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Figure 1. Our method estimates personalized face rigs and per-image reconstructions from monocular images with good reconstruction

quality and supports video retargeting to different actors. The code is available at https://github.com/zqbai-jeremy/INORig.

Abstract

This paper presents a method for riggable 3D face recon-

struction from monocular images, which jointly estimates

a personalized face rig and per-image parameters includ-

ing expressions, poses, and illuminations. To achieve this

goal, we design an end-to-end trainable network embedded

with a differentiable in-network optimization. The network

first parameterizes the face rig as a compact latent code

with a neural decoder, and then estimates the latent code as

well as per-image parameters via a learnable optimization.

By estimating a personalized face rig, our method goes be-

yond static reconstructions and enables downstream appli-

cations such as video retargeting. In-network optimization

explicitly enforces constraints derived from the first prin-

ciples, thus introduces additional priors than regression-

based methods. Finally, data-driven priors from deep learn-

ing are utilized to constrain the ill-posed monocular setting

and ease the optimization difficulty. Experiments demon-

strate that our method achieves SOTA reconstruction accu-

racy, reasonable robustness and generalization ability, and

supports standard face rig applications.

1. Introduction

3D face reconstruction has been an important research

topic due to the increasing demands on 3D face understand-

ing in fields like AR/VR, communication, games, and secu-
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rity. Some approaches go beyond merely estimating static

reconstructions and aim to reconstruct face rigs, which are

personalized parametric models that can produce 3D faces

under different expressions of a specific person. The rig can

either be used on character animations such as face retarget-

ing and voice puppetry, or on 3D face tracking serving as a

personalized prior to ease the tracking difficulty.

When 3D data is available, various approaches [7,23,24]

have been proposed to automatically reconstruct face rigs in

the forms of blendshapes. Progress has also been made to

develop more sophisticated rigs based on anatomical con-

straints [44] and deep neural networks [27, 45] to faith-

fully capture facial details. However, these methods heav-

ily depend on the 3D data provided by specialized equip-

ment such as dense camera/lighting arrays and depth sen-

sors, which limits the application realms.

To release the restricted hardware requirements, meth-

ods were enhanced to work on monocular imagery. Given

the ill-posedness of monocular reconstruction, algorithms

usually use a low dimensional parametric face model as

priors, e.g., 3D morphable model (3DMM) [5] and multi-

linear model [9, 43], whose parameters are estimated via

the analysis-by-synthesis optimization [14, 16, 19, 49]. Ad-

ditional components such as corrective basis [16], shading-

based dynamic details [16, 21], image-based representa-

tion [10], as well as hair [10, 19] and other secondary com-

ponents [21] are adopted to further personalize the esti-

mated rig. However, these approaches may assume spe-

cific properties of the input, e.g., requiring the subject to

be static and in the neutral pose for a portion of the in-
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put [10, 21]; need manual intervention [21]; and are often

inefficient [16].

The recent boom in deep learning also advanced monoc-

ular 3D face reconstruction. Various learning-based meth-

ods were proposed to regress face model parameters or

face shapes [30, 34, 42], learn with novel supervisions

[13, 17, 32], build better face models [38–41], as well as in-

tegrate with traditional multi-view geometry [3]. Neverthe-

less, these methods mainly focus on static reconstructions

and fail to produce personalized face rigs. Very recently,

Chaudhuri et al. [11] used neural networks for regressing

blendshape face rigs from monocular images. Despite the

appealing textures produced by their method, the estimated

3D geometry, which is an important aspect for 3D recon-

struction, still has considerable room for improvement.

In this paper, we propose a monocular riggable 3D face

reconstruction algorithm. The riggable reconstruction con-

sists of a personalized face rig and per-image parameters in-

cluding expressions, poses, and illuminations. Our method

is an end-to-end trainable network embedded with a dif-

ferentiable in-network optimization. Two modules are in-

volved. One is a neural decoder conditioned on the in-

put images to parameterize the face rig into a latent code

(termed as rig code) to control the person-specific aspects

(e.g. identity). The other is a learnable optimization that

estimates the rig code and the per-image parameters.

Our main novelty is the integration of deep learning and

optimization for face rig. In contrast to prior static recon-

struction methods [3], our riggable reconstruction can be

re-animated by another face or even voices, enabling ex-

tra applications such as face retargeting and voice puppetry.

Different from previous learning-based methods [11] that

directly regress rig parameters, our in-network optimization

iteratively solves rig parameters with explicit constraints

governed by the first-principles (e.g. multi-view consis-

tency, landmark alignment, and photo-metric reconstruc-

tion), achieving better geometry accuracy and good data

generalization. Unlike traditional optimizations [16,21] us-

ing hand-crafted priors, we adopt a learned deep rig model

and a learned optimization to leverage deep priors to con-

strain the ill-posedness and ease the hardness of the op-

timization. Our method is able to achieve state-of-the-art

(SOTA) reconstruction accuracy, reasonable robustness and

generalization ability, and can be used in standard face rig

applications as demonstrated in experiments.

2. Related Works

Personalized Modeling with 3D Inputs. Traditionally,

blendshapes are typical choices to represent a personalized

face model/rig, which are expressive 3D shapes that can

be linearly combined to get novel expressions [22]. Due

to the tremendous effort of manually creating blendshapes,

approaches [7, 18, 23, 24] have been proposed to automate

the process by adaptively updating the initial blendshapes

or adding correctives based on 3D inputs such as example

meshes or depths. Progress has also been made to develop

more sophisticated models. Wu et al. [44] proposed a local

face model with anatomical constraints. Deep neural net-

works [27,45] are also employed to capture person-specific

geometry and appearance details. However, the application

scenarios of these methods are largely limited by the depen-

dency on 3D data, which requires specialized equipments

such as dense camera/lighting arrays and depth sensors.

Our method only needs monocular RGB images as in-

puts, thus eliminates the dependency of bulky equipments.

Traditional Optimization. Methods were proposed to re-

construct personalized face rigs from monocular RGB data.

Usually, some parametric face models, such as 3D mor-

phable model (3DMM) [4,5,31] or multi-linear blendshapes

[9,43], are used as priors to constrain the ill-posed problem,

while the model parameters are computed by various types

of optimization [49]. Different algorithms were designed

by extending this basic fitting pipeline. Ichim et al. [21]

fit a 3DMM to a structure-from-motion reconstruction and

personalize the expressions by updated blendshapes and

a learned detail map regressor. Garrido et al. [16] pro-

posed a multi-layer representation to reconstruct personal-

ized face rigs from monocular RGB videos in a fully auto-

matic fashion. People [10,19] also added hair and other sec-

ondary components for more realistic face rigs. However,

the 3DMM or multi-linear models involved usually cannot

capture accurate face geometry due to their limited capacity.

Though this can be alleviated by further adaptations or cor-

rectives, these methods usually contain a long pipeline with

heavily engineered components, which may require manual

intervention [21] and are often fragile and inefficient.

Recently, deep learning becomes a potential solution to

address these issues. Our method leverages the powerful

and more general data-driven priors captured by networks

to constrain the ill-posedness and ease the optimization.

Learning-based Methods. Plenty of deep learning meth-

ods were designed to regress 3D shapes or face model pa-

rameters [30,34,42], learn with only 2D images [13,17] and

identity [32] supervisions, learn better face models from in-

the-wild data [38–41], as well as integrate with traditional

multi-view geometry [3]. However, most of them focus on

static reconstructions instead of personalized face rigs. Very

recently, Yang et al. [46] proposed to regress riggable dis-

placement maps acting as textures of a bilinear blendshape

model fitted by traditional optimizations. Though the dis-

placement maps give better visual quality, they cannot ad-

dress the limited capacity of linear models in terms of ge-

ometry accuracy. Chaudhuri et al. [11] proposed to use net-

works for regressing blendshape face rigs from monocular

images in a self-supervised manner. Despite the appealing

textures produced by their algorithm, their estimated 3D ge-
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Figure 2. The single level illustration of our method, which is repeated 3 times to form a multi-level scheme. Two modules are involved:

(1) Face Rig Parameterization that parameterizes the face rig into an optimisable latent code α
l to control the person-specific aspects

(e.g. identity) via a neural decoder; (2) An end-to-end Learnable Optimization to iteratively update the rig code α
l and the per-image

parameters including expressions, poses, and illuminations.

ometry, which is an important aspect for 3D reconstruction,

still has considerable room for improvement.

Instead of direct regression, our method uses in-network

optimization governed by the first-principles. This extra

constraint, together with the learned deep priors, offer the

potential to improve geometry accuracy and generalization,

while address the limited capacity of linear face models.

3. Method

Given N monocular RGB images {Ii}
N
i=1

of a person

(i.e. unsynchronized images taken under different views and

expressions), our method estimates riggable 3D face recon-

structions composed of a personalized face rig Rig(·) as

well as per-image parameters {xi = (βi,pi,γi)}
N
i=1

in-

cluding expressions βi, poses pi, and illuminations γi. The

per-image 3D reconstruction can be obtained by combining

the estimated face rig and per-image parameters.

Our framework adopts a 3-level scheme to perform the

reconstruction in a coarse-to-fine manner. For each level l,

there are mainly 2 modules (see Fig. 2): (1) Face Rig Pa-

rameterization (Sec. 3.1): An image-conditioned network

decoder to parameterize the face rig updates at level l into

an optimizable latent code αl; (2) Learnable Optimiza-

tion (Sec. 3.2): An end-to-end learnable optimization to

iteratively update the rig code αl and per-image parame-

ters {xi}
N
i=1

. Finally, our model is trained with registered

ground truth 3D scans in a supervised manner (Sec. 3.3).

3.1. Face Rig Parameterization

The face rig is a parametric model that takes in an ex-

pression parameter β and outputs a colored 3D face mesh

corresponding to the input expression, denoted as (V,A) =
Rig(β) where V is the mesh vertices and A is the albedo

colors. To model the face rig Rig(·), multiple approaches

have been proposed such as using a set of blendshapes [11],

a neural network [45], or multi-layer representations [16].

However, these models are usually hard to be optimized 1

due to the ill-posedness of monocular 3D reconstruction.

Inspired by previous works [3, 6, 37], we propose to learn a

compact and optimisable latent code α via the neural net-

work to parameterize the face rig for constraining the ill-

posed problem via data-driven priors.

Specifically, we design a neural decoder that takes in the

latent code α (termed as “rig code”) and the expression

parameter β, and outputs the colored mesh (V,A). We

make the decoder conditioned on the input images {Ii} as

in [3, 6, 37] to better leverage the visual clues. Note that

we also need some sort of initial/intermediate reconstruc-

tions {V̂old
i } (i.e. per-image meshes of level l− 1 shown in

Fig. 2) to map the image information into UV space. We

will describe how to get the initial/intermediate reconstruc-

tions {V̂old
i } in Sec. 3.2.3. Formally, we have

(V,A) = Rig(β;α, {Ii}, {V̂
old
i }). (1)

Inside the rig, there are mainly 4 components (each has

3 levels): image feature extraction, neutral shape decod-

ing, expression deformation decoding, and albedo decod-

ing, which will be described one by one. For each compo-

nent (except Albedo), we will firstly describe its single level

version, then its generalization to the 3-level scheme. More

details can be found in the supplementary material.

3.1.1 Image Feature Extraction

As shown in the top left of Fig. 3, given the input images

{Ii}
N
i=1

and initial/intermediate reconstructions {V̂old
i }Ni=1

,

we aim to extract a feature map in UV space Fuv that en-

codes the priors derived from visual clues for the later face

rig decoding. This process is similar to the adaptive ba-

sis generation in [3], with the output linear basis replaced

by Fuv . We use N Siamese branches to extract N feature

1Here “optimize” refers to optimizing the model parameters over cur-

rent input images, but not over the whole dataset (i.e. training).
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Figure 3. The illustration of different components in our neural rig decoder (Sec. 3.1). Top left: Image Feature Extraction. Bottom left:

Neutral Shape (or Static Albedo) Decoding. Right: Expression Deformation (or Dynamic Albedo) Decoding.

maps in UV space from {Ii} and {V̂old
i }, followed by max

pooling and ResBlocks to get the desired UV feature Fuv .

Due to the 3-level scheme, we perform this feature ex-

traction at the beginning of each level l with images {Ii}
and reconstructed meshes of previous level {V̂l−1

i }, result-

ing 3 UV feature maps of increasing resolutions {F l
uv}

3

l=1
.

3.1.2 Neutral Shape

As shown in the bottom left of Fig. 3, given the UV feature

map Fuv and the neutral shape code αns that is a portion

of the rig code α, we aim to compute a neutral shape Vns

which is a 3D face mesh in neutral expression. A CNN

structure Fns(.) is used to decode αns and Fuv into Vns

(or updates of Vns in the 3-level scheme), which consists

of several ResBlocks (w/o BatchNorm) and upsampling.

For the 3-level scheme, we repeat the mentioned decod-

ing process for 3 times to increase resolutions and sum up

the results. At the 1st level, we also include a PCA model

from Basel Face Model (BFM) [28] to better leverage the

statistical prior. Thus, we formulate the neutral shape as:

Vns = V +Bbfmα1

ns +

3
∑

l=1

F l
ns(α

l
ns;F

l
uv), (2)

where V and Bbfm are the mean shape and PCA bases from

BFM [28]. Note that the 3 levels of decoding processes are

gradually added into the formulation level-by-level during

the multi-level optimization (Sec. 3.2.3).

3.1.3 Expression Deformation

As shown in the right of Fig. 3, given the UV feature map

Fuv , the expression code αexp that is a portion of the rig

code α, and the expression parameter β, we aim to compute

an expression deformation Dexp which are the per-vertex

displacements added on the neutral shape. Three sub-

networks are used to get Dexp including Fexp, Fexp mlp,

and Fexp cnn. The networks Fexp mlp and Fexp cnn define

a mapping from the expression parameter β to the final ex-

pression deformation Dexp as

Dexp = Fexp cnn(Fexp mlp(β; θmlp)), (3)

where Fexp mlp is a 2-layer MLP with spatially variant

weights θmlp and Fexp cnn is a CNN. Then, Fexp controls

(or personalizes) this mapping by modifying the network

weights θmlp according to the expression code αexp and

the UV feature map Fuv as

θmlp = Fexp(αexp;Fuv). (4)

For the 3-level scheme, we repeat the mentioned decod-

ing process for 3 times in increasing resolutions and sum

up the results. Note that to utilize the statistical prior, we

adopt the expression PCA bases [3, 13], built from Face-

warehouse [9], in the 1st level, thus resulting in some mod-

ifications on the network architecture. More specifically,

F1

exp mlp is a 2-layer MLP with spatially invariant weights

θ1mlp, and F1

exp cnn is replaced by a matrix multiplication

with the expression PCA bases Bexp. Formally, we have

Dexp = BexpF
1

exp mlp(β; θ
1

mlp)

+
3

∑

l=2

F l
exp cnn(F

l
exp mlp(β; θ

l
mlp)), (5)

where θlmlp = F l
exp(α

l
exp;F

l
uv), l = 1, 2, 3. The final mesh

can be obtained by V = Vns +Dexp. Similar to the neu-

tral shape, the 3 levels of decoding processes are gradually

added into the formulation level-by-level during the multi-

level optimization (Sec. 3.2.3).

3.1.4 Albedo

Following [11], we also estimate dynamic albedo maps to

better capture facial details such as wrinkles. Given the UV

feature map Fuv , the albedo code αalb, and the expression

6219



parameter β, we aim to compute the per-vertex albedo A.

Since only a small amount of high-frequency details could

vary with expressions, we first estimate a static albedo at the

1st and 2nd levels similar to the neutral shape, then add the

dynamic components at the 3rd level similar to the expres-

sion deformation. Formally, we have

A = A+
2

∑

l=1

F l
alb(α

l
alb;F

l
uv)

+ F3

alb cnn(F
3

alb mlp(β; θ
3

mlp)), (6)

where θ3mlp = F3

alb(α
3

alb;F
3

uv) and A is the average albedo

map from BFM [28]. The 3 levels of decoding processes

are also gradually added into the formulation level-by-level

during the multi-level optimization (Sec. 3.2.3).

3.2. Learnable Optimization

Given the parameterization of the face rig as in Sec. 3.1,

the next step is to optimize the rig code α and per-image pa-

rameters {xi = (βi,pi,γi)}
N
i=1

(i.e. expressions βi, poses

pi, and illuminations γi) to obtain the final riggable 3D re-

constructions as shown in Fig. 2. The estimation is done by

an energy minimization with end-to-end learnable compo-

nents. We will first introduce how to to get the per-image re-

constructions from the parameters α and {xi} (Sec. 3.2.1),

then describe the energy formulation used to optimize the

parameters (Sec. 3.2.2), and finally, solve the optimization

in a multi-level fashion (Sec. 3.2.3).

3.2.1 Per-image Reconstruction from parameters

Given the rig code α and per-image parameters {xi}
N
i=1

,

we aim to obtain the per-image reconstructions (i.e. one

colored 3D mesh (V̂i, Ĉi) for each image), on which the

objective energy is computed. For each image, we first de-

code the rig code α and the expression parameter βi to

a mesh with albedo (Vi,Ai) by the neural decoder as in

Equ. (1). Then, this mesh is transformed and projected to

the image plane by the weak perspective camera model with

pose pi = (s,R, t) (i.e. scale s, rotation R ∈ SO(3),
and 2D translation t ∈ R

2) as V̂i = sRVi + t and

Π(V̂i) =

[

1 0 0
0 1 0

]

V̂i, where Π(·) is the projection

function. Following [36, 38], we assume Lambertian sur-

face and adopt the Spherical Harmonics (SH) illumination

model [29] as ĉi = ai ·
∑

9

b=1
γi,bHb to obtain the final

mesh color Ĉi, where ĉi/ai is the per-vertex color/albedo.

3.2.2 Energy Formulation

We define the objective to measure how well the reconstruc-

tions {(V̂i, Ĉi)}
N
i=1

explain the input images {Ii}
N
i=1

:

E(αl, {xi}) = λappEapp + λlanElan + λphoEpho, (7)

with multi-view appearance consistency Eapp, landmark

alignment Elan, and photo-metric reconstruction Epho.

For the multi-view appearance consistency, we follow

the formulation of Bai et al. [3] and define this term in a

feature-metric manner. For each image Ii, we project the

reconstructed mesh V̂i onto the feature map of Ii extracted

by a FPN [25] and do sampling via bilinear interpolation

to get per-vertex feature vectors F (v̂k
i ), where v̂k

i denotes

the the k-th vertex of the mesh V̂i. We then compute the

L2 differences of feature vectors between the correspond-

ing vertices of pairs of images. Formally, we have

Eapp =
2

N(N − 1)

∑

i 6=j

1

M

M
∑

k=1

‖F (v̂k
i )− F (v̂k

j )‖
2

2
, (8)

where M is the number of vertices per mesh. We exclude

invisible vertices according to the z-buffer in rendering.

For landmark alignment, we use a similar formulation

as [38, 39] with sliding landmarks on the contour, reads as

Elan =
1

N

N
∑

i=1

1

68

68
∑

k=1

‖uk
i −Π(v̂u

k

i )‖2
2
, (9)

where v̂u
k

i denotes the mesh vertex corresponding to the k-

th landmark of image Ii and {uk
i } are computed with the

state-of-the-art face landmark detector [8].

For the photo-metric reconstruction, we first sample the

per-vertex colors cki from the image Ii in a similar way for

computing the per-vertex feature F (v̂k
i ). Then, we measure

the L2 consistency between the sampled image colors cki
and the reconstructed colors ĉki from Ĉi. Formally, we have

Epho =
1

N

N
∑

i=1

1

M

M
∑

k=1

‖cki − ĉki ‖
2

2
, (10)

where visibility is handled in the same way as for Eapp.

3.2.3 Solving Optimization

Initialization. At the beginning, an initialization is needed

as the starting of optimization. We obtain the initial face

rig by removing all levels of rig decoders in Equs. (2)(5)(6),

resulting in a constant rig (V,A) = Rig(·). Thus, the de-

coded mesh with albedo is (V0

i ,A
0

i ) = (V,A) for each

image. The initial pose p0

i is regressed by a pre-trained net-

work as in [3], which is used to get the per-image mesh V̂0

i

by transforming V0

i . Finally, the initial illumination is es-

timated by solving a linear weighted least square problem

with a modified version of Epho as the objective defined as

E′
pho =

1

N

N
∑

i=1

1

M

M
∑

k=1

wk
i ‖c

k
i − ĉki ‖

2

2
, (11)

where wk
i is a constant set as (aki )

−0.5‖cki − ĉki ‖
−1.5
2

and aki
is the per-vertex albedo to gain better robustness to outliers.

For convenience, we treat this initialization as level 0.

Multi-level Scheme. For each level l ≥ 1, we have 3
steps to update the face rig and per-image parameters. First,

given the images {Ii} and the per-image meshes of the pre-
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Figure 4. Qualitative comparison with Chaudhuri et al. [11]. Our

estimated geometries are superior and textures are comparable.

vious level {V̂l−1

i }, we extract the level l UV feature F l
uv

(Sec. 3.1.1). Then the level l rig decoders in Equs. (2)(5)(6)

are added into the rig formulation to parameterize the face

rig updates of level l into αl = (αl
ns,α

l
exp,α

l
alb). αl is

set to zeros and {xi} are set to the outputs of level l − 1.

Second, we solve the optimization argminαl,{βi,pi} E via

gradient descent with step sizes regressed by a network as

in [3]. Finally, the illumination γi is updated according to

Equ. (11) as the initialization.

3.3. Training Losses

Our model is trained with registered ground truth 3D

scans in a supervised manner, with ground truth in 3D scans

in the camera space, identity label, and 3D scans in neutral

expression for each identity. The complete loss is

L = Lpose + Lrecon geo + Lns geo

+ λ1Lrecon pho + λ2Lβ + λ3Lns con. (12)

Lpose and Lrecon geo are losses supervising the per-

image meshes, each of which contains 2 terms as Lpose =
0.025Llan+Ldep v and Lrecon geo = Lden v+1000Lnorm.

We define these 4 terms following [3]. Please see the sup-

plementary for detailed loss definitions.

Lns geo is a geometry loss supervising the neutral shape

reconstruction. It has the same formulation as Lrecon geo,

except being computed between the ground truth neutral

shape and the estimated one.

Lrecon pho is a photo-metric loss supervising the per-

image reconstructions. Following [11], we use the differ-

entiable rendering to obtain the reconstructed image, then

compute the image intensity loss Limg and image gradient

loss Lgrad in L2,1 norm [11,40]. These two losses are added

together as Lrecon pho = Limg + Lgrad.

Lβ is an L2 loss to encourage a small expression pa-

rameter βi when the per-image reconstruction should be in

neutral expression. Formally, we have Lβ = ‖βi‖
2

2
when

the ground truth V
gt
i is in neutral expression.
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Figure 5. Qualitative comparison with Tewari et al. [38] and Bai et

al. [3]. We obtain more faithful geometries that better reflect the

corresponding personnel and higher resolution textures.

Lns con, termed as neutral shape consistency loss, is

computed on the estimated neutral shapes to encourage

small intra-identity differences. For two estimated neutral

shapes of the same identity in a mini-batch, we compute

the L2 vertex loss Lns con v (same form as Ldep v) and

the cosine normal loss Lns con n (same form as Lnorm)

between them to enforce the consistency, which reads as

Lns con = Lns con v + 1000Lns con n.

4. Experiments

Training Data. Our model is trained on Stirling/ESRC 3D

face database [1], containing textured 3D scans of 100+
subjects, each with up to 8 expressions. We synthesize

training data by rendering 3D scans of 116 subjects (31 for

validation). For each training/validation sample, we first

randomly sample 10 expressive scans with replacement (i.e.

can have repeated expressions) of the same identity, then

each scan is associated with a random pose and an illumina-

tion sampled from the training data of Sengupta et al. [35].

Finally, we use the selected scans, poses, and illuminations

to render 10 images as a training/validation sample. Our

training losses require dense vertex correspondences be-

tween the reconstructions and scans (i.e. registered scans).

Following [3], we first fit the 3DMM (BFM + expression

bases) to the landmarks of each scan, then perform Non-

Rigid ICP [2] to obtain the dense correspondences.

Implementation. Our algorithm is implemented via Py-

torch. To optimize each level, we perform 3 iterations of pa-

rameter updates with weights λapp = 0.25, λlan = 0.025,

and λpho = 1. During training, we randomly select 2-7 out

of 10 images for each data sample to make our model adapt

to different numbers of images. When computing Eapp

during training, we randomly sample vertices to save GPU

memory. To focus our model on reconstruction quality, we

remove the neutral shape consistency loss Lns con for now

(i.e. λ3 = 0). The rest loss weights are λ1 = λ2 = 10, and
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Bosphorus BU3DFE

Mean STD Mean STD

Protocol of Bai et al. [3]

Single Tewari18 [39] - - 1.78 0.49

View Deng19 [13] 1.47 0.40 1.38 0.37

Two

Views

Tewari19 [38] - - 1.74 0.45

Bai20 [3] 1.44 0.38 1.11 0.29

Ours(R) 1.37 0.44 1.09 0.31

Ours 1.36 0.38 1.00 0.27

Table 1. Geometry accuracy on Bosphorus [33] and

BU3DFE [47] with testing protocol of Bai et al. [3].

BU3DFE

Mean STD

Protocol of Tewari et al. [38]

Single Tewari18 [39] 1.83 0.39

View Shang20 [36] 1.55 0.31

Two

Views

Tewari19 [38] 1.78 0.45

Chaudhuri20 [11] 1.61 0.32

Ours(R) 1.27 0.26

Ours 1.21 0.25

Table 2. Geometry accuracy on BU3DFE

[47] with protocol of Tewari et al. [38].

NoW Dataset

Mean STD

Single View

Tuan17 [42] 2.31 0.42

Feng18 [15] 1.97 0.68

Sanyal19 [32] 1.52 0.50

Multi Views

Ours 1.33 0.28

Table 3. Geometry accuracy of

neutral shapes on NoW [32].

the batch size is 1 with a learning rate 2.0× 10−5.

4.1. Per­image Reconstruction

Our method can estimate a 3D face per input image. We

evaluate 3D reconstruction quantitatively and qualitatively.

Quantitative Evaluation. Two datasets BU3DFE [47] and

Bosphorus [33] are used to evaluate the 3D reconstructions.

Following [3], we first roughly align the predicted mesh to

the 3D scan and crop the scan based on landmarks (8 for

BU3DFE and 5 for Bosphorus), then perform ICP [48] to

improve the alignment. Finally, per-vertex point-to-plane

distances from 3D scans to reconstructions are computed.

On BU3DFE, we also follow the protocol of Tewari et al.

[38] to align and compute error based on dense correspon-

dences for fairly comparison with Chaudhuri et al. [11],

whose numbers are cited from their paper. As in Tab. 1 and

Tab. 2, our method outperforms various single- and multi-

image monocular methods, achieving the state of the art.

Qualitative Evaluation. We also visually compare with

previous works on VoxCeleb2 [12] dataset. Fig. 4 shows

the comparison with Chaudhuri et al. [11]. In terms of ge-

ometry, our method outperforms [11] by capturing more

medium level details such as smiling lines, better nose

shapes, and geometry around eyes. In terms of texture, we

obtain comparable results, with more high-frequency de-

tails but also slightly more artifacts. Note that our method

additionally takes in the second image shown in Fig. 4.

Compared to [3] and [38] in Fig. 5, our estimated shapes are

more faithful against the input images and better reflects the

corresponding personnel. Also, our estimated textures are

in a higher resolution comparing to Tewari et al. [38], while

Bai et al. [3] does not estimate textures. More video and

image results can be found in the supplementary material.

4.2. Neutral Shape Reconstruction

One natural property of face rigs is the ability to disen-

tangle neutral shapes and expression deformations. There-

fore, we also evaluate the reconstructed neutral shape as a

measure of the face rig quality, by using standard geometry

accuracy as well as 3D face verification rate.

Geometry Accuracy. We evaluate our neutral shapes on

the NoW Dataset [32], which contains 2, 054 2D images of

100 subjects and a separate neutral shape 3D scan for each

subject. Under each subject, the images are classified into 4
categories (i.e. neutral, expression, occlusion and selfie).

Since the dataset is originally designed for single-image

methods, we use the following protocol to adapt it to our

multi-image setting. For each subject, we run our algo-

rithm separately for images of different categories, result-

ing in 4 neutral shapes. The motivation is to make our set-

ting closer to the original single-image setting. When only

1 image is available in some cases, we horizontally flip it

to generate the second input image. Finally, geometry er-

rors between reconstructed neutral shapes and ground truth

scans are computed as in [32] in a per-image manner (i.e.

one neutral shape is tested as many times as the number

of images used to reconstruct it) to be consistent with the

single-image setting. As in Tab. 3, our approach outper-

forms prior monocular methods. Note that we only com-

pare with single-image methods since we were not able to

find multi-image methods that can separate neutral shapes

and expressions while having a public implementation.

3D Face Verification. Quantitative evaluations in Tab. 1,

2, and 3 are performed on datasets of a small number of

subjects with images taken in controlled setting. However,

it is important to evaluate how 3D face reconstruction works

on in-the-wild images from a large number of subjects, a

challenge without ground truth 3D scans. Thus, instead of

computing geometry errors, following [26], we resort to 3D

face verification rate to measure the neutral shape quality.

To this end, we test on the Labeled Faces in the Wild

(LFW) [20] benchmark. We estimate the neutral shape of

each image via the tested method, then train a network to

perform 3D face verification on the estimated shapes. Our

method inputs the original image and its flipped one. Please

see supplementary for details of the verification setup.

To increase the robustness and discriminativeness, we

finetune our model with λ3 = 5 and augment images with

synthetic degradation. Limitated by GPU memory, we only

select 2 out of 10 images per sample and set batch size to 2.

We denote this version of model as Ours(R).

We compare Ours(R) to Shang20 [36], a self-supervised

monocular 3D face reconstruction method. Note that [36]

is trained on a large amount of in-the-wild faces, serving as

a strong baseline on generalization and robustness. From

the verification accuracy (Ours(R): 81.4%, [36]: 81.0%)
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Figure 6. 3D face verification on

LFW [20].

Mean STD

W/o αexp

& αns
1.48 0.41

W/o αns 1.41 0.42

W/o αexp 1.45 0.40

Full 1.36 0.38
Table 4. Comparing with

regression baselines on

Bosphorus [33].

Exp. Types Viewed Novel

Methods Ours B1 B2

Mean 0.99 1.07 1.22 1.50

STD 0.31 0.35 0.52 0.56

Table 5. Geometry errors of novel and viewed expressions in self-

retargeting. Key words: (B1) Use PCA bases of [36] and our esti-

mated neutral shape. (B2) Replace the neutral shape of rig in B1

with averaged neutral shape obtained from [36].

and Fig. 6, two methods perform comparably, demonstrat-

ing that even on in-the-wild faces of diverse identities, our

method still has reasonable generalization and robustness.

4.3. Retargeting

Retargeting is a standard application of riggable 3D face

reconstruction, where the reconstructed rig of the target

actor is re-animated by an image/video of a source actor.

We quantitatively evaluate self-retargeting and qualitatively

evaluate cross-actor video retargeting.

Self-Retargeting. Similar to Sec. 4, we evaluate on syn-

thetic data rendered from 31 test subjects. We render 284
samples, each has 8 images with different expressions. We

use 7 images to build the face rig and use the left one as a

novel expression for self-retargeting. Specifically, we run

our method on the left image and its flipped version to ob-

tain the expression parameter (exp param) of this novel ex-

pression. Then we apply exp param to the estimated rig

and compute geometry errors. We also include reconstruc-

tion errors of 7 viewed expressions as a reference. Since

the code of [11] is not published, we design two baselines

based on [36]: 1) B1: Use PCA bases of [36] to model the

expression space, along with our estimated neutral shape, to

form a rig. We obtain exp param by the regressor in [36];

2) B2: Replace the neutral shape of rig in B1 with averaged

neutral shape obtained from [36]. As in Tab. 5, our method

has better accuracy than the baselines on novel expressions.

Our error on novel expressions is also close to the viewed

expressions, indicating good generalization of expressions.

Video Retargeting. As in Fig. 1, our method outputs good

results for different targets in both shapes and textures that

faithfully reflect the target identity, and reasonably transfers

the expressions. We also visually compare with Chaudhuri

et al. [11] on their demo video. Selected frames are shown

in Fig. 7. Our method has superior shape quality better re-
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m
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Source Chaudhuri20 Ours
Figure 7. Video retargeting comparing to Chaudhuri et al. [11].

flecting the personal characteristics, such as the round chin

instead of the sharp one from [11], and achieves reasonable

expression transfer results. Note that in Fig. 7 we obtain the

rig albedo by removing shadings from image colors of the

target actor for better visual quality, and the target rig is built

by Ours(R) for better robustness. However, our method has

a few limitations on unusual expressions, eyelid motion, and

the amplitude of transferred expressions. Video results and

more analysis can be found in the supplementary.

4.4. Optimization vs Regression

The main novelty of our method is the optimizable neu-

ral parameterization of the face rig coupled with the learn-

able optimization. This design introduces optimization into

network inference thus explicitly enforces constraints such

as multi-view appearance consistency, landmark alignment,

and photo-metric reconstruction, which are derived from the

first principles based on the domain knowledge. This ad-

ditional prior information has the potential to improve the

3D reconstruction quality. We investigate this advantage by

comparing our method with regression baselines, where the

components of the face rig are directly predicted by the neu-

ral network instead of being optimized. Please refer to the

supplementary for more details of the regression baselines.

As shown in Tab. 4, the performance drops when one or

more rig components are regressed, demonstrating the ef-

fectiveness of explicit optimization during inference.

5. Conclusion

We solve riggable 3D face reconstruction from monoc-

ular RGB images by an end-to-end trainable network em-

bedded with a in-network optimization. The network con-

tains an optimisable neural face rig parameterization cou-

pled with a learnable optimization. The optimization ex-

plicitly enforces first-principal constraints during inference,

while the learning components leverage deep priors to con-

strain the ill-posedness and alleviate the optimization diffi-

culty. Experiments demonstrate that our method achieves

state-of-the-art reconstruction accuracy, reasonable robust-

ness and generalization ability, and can be applied to the

standard face rig application such as retargeting.
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