registration.

Spectral matching (SM) [36] is a well-known traditional

algorithm that heavily relies on 3D spatial consistency for

finding inlier correspondences. It starts with constructing a

compatibility graph using the length consistency, i.e., pre-

serving the distance between point pairs under rigid trans-

formations, then obtains an inlier set by finding the main

cluster of the graph through eigen analysis. However, this

algorithm has two main drawbacks. First, solely relying on

length consistency is intuitive but inadequate because it suf-

fers from the ambiguity problem [54] (Fig. 4a). Second, as

explained in [68, 67], spectral matching cannot effectively

handle the case of high outlier ratio (Fig. 1, left), where the

main inlier clusters become less dominant and thus are dif-

ficult to be identified through spectral analysis.

Recently, learning-based 3D outlier rejection methods,
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such as DGR [16] and 3DRegNet [48], formulate outlier

rejection as an inlier/outlier classification problem, where

the networks embed deep features from correspondence in-

put, and predict inlier probability of each correspondence

for outlier removal. For feature embedding, those meth-

ods solely rely on generic operators such as sparse con-

volution [17] and pointwise MLP [53] to capture the con-

textual information, while the essential 3D spatial relations

are omitted. Additionally, during outlier pruning, the ex-

isting methods classify each correspondence only individ-

ually, again overlooking the spatial compatibility between

inliers and may hinder the classification accuracy.

All the aforementioned outlier rejection methods are

either hand-crafted with spatial consistency adopted, or

learning-based without spatial consistency integrated. In

this paper, we aim to take the best from both line of meth-

ods, and propose PointDSC, a powerful two-stage deep neu-

ral network that explicitly leverages the spatial consistency

constraints during both feature embedding and outlier prun-

ing.

Specifically, given the point coordinates of input corre-

spondences, we first propose a spatial-consistency guided

nonlocal module for geometric feature embedding, which

captures the relations among different correspondences by

combining the length consistency with feature similarity to

obtain more representative features. Second, we formulate

a differentiable spectral matching module, and feed it with

not only the point coordinates, but also the embedded fea-

tures to alleviate the ambiguity problem. Finally, to bet-

ter handle the small overlap cases, we propose a seeding

mechanism, which first identifies a set of reliable corre-

spondences, then forms several different subsets to perform

the neural spectral matching multiple times. The best rigid

transformation is finally determined such that the geometric

consensus is maximized. To summarize, our main contribu-

tions are threefold:

1. We propose a spatial-consistency guided nonlocal (SC-

Nonlocal) module for feature embedding, which ex-

plicitly leverages the spatial consistency to weigh the

feature correlation and guide the neighborhood search.

2. We propose a differentiable neural spectral match-

ing (NSM) module based on traditional SM for outlier

removal, which goes beyond the simple length consis-

tency metric through deep geometric features.

3. Besides showing the superior performance over the

state-of-the-arts, our model also demonstrates strong

generalization ability from indoor to outdoor scenar-

ios, and wide applicability with different descriptors.

2. Related Work

Point cloud registration. Traditional point cloud regis-

tration algorithms (e.g., [8, 1, 47, 31, 44, 44]) have been

comprehensively reviewed in [52]. Recently, learning-

based algorithms have been proposed to replace the indi-

vidual components in the classical registration pipeline, in-

cluding keypoint detection [4, 38, 32] and feature descrip-

tion [21, 22, 23, 51, 4, 18, 27, 30, 2]. Besides, end-to-

end registration networks [3, 62, 63, 71] have been pro-

posed. However, their robustness and applicability in com-

plex scenes cannot always meet expectation, as observed

in [16], due to highly outlier-contaminated matches.

Traditional outlier rejection. RANSAC [24] and its vari-

ants [19, 5, 35, 37] are still the most popular outlier rejec-

tion methods. However, their major drawbacks are slow

convergence and low accuracy in cases with large outlier ra-

tio. Such problems become more obvious in 3D point cloud

registration since the description ability of 3D descriptors is

generally weaker than those in 2D domain [40, 6, 42, 41, 43]

due to the irregular density and the lack of useful tex-

ture [11]. Thus, geometric consistency, such as length con-

straint under rigid transformation, becomes important and

is commonly utilized by traditional outlier rejection algo-

rithms and analyzed through spectral techniques [36, 20],

voting schemes [26, 69, 57], maximum clique [50, 12, 59],

random walk [14], belief propagation [76] or game the-

ory [55]. Meanwhile, some algorithms based on BnB [11]

or SDP [35] are accurate but usually have high time com-

plexity. Besides, FGR [77] and TEASER [65, 66] are tol-

erant to outliers from robust cost functions such as Geman-

McClure function. A comprehensive review of traditional

3D outlier rejection methods can be found in [68, 67].

Learning-based outlier rejection. Learning-based out-

lier rejection methods are first introduced in the 2D image

matching task [46, 73, 74, 60], where outlier rejection is

formulated as an inlier/outlier classification problem. The

recent 3D outlier rejection methods DGR [16] and 3DReg-

Net [48] follow this idea, and use operators such as sparse

convolution [17] and pointwise MLP [53] to classify the pu-

tative correspondences. However, they both ignore the rigid

property of 3D Euclidean transformations that has been

widely shown to be powerful side information. In contrast,

our network explicitly incorporates the spatial consistency

between inlier correspondences, constrained by rigid trans-

formations, for pruning the outlier correspondences.

3. Methodology

In this work, we consider two sets of sparse keypoints

X ∈ R
|X|×3 and Y ∈ R

|Y|×3 from a pair of partially

overlapping 3D point clouds, with each keypoint having an

associated local descriptor. The input putative correspon-

dence set C can be generated by nearest neighbor search

using the local descriptors. Each correspondence ci ∈ C is

denoted as ci = (xi, yi) ∈ R
6, where xi ∈ X,yi ∈ Y

are the coordinates of a pair of 3D keypoints from the two

sets. Our objective is to find an inlier/outlier label for ci, be-
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Figure 2: Architecture of the proposed network PointDSC. It takes as input the coordinates of putative correspondences, and

outputs a rigid transformation and an inlier/outlier label for each correspondence. The Spatial Consistency Nonlocal (SC-

Nonlocal) module and the Neural Spectral Matching (NSM) module are two key components of our network, and perform

feature embedding and outlier pruning, respectively. The green lines and red lines are inliers and outliers, respectively. LS

represents least-squares fitting.

ing wi = 1 and 0, respectively, and recover an optimal 3D

rigid transformation R̂, t̂ between the two point sets. The

pipeline of our network PointDSC is shown in Fig. 2 and

can be summarized as follows:

1. We embed the input correspondences into high dimen-

sional geometric features using the SCNonlocal mod-

ule (Sec. 3.2).

2. We estimate the initial confidence vi of each corre-

spondence ci to select a limited number of highly con-

fident and well-distributed seeds (Sec. 3.3).

3. For each seed, we search for its k nearest neighbors in

the feature space and perform neural spectral match-

ing (NSM) to obtain its confidence of being an in-

lier. The confidence values are used to weigh the least-

squares fitting for computing a rigid transformation for

each seed (Sec. 3.4).

4. The best transformation matrix is selected from all the

hypotheses as the one that maximizes the number of

inlier correspondences (Sec. 3.5).

3.1. PointDSC vs. RANSAC

Here, we clarify the difference between PointDSC and

RANSAC to help understand the insights behind our algo-

rithm. Despite not being designed for improving classic

RANSAC, our PointDSC shares a hypothesize-and-verify

pipeline similar to RANSAC. In the sampling step, instead

of randomly sampling minimal subsets iteratively, we uti-

lize the learned embedding space to retrieve a pool of larger

correspondence subsets in one shot (Sec. 3.2 and Sec. 3.3).

The correspondences in such subsets have higher probabili-

ties of being inliers thanks to the highly confident seeds and

Figure 3: The spatial-consistency guided nonlocal layer. β

represents the spatial consistency matrix calculated using

Eq. 2 and F is the feature from the previous layer.

the discriminative embedding space. In the model fitting

step, our neural spectral matching module (Sec. 3.4) effec-

tively prunes the potential outliers in the retrieved subsets,

producing a correct model even when starting from a not-

all-inlier sample. In this way, PointDSC can tolerate large

outlier ratios and produce highly precise registration results,

without needing exhaustive iterations.

3.2. Geometric Feature Embedding

The first module of our network is the SCNonlocal mod-

ule, which receives the correspondences C as input and pro-

duces a geometric feature for each correspondence. Previ-

ous networks [16, 48] learn the feature embedding through

generic operators, ignoring the unique properties of 3D

rigid transformations. Instead, our SCNonlocal module ex-

plicitly utilizes the spatial consistency between inlier cor-

respondences to learn a discriminative embedding space,

where inlier correspondences are close to each other.
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As illustrated in Fig. 2, our SCNonlocal module has 12

blocks, each of which consists of a shared Perceptron layer,

a BatchNorm layer with ReLU, and the proposed nonlo-

cal layer. Fig. 3 illustrates this new nonlocal layer. Let

fi ∈ F be the intermediate feature representation for cor-

respondence ci. The design of our nonlocal layer for up-

dating the features draws inspiration from the well-known

nonlocal network [61], which captures the long-range de-

pendencies using nonlocal operators. Our contribution is to

introduce a novel spatial consistency term to complement

the feature similarity in nonlocal operators. Specifically, we

update the features using the following equation:

fi = fi + MLP(
∑|C|

j
softmaxj(αβ)g(fj)) , (1)

where g is a linear projection function. The feature similar-

ity term α is defined as the embedded dot-product similar-

ity [61]. The spatial consistency term β is defined based on

the length constraint of 3D rigid transformations, as illus-

trated in Fig. 4a (c1 and c2).

Specifically, we compute β by measuring the length dif-

ference between the line segments of point pairs in X and

its corresponding segments in Y:

βij = [1−
d2ij

σ2
d

]+, dij =
∣

∣ ‖xi − xj‖−‖yi − yj‖
∣

∣, (2)

where [·]+ is the max(·, 0) operation to ensure a non-

negative value of βij , and σd is a distance parameter (see

Sec. 4) to control the sensitivity to the length difference.

Correspondence pairs having the length difference larger

than σd are considered to be incompatible and get zero for

β. In contrast, βij gives a large value only if the two corre-

spondences ci and cj are spatially compatible, serving as a

reliable regulator to the feature similarity term.

Note that other forms of spatial consistency can also be

easily incorporated here. However, taking an angle-based

spatial consistency constraint as an example, the normals of

input keypoints might not always be available for outlier re-

jection and the normal estimation task is challenging on its

own especially for LiDAR point clouds [75]. Our SCNon-

local module produces for each correspondence ci a feature

representation fi, which will be used in both seed selection

and neural spectral matching module.

3.3. Seed Selection

As mentioned before, the traditional spectral matching

technique has difficulties in finding a dominant inlier clus-

ter in low overlapping cases, where it would fail to provide

a clear separation between inliers and outliers [70]. In such

cases, directly using the output from spectral matching in

weighted least-squares fitting [8] for transformation estima-

tion may lead to a sub-optimal solution since there are still

many outliers not being explicitly rejected. To address this

issue, inspired by [13], we design a seeding mechanism to

Figure 4: (a) Inlier correspondence pairs (c1, c2) always

satisfy the length consistency, while outliers (e.g. c4) are

usually not spatially consistent with either inliers (c1, c2)

or other outliers (e.g. c3). However, there exist ambigu-

ity when inliers (c2) and outliers (c3) happen to satisfy the

length consistency. The feature similarity term α provides

the possibility to alleviate the ambiguity issue. (b) The cor-

respondence subsets of a seed (blue line) found by spatial

kNN (Left) and feature-space kNN (Right).

apply neural spectral matching locally. We first find reliable

and well-distributed correspondences as seeds, and around

them search for consistent correspondences in the feature

space. Then each subset is expected to have a higher inlier

ratio than the input correspondence set, and is thus easier

for neural spectral matching to find a correct cluster.

To select the seeds, we first adopt an MLP to estimate

the initial confidence vi of each correspondence using the

feature fi learned by the SCNonlocal module, and then ap-

ply Non-Maximum Suppression [40] over the confidence to

find the well-distributed seeds. The selected seeds will be

used to form multiple correspondence subsets for the neural

spectral matching.

3.4. Neural Spectral Matching

In this step, we leverage the learned feature space to aug-

ment each seed with a subset of consistent correspondences

by performing k-nearest neighbor searching in the feature

space. We then adopt the proposed neural spectral match-

ing (NSM) over each subset to estimate a transformation as

one hypothesis. Feature-space kNN has several advantages

over spatial kNN, as illustrated in Fig. 4b. First, the neigh-

bors found in the feature space are more likely to follow a

similar transformation as the seeds, thanks to the SCNon-

local module. Second, the neighbors chosen in the feature

space can be located far apart in the 3D space, leading to

more robust transformation estimation results.

Given the correspondence subset C ′ ⊆ C (|C ′| = k)
of each seed constructed by kNN search, we apply NSM to

estimate the inlier probability, which is subsequently used

in the weighted least-squares fitting [8] for transformation

estimation. Following [36], we first construct a matrix M

representing a compatibility graph associated with C ′, as il-

lustrated in Fig. 5. Instead of solely relying on the length
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Figure 5: Constructing the compatibility graph and associ-

ated matrix (Right) from the input correspondences (Left).

We set the matrix diagonal to zero following [36]. The

weight of each graph edge represents the pairwise compati-

bility between two associated correspondences.

consistency as [36], we further incorporate the geometric

feature similarity to tackle the ambiguity problem as illus-

trated in Fig. 4a. Each entry Mij measures the compati-

bility between correspondence ci and cj from C ′, which is

defined as

Mij = βij ∗ γij , (3)

γij = [1−
1

σ2
f

∥

∥f̄i − f̄j

∥

∥

2
]+ (4)

where βij is the same as in Eq. 2, f̄i and f̄j are the L2-

normalized feature vectors, and σf is a parameter to control

sensitivity to feature difference (see Sec. 4).

The elements of M defined above are always non-

negative and increase with the compatibility between corre-

spondences. Following [36], we consider the leading eigen-

vector of matrix M as the association of each correspon-

dence with a main cluster. Since this main cluster is sta-

tistically formed by the inlier correspondences, it is natural

to interpret this association as the inlier probability. The

higher the association to the main cluster, the higher the

probability of a correspondence being an inlier. The lead-

ing eigenvector e ∈ R
k can be efficiently computed by the

power iteration algorithm [45]. We regard e as the inlier

probability, since only the relative value of e matters. Fi-

nally we use the probability e as the weight to estimate the

transformation through least-squares fitting,

R
′, t′ = argmin

R,t

∑|C′|

i
ei ‖Rxi + t− yi‖

2
. (5)

Eq. 5 can be solved in closed form by SVD [8]. For the sake

of completeness, we provide its derivation in the supple-

mentary ??. By performing such steps for each seed in par-

allel, the network produces a set of transformations {R′, t′}
for hypothesis selection.

3.5. Hypothesis Selection

The final stage of PointDSC involves selecting the best

hypothesis among the transformations produced by the

NSM module. The criterion for selecting the best transfor-

mation is based on the number of correspondences satisfied

by each transformation,

R̂, t̂ = argmax
R′,t′

∑|C|

i

!
||R′xi + t

′ − yi|| < τ
"
, (6)

where #·$ is the Iverson bracket and τ denotes an inlier

threshold. The final inlier/outlier labels w ∈ R
|C| are given

by wi = #||R̂xi + t̂ − yi|| < τ
"

. We then recompute

the transformation matrix using all the surviving inliers in a

least-squares manner, which is a common practice [19, 5].

3.6. Loss Formulation

Considering the compatibility graph illustrated in Fig. 5,

previous works [16, 48] mainly adopt node-wise losses,

which supervise each correspondence individually. In our

work, we further design an edge-wise loss to supervise the

pairwise relations between the correspondences.

Node-wise supervision. We denote w∗ ∈ R
|C| as the

ground-truth inlier/outlier labels constructed by

w∗
i = #||R∗xi + t

∗ − yi|| < τ
"
, (7)

where R
∗ and t

∗ are the ground-truth rotation and transla-

tion matries, respectively. Similar to [16, 48], we first adopt

the binary cross entropy loss as the node-wise supervision

for learning the initial confidence by

Lclass = BCE(v,w∗), (8)

where v is the initial confidence predicted (Sec. 3.3).

Edge-wise supervision We further propose the spectral

matching loss as our edge-wise supervision, formulated as

Lsm =
1

|C|2

∑

ij
(γij − γ∗

ij)
2, (9)

where γ∗
ij = #ci, cj are both inliers$ is the ground-truth

compatibility value and γij is the estimated compatibility

value based on the feature similarity defined in Eq. 4. This

loss supervises the relationship between each pair of cor-

respondences, serving as a complement to the node-wise

supervision. Our experiments (Sec. 5.4) show that the pro-

posed Lsm remarkably improves the performance.

The final loss is a weighted sum of the two losses,

Ltotal = Lsm + λLclass, (10)

where λ is a hyper-parameter to balance the two losses.

4. Implementation Details

Training. We implement our network in PyTorch [49].

Since each pair of point clouds may have different num-

bers of correspondences, we randomly sample 1,000 corre-

spondences from each pair to build the batched input during

training and set the batch size to 16 point cloud pairs. For

NSM, we choose the neighborhood size to be k = 40. (The

choice of k is studied in the supplementary ??). We make

σf learned by the network, and set σd as 10cm for indoor

scenes and 60cm for outdoor scenes, since σd has a clear
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physical meaning [36]. The hyper-parameter λ is set to 3.

We optimize the network using the ADAM optimizer with

an initial learning rate of 0.0001 and an exponentially de-

cayed factor of 0.99, and train the network for 100 epochs.

All the experiments are conducted on a single RTX2080 Ti

graphics card.

Testing. During testing, we use a full correspondence set

as input. We adopt Non-Maximum Suppression (NMS) to

ensure spatial uniformity of the selected seeds, and set the

radius for NMS to be the same value as the inlier threshold

τ . To avoid having excessive seeds returned by NMS and

make the computation cost manageable, we keep at most

10% of the input correspondences as seeds. To improve

the precision of the final transformation matrix, we further

adopt a simple yet effective post-refinement stage analogous

to iterative re-weighted least-squares [29, 7]. The detailed

algorithm can be found in the supplementary ??.

5. Experiments

The following sections are organized as follows. First,

we evaluate our method (PointDSC) in pairwise registration

tasks on 3DMatch dataset [72] (indoor settings) with differ-

ent descriptors, including the learned ones and hand-crafted

ones, in Sec. 5.1. Next, we study the generalization abil-

ity of PointDSC on KITTI dataset [25] (outdoor settings)

using the model trained on 3DMatch in Sec. 5.2. We fur-

ther evaluate PointDSC in multiway registration tasks on

augmented ICL-NUIM [15] dataset in Sec. 5.3. Finally, we

conduct ablation studies to demonstrate the importance of

each proposed component in PointDSC.

5.1. Pairwise Registration

We follow the same evaluation protocols in 3DMatch to

prepare training and testing data, where the test set contains

eight scenes with 1, 623 partially overlapped point cloud

fragments and their corresponding transformation matrices.

We first voxel-downsample the point clouds with a 5cm

voxel size, then extract different feature descriptors to build

the initial correspondence set as input. The inlier threshold

τ is set to 10cm.

Evaluation metrics. Following DGR [16], we use three

evaluation metrics, namely (1) Registration Recall (RR), the

percentage of successful alignment whose rotation error and

translation error are below some thresholds, (2) Rotation

Error (RE), and (3) Translation Error (TE). RE and TE are

defined as

RE(R̂) = arccos
Tr(R̂T

R
∗)− 1

2
, TE(̂t) =

∥

∥t̂− t
∗
∥

∥

2
,

(11)

where R∗ and t
∗ denote the ground-truth rotation and trans-

lation, respectively, and the average RE and TE are com-

puted only on successfully registered pairs. Besides, we

also report the intermediate outlier rejection results, in-

cluding Inlier Precision (IP)= #kept inliers
#kept matches

and Inlier Re-

call (IR)=#kept inliers
#inliers

, which are particularly introduced to

evaluate the outlier rejection module. For RR, one registra-

tion result is considered successful if the TE is less than

30cm and the RE is less than 15°. For a fair comparison,

we report two sets of results by combining different outlier

rejection algorithms with the learned descriptor FCGF [18]

and hand-crafted descriptor FPFH [56], respectively.

Baseline methods. We first select four representative tra-

ditional methods: FGR [77], SM [36], RANSAC [24], and

GC-RANSAC [5], as well as the state-of-the-art geometry-

based method TEASER [66]. For learning-based methods,

we choose 3DRegNet [48] and DGR [16] as the baselines,

since they also focus on the outlier rejection step for point

cloud registration. We also report the results of DGR with-

out RANSAC (i.e., without the so-called safeguard mech-

anism) to better compare the weighted least-squares solu-

tions. We carefully tune each method to achieve the best re-

sults on the evaluation dataset for a fair comparison. More

details can be found in the supplementary ??.

Comparisons with the state-of-the-arts. We compare

our PointDSC with the baseline methods on 3DMatch.

As shown in Table 1, all the evaluation metrics are re-

ported in two settings: input putative correspondences con-

structed by FCGF (left columns) and FPFH (right columns).

PointDSC achieves the best Registration Recall as well as

the lowest average TE and RE in both settings. More statis-

tics can be found in the supplementary ??.

Combination with FCGF descriptor. Compared with the

learning-based baselines, PointDSC surpasses the second

best method, i.e., DGR, by more than 9% in terms of F1

score, indicating the effectiveness of our outlier rejection al-

gorithm. Besides, although DGR is only slightly worse than

PointDSC in Registration Recall, it is noteworthy that more

than 35% (608/1623) registration pairs are marked as fail-

ure and solved by RANSAC (safeguard mechanism). If no

safeguard mechanism is applied, DGR only achieves 86.5%

Registration Recall.

Different from the conclusion in [16], our experiments

indicate that RANSAC still shows competitive results when

combined with a powerful descriptor FCGF. Nevertheless,

our method is about 60 times faster than RANSAC-100k

while achieving even higher Registration Recall. We also

report the performance of RANSAC with the proposed post-

refinement step to clearly demonstrate the superiority of our

outlier rejection module. SM and TEASER achieve slightly

better Inlier Precision than PointDSC, however, they have

much lower Inlier Recall (38.36% and 68.08% vs. 86.54%

(Ours)). We thus conclude that PointDSC achieves a better

trade-off between precision and recall.

Combination with FPFH descriptor. We further evalu-

ate all the outlier rejection methods equipped with the tra-

ditional descriptor, FPFH. Note that for testing learnable
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FCGF (learned descriptor) FPFH (traditional descriptor)

RR(%↑) RE(°↓) TE(cm↓) IP(%↑) IR(%↑) F1(%↑) Time(s) RR(%↑) RE(°↓) TE(cm↓) IP(%↑) IR(%↑) F1(%↑) Time(s)

FGR [77] 78.56 2.82 8.36 - - - 0.76 40.67 3.99 9.83 - - - 0.28

SM [36] 86.57 2.29 7.07 81.44 38.36 48.21 0.03 55.88 2.94 8.15 47.96 70.69 50.70 0.03

TEASER [66] 85.77 2.73 8.66 82.43 68.08 73.96 0.11 75.48 2.48 7.31 73.01 62.63 66.93 0.03

GC-RANSAC-100k [5] 92.05 2.33 7.11 64.46 93.39 75.69 0.47 67.65 2.33 6.87 48.55 69.38 56.78 0.62

RANSAC-1k [24] 86.57 3.16 9.67 76.86 77.45 76.62 0.08 40.05 5.16 13.65 51.52 34.31 39.23 0.08

RANSAC-10k 90.70 2.69 8.25 78.54 83.72 80.76 0.58 60.63 4.35 11.79 62.43 54.12 57.07 0.55

RANSAC-100k 91.50 2.49 7.54 78.38 85.30 81.43 5.50 73.57 3.55 10.04 68.18 67.40 67.47 5.24

RANSAC-100k refine 92.30 2.17 6.76 78.38 85.30 81.43 5.51 77.20 2.62 7.42 68.18 67.40 67.47 5.25

3DRegNet [48] 77.76 2.74 8.13 67.34 56.28 58.33 0.05 26.31 3.75 9.60 28.21 8.90 11.63 0.05

DGR w/o s.g. [16] 86.50 2.33 7.36 67.47 78.94 72.76 0.56 27.04 2.61 7.76 28.80 12.42 17.35 0.56

DGR [16] 91.30 2.40 7.48 67.47 78.94 72.76 1.36 69.13 3.78 10.80 28.80 12.42 17.35 2.49

PointDSC 93.28 2.06 6.55 79.10 86.54 82.35 0.09 78.50 2.07 6.57 68.57 71.61 69.85 0.09

Table 1: Registration results on 3DMatch. RANSAC-100k refine represents RANSAC with 100k iterations, followed by the

proposed post-refinement step. DGR w/o s.g. represents DGR [16] without the safeguard mechanism (RANSAC). The Time

columns report the average time cost during testing, excluding the construction of initial input correspondences.

RR(↑) RE(↓) TE(↓) F1(↑) Time

SM [36] 79.64 0.47 12.15 56.37 0.18

RANSAC-1k [24] 11.89 2.51 38.23 14.13 0.20

RANSAC-10k 48.65 1.90 37.17 42.35 1.23

RANSAC-100k 89.37 1.22 25.88 73.13 13.7

DGR [16] 73.69 1.67 34.74 4.51 0.86

PointDSC 90.27 0.35 7.83 70.89 0.31

DGR re-trained 77.12 1.64 33.10 27.96 0.86

PointDSC re-trained 98.20 0.35 8.13 85.54 0.31

Table 2: Registration results on KITTI under FPFH setting.

outlier rejection methods including PointDSC, we directly

re-use the model trained with the FCGF descriptor with-

out fine-tuning, since it is expected that the outlier rejec-

tion networks are seamlessly compatible with different fea-

ture descriptors. As shown in Table 1, the superiority of

PointDSC becomes more obvious when evaluated with the

FPFH, where PointDSC achieves 78.5% in Registration Re-

call and remarkably surpasses the competitors. RANSAC-

1k and RANSAC-10k perform significantly worse since the

outlier ratios are much higher when using FPFH to build

the input correspondences. RANSAC-100k with the post-

refinement step still achieves the second best performance

at the cost of the high computation time. In summary, all

the other methods suffer from larger performance degrada-

tion than PointDSC when equipped with a weaker descrip-

tor, strongly demonstrating the robustness of PointDSC to

the input correspondences generated by different feature de-

scriptors.

5.2. Generalization to Outdoor Scenes

In order to evaluate the generalization of PointDSC to

new datasets and unseen domains, we evaluate on a LiDAR

outdoor dataset, namely the KITTI odometry dataset, using

the model trained on 3DMatch. We follow the same data

splitting strategy in [18, 16] for a fair comparison. We use

30cm voxel size and set the inlier threshold τ to 60cm. The

evaluation metrics are the same as those used in the indoor

setting with a 60cm TE threshold and a 5° RE threshold.

Comparisons with the state-of-the-arts. We choose SM,

DGR, and RANSAC as the baseline methods, and combine

them with the FPFH descriptor. We choose FPFH because

the results with FCGF are more or less saturated. (The re-

sults with FCGF can be found in the supplementary ??.)

Living1 Living2 Office1 Office2 AVG

ElasticFusion [64] 66.61 24.33 13.04 35.02 34.75

InfiniTAM [33] 46.07 73.64 113.8 105.2 84.68

BAD-SLAM[58] fail 40.41 18.53 26.34 -

Multiway + FGR [77] 78.97 24.91 14.96 21.05 34.98

Multiway + RANSAC [24] 110.9 19.33 14.42 17.31 40.49

Multiway + DGR [16] 21.06 21.88 15.76 11.56 17.57

Multiway + PointDSC 20.25 15.58 13.56 11.30 15.18

Table 3: ATE(cm) on Augmented ICL-NUIM. The last col-

umn is the average ATE over all scenes. Since BAD-SLAM

fails on one scene, we do not report its average ATE.

We report two sets of results for DGR and PointDSC ob-

tained when trained from scratch (labelled “re-trained”) and

pre-trained on 3DMatch (no extra label). As shown in Ta-

ble 2, PointDSC trained on 3DMatch still gives compet-

itive results, demonstrating its strong generalization abil-

ity on the unseen dataset. When re-trained from scratch,

PointDSC can be further improved and outperform the base-

line approaches by a significant margin.

5.3. Multiway Registration

For evaluating multiway registration, we use Augmented

ICL-NUIM dataset [15], which augments each synthetic

scene [28] with a realistic noise model. To test the general-

ization ability, we again use the models trained on 3DMatch

without fine-tuning. Following [16], we first perform pair-

wise registration using PointDSC with FPFH descriptor to

obtain the initial poses, then optimize the poses using pose

graph optimization [34] implemented in Open3D [78]. We

report the results of baseline methods presented in [16]. The

Absolute Trajectory Error (ATE) is reported as the evalua-

tion metric. As shown in Table 3, our method achieves the

lowest average ATE over three of the four tested scene types.

5.4. Ablation Studies

Ablation on feature encoder. To study the effectiveness

of the proposed SCNonlocal module, we conduct extensive

ablation experiments on 3DMatch. Specifically, we com-

pare (1) PointCN (3D version of [46], which is the feature

extraction module adopted by 3DRegNet [48]); (2) Nonlo-

cal (the SCNonlocal module without the spatial term, i.e.,

the same operator as in [61]); and (3) SCNonlocal (the pro-

posed operator). All the above methods are combined either
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Figure 6: The distribution of feature similarity of inlier pairs

and non-inlier pairs (i.e. at least one outlier in the pair).

RR(↑) IP(↑) IR(↑) F1(↑) Time

PointCN + classifier 78.19 58.05 39.59 42.65 0.04

Nonlocal + classifier 83.30 65.49 67.13 64.28 0.07

SCNonlocal + classifier 88.17 74.74 77.86 75.04 0.07

PointCN + NSM 92.48 78.48 82.10 79.98 0.06

Nonlocal + NSM 92.54 78.68 83.13 80.58 0.09

SCNonlocal + NSM 93.28 79.10 86.54 82.35 0.09

Table 4: Ablation experiments of SCNonlocal module.

Rows 1-3 and Rows 4-6 show the registration results of

different feature extractors combined with a classification

layer and the neural spectral matching module, respectively.

with a classification layer [16, 48] or a proposed NSM layer,

resulting in six combinations in total. Other training or test-

ing settings remain unchanged for a fair comparison.

As shown in Table 4, the proposed SCNonlocal module

consistently improves the registration results across all the

settings and metrics. The spatial term plays a critical role in

the SCNonlocal module, without which the Nonlocal mod-

ule performs drastically worse. Furthermore, we compute

the feature similarity defined in Eq. 4 between each pair of

correspondences and plot the distribution in Fig. 6. With

the SCNonlocal module, the similarity of the inlier pairs is

concentrated near 0.8 and is generally much larger than that

of the non-inlier pairs. This implies that inliers are closer

to each other in the embedding space. In contrast, for the

baseline methods, the inliers are less concentrated, i.e., the

average similarity between inliers is low.

Ablation on spectral matching. We further conduct

ablation experiments to demonstrate the importance of

NSM module. As shown in Table 5, the comparison be-

tween Rows 1 and 2 shows that augmenting the traditional

SM with neural feature consistency notably improves the

result. For +seeding, we adopt the neural spectral matching

over multiple correspondence subsets found by the feature-

space kNN search from highly confident seeds, and deter-

mine the best transformation that maximizes the geometric

consensus. This significantly boosts the performance be-

cause it is easier to find the inlier clusters for the consistent

correspondence subsets.

5.5. Qualitative Results

As shown in Fig. 7, PointDSC is robust to extremely high

outlier ratios. Please refer to the supplementary ?? for more

RR(↑) RE(↓) TE(↓) F1(↑) Time

Traditional SM 86.57 2.29 7.07 48.21 0.03

+ neural 88.43 2.21 6.91 48.88 0.06

+ seeding 92.91 2.15 6.72 82.35 0.08

+ refine 93.28 2.06 6.55 82.35 0.09

w/o Lsm 92.61 2.07 6.75 81.58 0.09

Table 5: Ablation experiments of NSM module. Note that

every row with ‘+’ represents the previous row equipped

with the new component. +refine is our full model. The

last row is the full model trained without Lsm.

Figure 7: Visualization of outlier rejection results on exam-

ples with high outlier ratios from 3DMatch (first row) and

KITTI (second row). From left to right: input correspon-

dences, results of RANSAC-100k, and results of PointDSC.

qualitative results.

6. Conclusion

We have designed a novel 3D outlier rejection network

that explicitly incorporates spatial consistency established

by Euclidean transformations. We have proposed a spatial-

consistency guided nonlocal module (SCNonlocal) and

a neural spectral matching module (NSM) for feature

embedding and outlier pruning, respectively. We further

proposed a seeding mechanism to adopt the NSM module

multiple times to boost the robustness under high outlier

ratios. The extensive experiments on diverse datasets

showed that our method brings remarkable improvement

over the state-of-the-arts. Our method can also generalize

to unseen domains and cooperate with different local

descriptors seamlessly.
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