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Abstract

Aligning partial views of a scene into a single whole is

essential to understanding one’s environment and is a key

component of numerous robotics tasks such as SLAM and

SfM. Recent approaches have proposed end-to-end systems

that can outperform traditional methods by leveraging pose

supervision. However, with the rising prevalence of cam-

eras with depth sensors, we can expect a new stream of

raw RGB-D data without the annotations needed for su-

pervision. We propose UnsupervisedR&R: an end-to-end

unsupervised approach to learning point cloud registration

from raw RGB-D video. The key idea is to leverage dif-

ferentiable alignment and rendering to enforce photomet-

ric and geometric consistency between frames. We evaluate

our approach on indoor scene datasets and find that we out-

perform existing traditional approaches with classical and

learned descriptors while being competitive with supervised

geometric point cloud registration approaches.

1. Introduction

Consider the two scenes depicted in Fig 1. How are they

related? What is the layout of the room they depict? Align-

ing partial views of a scene into a single whole is essential

to understanding one’s environment and is a key component

of numerous robotics tasks such as SLAM and SfM. Recent

approaches have leveraged supervised learning to develop

end-to-end systems that outperform traditional methods in

both accuracy and speed [9, 22]. However, with the rising

prevalence of cameras with depth sensors, we can expect

a new stream of raw RGB-D data without the annotations

needed for supervision. How can we leverage this data for

unsupervised learning of point cloud registration?

The common approach to point cloud registration relies

on correspondence extraction and geometric model fitting.

Traditional approaches rely on hand-crafted features [30,

38] and robust estimators such as RANSAC [20]. While

those approaches work well, their performance is limited

Figure 1. What 3D scene do the two views on the left portray?

Given 2 RGB-D images, we train a model to estimate the camera

motion between them through enforcing photometric and geomet-

ric consistency losses on point cloud renderings of the scene.

by their inability to flexibly adapt to different data distribu-

tions. Recent work leverages supervised learning to address

those limitations by learning to extract feature descrip-

tors [10, 16, 71], finding better correspondences [9, 22, 52],

and training more efficient robust estimators [6, 7, 48].

However, accurate pose annotation can be challenging to

attain automatically, due to sensor error or reliance on tradi-

tional SfM pipelines with no convergence guarantees [53].

Meanwhile, self-supervised visual learning has made re-

markable progress in learning semantic [15, 17, 21, 25, 60]

and 3D [29, 35, 62, 64, 81] features. The key idea is to use

natural transformations in the data as indirect supervision.

RGB-D video provides us with this supervision since suc-

cessive frames capture different views of the same scene. In

this case, aligning two point clouds from nearby frames is

not only about achieving good geometric consistency, but

also showing good photometric consistency between the

two views. By achieving both photometric and geometric

consistency, we can train our model using RGB-D image

pairs without relying on additional supervision.

We propose using view synthesis between RGB-D im-
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ages as a task for learning point cloud registration. Given

two RGB-D video frames, we extract features from each

frame to generate a feature point cloud, where each point is

represented by both a 3D coordinate and a feature vector.

The extracted features serve as descriptors for correspon-

dence estimation. The model is trained end-to-end using

photometric and geometric consistency losses between the

input and rendered frames. Through using differentiable

components, we back-propagate the losses to the feature

encoder to learn features that allow us to estimate unique

correspondences and accurately register the two views.

We evaluate our model on ScanNet [12]; a large indoor

scene dataset. We find that our model outperforms the tradi-

tional registration pipeline with visual or geometric descrip-

tors (§ 4.1). Furthermore, it performs on par with super-

vised geometric registration approaches despite being unsu-

pervised; supporting our claim that RGB-D self-supervision

can alleviate the need for pose annotation. Finally, we ana-

lyze our model through several ablations (§ 4.2).

In summary, our contributions are as follows:

• We propose an unsupervised approach to point cloud reg-

istration via differentiable alignment and rendering;

• We show how a differentiable variant of Lowe’s ratio test

is sufficient for correspondence matching;

• We empirically demonstrate our approach’s efficacy

against traditional & supervised registration approaches;

• We validate our design choices by evaluating our model

with several ablations.

2. Related Work

Feature Descriptors. Early work on feature point extrac-

tion can be traced back to using corners for stereo match-

ing [43]. This work culminated in patch-based feature 2D

descriptors [4, 38, 50] and geometric features based on his-

tograms of local 3D relationships [30, 51]. Those descrip-

tors have been very popular due to being efficient to com-

pute, relatively robust, and data-agnostic. More recently,

there has been an interest in leveraging convolutional neural

networks to extract good visual descriptors [16, 18, 26, 71,

75] and geometric descriptors [3, 11, 13, 14, 23, 36, 67, 69].

Relevant to our work are approaches that use geometric

transformations to learn visual features. This has been

commonly done by using known pose or correspondences

between large collections of images [16, 18, 71] or point

clouds [11, 13, 14, 23, 67]. We extend this work by leverag-

ing the transformations between RGB-D video frames and

relying on consistency losses instead of pose supervision.

Correspondence Estimation and Fitting. Early work on

image and point cloud registration assumes perfect corre-

spondences [2, 37]. ICP relaxes this assumption for closely

aligned points by introducing the simple heuristic of as-

suming the closest point is the correspondence [78]. How-

ever, extending to real-world settings requires the ability

to determine such correspondences from the raw input or

extracted features. Early work uses feature similarity and

heuristic approaches to determine correspondence and ro-

bust estimators such as RANSAC to handle noise and out-

liers in the correspondences [38, 61, 79]. For a review,

see [46]. More recent approaches advance this idea by

learning differentiable functions for weighting correspon-

dences [6, 7, 9, 22, 28, 39, 48, 52, 70]. Finally, there have

been recent self-supervised approaches for registering ob-

ject point clouds [1, 27, 28, 67, 66, 70, 74]. Those ap-

proaches operate on dense point clouds that are either aug-

mented and sampled for partial views with known pose and

correspondences. Hence, while the setup might be self-

supervised, the methods still require ground-truth annota-

tion. We are inspired by this line of work, but differ from it

in two key ways: (1) we take RGB-D images as input, not

keypoints and descriptors or 3D scenes; (2) our approach is

unsupervised, while those approaches require pose or cor-

respondence supervision.

Differentiable SfM. There has been a large number of re-

cent approaches that replace the traditional SfM pipeline

with end-to-end learning approaches [8, 40, 47, 58, 59, 64,

65, 73, 81]. Related to our work are approaches that propose

unsupervised learning of depth and camera motion. This is

typically done through learning two CNNs: a pose network

and a depth network, that are trained to minimize a consis-

tency loss between video frames. While CNN pose estima-

tors have shown a lot of success on outdoor scenes, they

have been challenged by cases with larger and more erratic

camera motions (e.g. video from a hand-held device) [5].

Similar to those approaches, we train an end-to-end system

using photometric and geometric consistency losses. Un-

like that work, we are interested in pointcloud registration

with larger camera motions and learn features for corre-

spondence alignment of RGB-D scans.

View Synthesis. View synthesis is the task of gener-

ating views of the scene from image inputs. One line

of work focuses on synthesizing views with small cam-

era motions [32, 44, 45, 54, 55, 56]. NeRF and its vari-

ants [41, 42, 77] learn a rendering function for a specific

scene from a large collection of multiview images. While

the goal of that work is highly photorealistic rendering,

we are primarily interested in utilizing view synthesis as

a training task to enforce photometric consistency. Similar

to our goals are approaches that synthesize views for unsu-

pervised 3D learning of object shape [19, 29, 33, 63] and

depth [8, 40, 64, 65, 73, 81]. Closest to our work is [68]

who train a model for depth estimation and view synthesis

with the goal of generating highly photorealistic views of

the scene. Our work complements this earlier work since

we learn registration while they learn depth estimation.
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Figure 2. Our end-to-end approach. Our model takes as input two RGB-D images of a scene. First, we encode the images into a feature

map and project them into a 3D point cloud. Second, we extract correspondences between the two feature point clouds. Third, we use the

3D correspondences to estimate Rt0→1; a 6-DOF transformation that aligns the two point clouds. Finally, we use differentiable rendering

to render the points from both point clouds and apply consistency losses.

3. Method

The goal of this work is to build a system that can learn

point cloud registration from RGB-D video without any su-

pervision. Our approach, shown in Fig. 2, is based on the

traditional registration pipeline as it similarly extracts fea-

ture descriptors, finds correspondences, and finds the best

alignment. We adapt this pipeline by operating directly on

the images and learning our own features, as well as us-

ing photometric and geometric consistency losses to learn

those features. We first present a high-level sketch of our

approach before explaining each stage in more detail. Ar-

chitectural details are presented in the appendix and our

code is available at https://github.com/mbanani/

unsupervisedRR.

Approach Sketch. Given two RGB-D images of the

scene and the camera’s intrinsic matrix, we first extract 2D

features for each image and project them into two feature

point clouds. We extract correspondences between the two

point clouds and rank the correspondences based on their

uniqueness. We then use a differentiable optimizer to align

the top k correspondences and estimate the 6-DOF trans-

formation between them. Finally, we render the point cloud

from the two estimated viewpoints to generate an RGB im-

age for each view. We use photometric and geometric con-

sistency losses between the RGB-D inputs and outputs and

back-propagate through our entire pipeline.

3.1. Point Cloud Generation

Given an input RGB-D image, I ∈ R
4×H×W , we would

like to generate a point cloud P ∈ R
(6+F )×N . Each point

p ∈ P is represented by a 3D coordinate xp ∈ R
3, a color

cp ∈ R
3, and a feature vector fp ∈ R

F . We first use a fea-

ture encoder to extract a feature map using each image’s

RGB channels. The extracted feature map has the same

spatial resolution as the input image. As a result, one can

easily convert the extracted features and input RGB into a

point cloud using the input depth and known camera intrin-

sic matrix. However, given that current depth sensors do

not output the depth for every pixel, we omit the pixels with

missing depth from our generated point cloud. To avoid het-

erogeneous batches, we mark points with missing depths so

that subsequent operations ignore them.

3.2. Correspondence Estimation

Given two feature point clouds1, P , Q ∈ R
(6+F )×N , we

would like to find the correspondences between the point

clouds. Specifically, for each point in p ∈ P , we would like

to find the point qp such that

qp = argmin
q∈Q

D(fp, fq), (1)

where D(p, q) is a distance metric defined on the feature

space. In our experiments, we use cosine distance to deter-

mine the closest features.

We extract such correspondences for all points in both

P and Q since correspondence is not guaranteed to be bi-

jective. As a result, we have two sets of correspondences,

CP→Q and CQ→P , where each set consists of N pairs.

1As noted in Sec 3.1, point clouds will have different numbers of valid

points based on the input depth. While our method deals with this by

tracking those points and omitting them from subsequent operations, we

assume all the points are valid in our model description to enhance clarity.
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Figure 3. Pairwise Registration Results. Our model extracts dense correspondences and achieves highly accurate alignments for indoor

scene datasets. Our correspondences are color-coded using their ratio test weight; green indicates a higher weight. As shown, for relatively

textureless images, the predicted correspondences are less confident, yet our model still able to achieve accurate alignment.

Ratio Test. Determining the quality of each correspon-

dence is a challenge faced by any correspondence-based

geometric fitting approach. Extracting correspondences

based on only the nearest neighbor will result in many false

positives due to falsely matching repetitive pairs or non-

mutually visible portions of the image.

The standard approach is to estimate a weight for

each correspondence that captures the quality of this cor-

respondence. Recent approaches estimate a correspon-

dence weight for each match using self-attention graph net-

works [52], PointNets [22, 72], and CNNs [9]. In our ex-

periments, we found that a much simpler approach based on

Lowe’s ratio test [38] works well without requiring any ad-

ditional parameters in the network. The basic intuition be-

hind the ratio test is that unique correspondences are more

likely to be true matches. As a result, the quality of corre-

spondence (p, qp) is not simply determined by D(p, qp), but

rather between the ratio r which is defined as

r =
D(p, qp,1)

D(p, qp,2)
, (2)

where qp,i is the i-th nearest neighbor to point p in Q. Since

0 ≤ rp ≤ 1 and a lower ratio indicates a better match, we

weigh each correspondence by w = 1− r.

In the traditional formulation, one would define a dis-

tance ratio threshold for inlier vs outliers. Instead, we rank

the correspondences by their ratio weight and pick the top

k correspondences. We pick an equal number of correspon-

dences from CP→Q and CQ→P . Additionally, we keep the

weights for each correspondence to use in the geometric

fitting step. Hence, we end up with a correspondence set

M = {(p, q, w)i : 0 ≤ i < k} where k=400.

3.3. Geometric Fitting

Given a set of correspondences M, we would like to find

the transformation, T ∗ ∈ SE(3) that would minimize the

error between the correspondences

T ∗ = argmin
T ∈ SE(3)

E(M, T ) (3)

where the error E(M, T ) is defined as:

E(M, T ) = |M|−1
∑

(p,q,w)∈M

w (xp − T (xq))
2 (4)

This can be framed as a weighted Procrustes problem and

solved using a weighted variant of Kabsch’s algorithm [31].

While the original Procrustes problem minimizes the dis-

tance between a set of unweighted correspondences [24],

Choy et al. [9] have shown that one can integrate weights

into this optimization. This is done by calculating the co-

variance matrix between the centered and weighted point

clouds, followed by calculating the SVD of the covariance

matrix. For more details, see [9, 31].

Integrating weights into the optimization is important for

two reasons. First, it allows us to build robust estimators

that can weigh correspondences based on our confidence in

their uniqueness. More importantly, it makes the optimiza-

tion differentiable with respect to the weights, allowing us

to backpropagate the losses back to the encoder for feature

learning.
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Randomized Optimization. While this approach is ca-

pable of integrating the weights into the optimization, it can

still be sensitive to outliers with nonzero weights. We take

inspiration from RANSAC and use random sampling to mit-

igate the problem of outliers. More specifically, we sample t

subsets of M, and use Equation 3 to find t candidate trans-

formations. We then choose the candidate that minimizes

the weighted error on the full correspondence set. Since the

t optimizations on the correspondence subsets are all inde-

pendent, we are able to run them in parallel to make the opti-

mization more efficient. We deviate from classic RANSAC

pipelines in that we choose the transformation that mini-

mizes the weighted error, instead of maximizing the inlier

count, to avoid having to define an arbitrary inlier threshold.

It is worth noting that the model can be trained and tested

with a different number of random subsets. In our experi-

ments, we train the model with 10 randomly sampled sub-

sets of 80 correspondences each. At test time, we use 100

subsets with 20 correspondences each. We evaluate the im-

pact of those choices on performance and run time in § 4.2.

3.4. Point Cloud Rendering

The final step of our approach is to render the RGB-D

images from the aligned point clouds. This provides us with

our primary learning signals: photometric and depth con-

sistency. The core idea is that if the camera locations are

estimated correctly, the point cloud render will be consis-

tent with the input images. We use differentiable rendering

to project the colored point clouds onto an image using the

estimated camera pose and known intrinsics. Our pipeline

is very similar to Wiles et al. [68].

A naive approach of simply rendering both point clouds

suffers from a degenerate solution: the rendering will be ac-

curate even if the alignment is incorrect. An extreme case

of this would be to always estimate cameras looking in op-

posite directions. In that case, each image is projected in a

different location of space and the output will be consistent

without alignment. We address this issue by forcing the net-

work to render each view using only the other image’s point

cloud, as shown in Fig. 4. This forces the network to learn

consistent alignment as a correct reconstruction requires the

mutually visible parts of the scene to be correctly aligned.

This introduces another challenge: how to handle the non-

mutually visible surfaces of the scene?

While view synthesis approaches hallucinate the missing

regions to output photo-realistic imagery [68], earlier work

in differentiable SfM observed that the gradients coming

from the hallucinated region negatively impact the learn-

ing [81]. Our solution to this problem is to only evaluate

the loss for valid pixels. Valid pixels, as shown in Fig 4,

are ones for which rendering was possible; i.e., there were

points along the viewing ray for those pixels. This is im-

portant in this work since invalid pixels can occur due to

Figure 4. Point Cloud Rendering. We project the views from

both views, but only render from the alternative view; e.g. we ren-

der the points projected from view 2 in the perspective of view 1.

This can result in invalid pixels, visualized in white. (For clarity,

we show 1D projections in 2D space.)

two reasons: non-mutually visible surfaces and pixels with

missing depth. While the first reason is due to our approach,

the second reason for invalid pixels is governed by the cur-

rent depth sensors which do not produce a depth value for

each pixel.

In our experiments, we found that pose networks are very

susceptible to the issues above; the network starts estimat-

ing very large poses within the first hundred iterations and

never recovers. We also experimented with rendering the

features and decoding them, similar to [68], but found that

this resulted in worse alignment performance.

3.5. Losses

We use three consistency losses to train our model: pho-

tometric, depth, and correspondence. The photometric and

depth losses are the L1 losses applied between the rendered

and input RGB-D frames. Those losses are masked to only

apply to valid pixels, as discussed in § 3.4. Additionally,

we use the correspondence error calculated in Eq. 4 as our

correspondence loss. We weight the photometric and depth

losses with a weighting of 1 while the correspondence loss

receives a weighting of 0.1.

4. Experiments

We now empirically evaluate our model on pairwise

point cloud registration. Our experiments aim to answer

several questions: (1) does unsupervised training provide us

with useful features for alignment?; (2) can RGB-D video

alleviate the need for pose supervision required by geomet-

ric registration approaches?; (3) how do the different com-

ponents of the model contribute to its performance?

We address those questions by evaluating our approach

on two datasets of indoor scenes: ScanNet [12] and

3DMatch [76]. We find that our approach achieves better

registration accuracy than off-the-shelf visual and geomet-

ric feature descriptors (§ 4.1). We also find that our ap-

proach performs on par with supervised geometric regis-

tration approaches despite using significantly simpler cor-
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Rotation Translation Chamfer

Features Accuracy ↑ Error ↓ Accuracy ↑ Error ↓ Accuracy ↑ Error ↓

Train Set Pose Sup. Visual 3D 5◦ 10◦ 45◦ Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

RANSAC + Feature Descriptors

SIFT - ✓ 55.2 75.7 89.2 18.6 4.3 17.7 44.5 79.8 26.5 11.2 38.1 70.6 78.3 42.6 1.7

SuperPoint [16] - ✓ 65.5 86.9 96.6 8.9 3.6 21.2 51.7 88.0 16.1 9.7 45.7 81.1 88.2 19.2 1.2

FCGF [10] - ✓ 70.2 87.7 96.2 9.5 3.3 27.5 58.3 82.9 23.6 8.3 52.0 78.0 83.7 24.4 0.9

Supervised Geometric Approaches

DGR [9] 3D Match ✓ ✓ 81.1 89.3 94.8 9.4 1.8 54.5 76.2 88.7 18.4 4.5 70.5 85.5 89.0 13.7 0.4

3D MV Reg [22] 3D Match ✓ ✓ 87.7 93.2 97.0 6.0 1.2 69.0 83.1 91.8 11.7 2.9 78.9 89.2 91.8 10.2 0.2

Ours 3D Match ✓ 87.6 93.1 98.3 4.3 1.0 69.2 84.0 93.8 9.5 2.8 79.7 91.3 94.0 7.2 0.2

Ours ScanNet ✓ 92.7 95.8 98.5 3.4 0.8 77.2 89.6 96.1 7.3 2.3 86.0 94.6 96.1 5.9 0.1

Table 1. Pairwise Registration on ScanNet. We outperform existing registration pipelines that use traditional and learned, visual and

geometric feature descriptors with a RANSAC estimator. Furthermore, we perform on-par with supervised geometric matching methods

that were trained on 3D Match, demonstrating the utility of unsupervised training in this domain. Pose Sup. indicates pose supervision.

respondence matching and alignment algorithms; support-

ing our claim that RGB-D video can alleviate the need for

pose supervision. Finally, we analyze our model compo-

nents through several key ablations (§ 4.2).

Datasets. We evaluate our approach using ScanNet [12]

and 3D Match [76]. ScanNet contains RGB-D images

and ground-truth camera poses for 1513 scenes, while 3D

Match is a much smaller dataset with a total of 101 scenes.

We use the official data split of 1045/156/312 scenes for

train/val/test for ScanNet. 3D Match only provides a

train/test split, so we further divide the train split into train

and validation; resulting in 71/11/19 RGB-D sequences for

train/val/test split. We generate view pairs by sampling im-

age pairs that are 20 frames apart. We sample the training

scenes more densely by sampling all pairs that are 20 frames

apart. This results in 1594k/12.6k/26k ScanNet pairs and

122k/1.5k/1.5k 3D Match pairs.

Baselines. We compare our model to several learned and

non-learned point cloud registration approaches. Since we

are interested in the unsupervised setting, we first compare

with methods that do not require pose supervision. Our first

set of baselines use off-the-shelf keypoint detectors and de-

scriptors with RANSAC [20] as the robust estimator. For

all these baselines, we use Open3D’s RANSAC implemen-

tation [80]. Despite being proposed over a decade ago, SIFT

features are still used and serve as a strong baseline for

a non-learned method. SuperPoint [16] is a recently pro-

posed approach for keypoint detection and description and

has achieved state of the art performance in correspondence

matching on several benchmarks. Finally, FCGF [10] is a

recently proposed geometric feature descriptor that has also

achieved state-of-the-art performance on several 3D corre-

spondence benchmarks. Furthermore, FCGF features have

been used by several recent approaches for point cloud reg-

istration without further fine-tuning [9, 22].

We also compare with two supervised geometric regis-

tration approaches: DGR [9] and 3D MV Registration [22].

Both of these approaches operate on FCGF point cloud em-

beddings as their input and learn how to extract good cor-

respondences between pairs. There are two salient differ-

ences between our approaches: First, our approach is unsu-

pervised, while those approaches rely on pose supervision.

Second, our approach operates on RGB-D, while those ap-

proaches use the FCGF embedding of the point cloud with-

out relying on the images. This comparison demonstrates

how leveraging the currently ignored RGB modality could

alleviate the need for pose supervision and pretrained de-

scriptors. We emphasize that we use the weights provided

by the authors which were trained on the 3D Match Geo-

metric Registration benchmark.

Training Details. We train our model with the Adam [34]

optimizer with a learning rate of 10−4 and momentum pa-

rameters of (0.9, 0.99). We train each model for 200K iter-

ations. We implement our approach in PyTorch [49], while

making extensive use of PyTorch3D [49] and Open3D [80].

4.1. Pairwise Registration

We first evaluate our approach on point cloud registra-

tion. Given two RGB-D images, we estimate the 6-DOF

pose that would best align the first input image with the sec-

ond. The transformation is represented by a rotation matrix

R and translation vector t.

Evaluation Metrics. We evaluate pairwise registration by

evaluating the pose prediction as well as the chamfer dis-

tance between the estimated and ground-truth alignments.

We compute the angular and translation errors as follows:

Erotation = arccos(
Tr(RprR

⊤
gt)− 1

2
), (5)

Etranslation = ||tpr − tgt||2. (6)

We report the translation error in centimeters and the rota-

tion errors in degrees.
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Rotation Translation Chamfer

Ablation Accuracy ↑ Error ↓ Accuracy ↑ Error ↓ Accuracy ↑ Error ↓

Train Test 5◦ 10◦ 45◦ Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

Full Model 92.7 95.8 98.5 3.4 0.8 77.2 89.6 96.1 7.3 2.3 86.0 94.6 96.1 5.9 0.1

Model with Joint Rendering ✓ 84.7 91.1 97.5 5.5 1.1 65.3 81.2 92.0 12.0 3.1 76.5 89.1 92.4 9.0 0.2

- Randomized Optimization ✓ ✓ 86.0 93.0 98.1 4.7 1.3 59.3 79.6 93.1 10.8 3.9 73.5 90.0 93.4 8.2 0.3

- Ratio Test ✓ ✓ 77.6 88.9 97.1 6.9 1.9 48.5 70.4 89.2 15.1 5.2 64.1 84.9 90.0 10.5 0.5

- Randomized Optimization ✓ 94.6 97.0 98.9 2.8 0.8 80.3 91.8 97.1 6.1 2.1 88.5 95.9 97.2 5.0 0.1

- Ratio Test ✓ 86.0 92.8 98.7 4.1 1.1 64.8 82.0 93.6 9.3 3.2 76.7 90.5 93.8 6.8 0.2

- Randomized Optimization ✓ 81.1 90.4 97.6 5.8 1.6 52.3 74.1 90.6 13.3 4.7 67.6 86.8 91.2 9.7 0.4

- Ratio Test ✓ 47.2 67.4 91.8 16.6 5.5 20.6 40.4 69.3 35.5 13.4 32.4 60.3 71.2 27.8 2.8

Table 2. Ablation Results. Our ablation experiments demonstrate the utility of the ratio test for correspondence filtering. Furthermore, we

find that some ablations can improve model performance when used for training, but not for testing.

While pose gives us a good measure of performance,

some scenes are inherently ambiguous and multiple align-

ments can explain the scene appearance; e.g., walls, floors,

and symmetric objects. To address these cases, we compute

the chamfer distance between the scene and our reconstruc-

tion. Given two point clouds where P represents the correct

alignment of the scene and Q represents our reconstruction

of the scene, we can define the closest pairs between the

point clouds as set ΛP,Q = {(p, argminq∈Q ||p − q||) :
p ∈ P). We then compute the chamfer error as follows:

Echam = |P|−1
∑

(p,q)∈ΛP,Q

||xp−xq||+|Q|−1
∑

(q,p)∈ΛQ,P

||xq−xp||. (7)

For each of these error metrics, we report the mean and

median errors over the dataset as well as the accuracy for

different thresholds.

We conduct our experiments on ScanNet and report the

results in Table 1. We find that our model learns accu-

rate point cloud registration; outperforming prior feature

descriptors and performing on-par with supervised geomet-

ric registration approaches. We next analyze our results

through the questions posed at the start of this section.

Does unsupervised learning improve over off-the-shelf

descriptors? Yes. We evaluate our approach against

the traditional pipeline for registration: feature extrac-

tion using an off-the-shelf keypoint descriptor and align-

ment via RANSAC. We show large performance gains

over both traditional and learned descriptors. It is impor-

tant to note that FCGF and SuperPoint currently represent

the state-of-the-art for feature descriptors. Furthermore,

both methods have been used directly, without further fine-

tuning, to achieve the highest performance on image regis-

tration benchmarks [52] and geometric registration bench-

marks [9, 22]. We also find that our approach learns features

that can generalize to similar datasets. As shown in Table 1,

our model trained on 3D Match outperforms the off-the-

shelf descriptors while being competitive with supervised

geometric registration approaches.

Does RGB-D training alleviate the need for pose super-

vision? Yes. We compare our approach to two recently

proposed supervised point cloud registration approaches:

DGR [9] and 3D Multi-view Registration [22]. Since their

model was trained on 3D Match, we also train our model on

3D Match and report the numbers. We find that our model

is competitive with supervised approaches when trained on

their dataset, and can outperform them when trained on

ScanNet. However, a direct comparison is more nuanced

since those two classes of methods differ in two key ways:

training supervision and input modality.

We argue that the recent rise in RGB-D cameras on both

hand-held devices and robotic systems supports our setup.

First, the rise in devices suggests a corresponding increase

in RGB-D raw data that will not necessarily be annotated

with pose information. This increase provides a great op-

portunity for unsupervised learning to leverage this data

stream. Second, while there are cases where depth sensing

might be the better or only option (e.g., dark environment or

highly reflective surfaces.), there are many cases where one

has access to both RGB and depth information. The ability

to leverage both can increase the effectiveness and robust-

ness of a registration system. Finally, while we only learn

visual features in this work, we note that our approach is

easily extensible to learning both geometric and visual fea-

tures since it is agnostic to how the features are calculated.

4.2. Ablations

We perform several ablation studies to better understand

the model’s performance and its various components. In

particular, we are interested in better understanding the im-

pact of the optimization and rendering parameters on the

overall model performance. While some ablations can only

be applied during training (e.g., rendering choice), ablations

that affect the correspondence estimation and fitting can

be selectively applied during training, inference, or both.

Hence, we consider all variants.
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Joint Rendering. Our first ablation investigates the impact

of our rendering choices by rendering the output images

from the joint point cloud. In § 3.4, we discuss rendering

alternate views to force the model to align the pointclouds

to produce accurate renders. As shown in Table 2, we find

that naively rendering the joint point cloud results in a sig-

nificant performance drop. This supports our claim that a

joint render would negatively impact the features learned

since the model can achieve good photometric consistency

even if the pointclouds are not accurately aligned.

Ratio Test. In our approach, we use Lowe’s ratio test

to estimate the weight for each correspondence. We ab-

late this component by instead using the feature distance

between the corresponding points to rank the correspon-

dences. Since this ablation can be applied to training or

inference independently, we apply it to training, inference,

or both. Our results indicate that the ratio test is critical to

our model’s performance, as ablating it results in the largest

performance drop. This supports our initial claims about

the utility of the ratio test as a powerful heuristic for fil-

tering correspondences. It is worth noting that Lowe’s ra-

tio test [38] shows incredible efficacy in determining cor-

respondence weights; a function often undertaken by far

more complex models in recent work [9, 22, 48, 52]. Our

approach is able to perform well using such a simple filter-

ing heuristic since it is also learning the features, not just

matching them.

Randomized Subsets. In our model, we estimate t trans-

formations based on t randomly sampled subsets. This is

inspired by RANSAC [20] as it allows us to better han-

dle outliers. We ablate this module by estimating a sin-

gle transformation based on all correspondences. Similar

to the ratio test, this ablation can be applied to training or

inference independently. As shown in Table 2, ablating this

component at test time results in a significant drop in perfor-

mance. Interestingly, we find that applying it during train-

ing and relieving it during testing improves performance.

We posit that this ablation acts similarly to DropOut [57]

which forces the model to predict using a subset of features

and is only applied during training. As a result, the model is

forced to learn better features during training, while gaining

the benefits of randomized optimization during inference.

Number of subsets. We find that the number of subsets

chosen has a significant impact on both run-time and per-

formance. During training, we sample 10 subsets of 80 cor-

respondences each. During testing, we sample 100 subsets

of 80 correspondences each. For this set of experiments, we

used the same pretrained weights and only vary the num-

ber of subsets used. Each subset still contains 80 corre-

spondences. As shown in Table 3, using a larger number of

subsets improves the performance while also increasing the

Rotation Translation Chamfer

Subsets Mean Med. Mean Med. Mean Med. Time (ms)

5 4.8 1.2 10.5 3.4 7.8 0.2 50.4 ± 0.3

10 4.2 1.0 9.2 2.9 7.1 0.2 60.2 ± 0.3

20 3.8 0.9 8.4 2.6 6.7 0.2 79.2 ± 0.5

50 3.5 0.9 7.7 2.4 6.0 0.1 135.4 ± 1.1

100 3.4 0.8 7.3 2.3 5.9 0.1 239.6 ± 1.2

200 3.3 0.8 7.2 2.2 5.9 0.1 425.2 ± 6.1

Table 3. Run-time Analysis. We find that using a larger number

of random subsets improves our performance while also increasing

the inference time. This trade-off between performance and run-

time could be used to tune the model based on the use case.

run-time. Additionally, we find that the performance gains

saturate at 100 subsets.

5. Conclusion

We present an unsupervised, end-to-end approach to

pairwise RGB-D point cloud registration. We observe that

existing approaches to point cloud registration rely on pose

supervision for learning geometric point cloud alignment.

However, with the increase in cameras with depth sensors,

we expect a large stream of unannotated RGB-D data. This

provides us with an opportunity to leverage unsupervised

learning for more robust RGB-D point cloud registration.

To this end, we propose using view synthesis as a task

for unsupervised point cloud registration via differentiable

alignment and rendering. At the core of our approach is the

notion of achieving geometric alignment through training a

model with photometric consistency. Our approach learns

to extract features from RGB-D data that allow it to both

register and render the input frames. We show that our ap-

proach outperforms current state-of-the-art feature descrip-

tors with RANSAC as well as supervised geometric regis-

tration approaches. This supports our initial premise of us-

ing RGB-D data to alleviate the need for pose supervision.

While our implementation relies solely on features ex-

tracted from RGB, our approach does not necessitate this.

Specifically, our approach could be extended to learning

geometric features for correspondence estimation. Further-

more, while we find that the ratio test allows us to achieve

highly accurate registration, it would be interesting to ex-

plore whether the recently proposed supervised correspon-

dence filtering algorithms can be adapted for unsupervised

training as well as how they would compare to the simple

ratio test heuristic.
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