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Abstract

We propose ways to speed up the initial pose-graph gen-

eration for global Structure-from-Motion algorithms. To

avoid forming tentative point correspondences by FLANN

and geometric verification by RANSAC, which are the most

time-consuming steps of the pose-graph creation, we pro-

pose two new methods – built on the fact that image pairs

usually are matched consecutively. Thus, candidate relative

poses can be recovered from paths in the partly-built pose-

graph. We propose a heuristic for the A∗ traversal, consid-

ering global similarity of images and the quality of the pose-

graph edges. Given a relative pose from a path, descriptor-

based feature matching is made “light-weight” by exploit-

ing the known epipolar geometry. To speed up PROSAC-

based sampling when RANSAC is applied, we propose a

third method to order the correspondences by their inlier

probabilities from previous estimations. The algorithms are

tested on 402 130 image pairs from the 1DSfM dataset and

they speed up the feature matching 17 times and pose esti-

mation 5 times. Source code: https://github.com/

danini/pose-graph-initialization

1. Introduction

Structure-from-Motion (SfM) has been intensively re-

searched in computer vision for decades. Most of the early

methods adopt an incremental strategy, where the recon-

struction is built progressively and the images are carefully

added one-by-one in the procedure [42, 39, 38, 1, 57, 44].

Recent studies [17, 18, 8, 28, 4, 10, 20, 36, 13, 9, 58] show

that global approaches, considering all images simultane-

ously when reconstructing the scene, lead to comparable

or better accuracy than incremental techniques while being

significantly more efficient. Also, global methods are less

dependent on local decisions or image ordering.

Typically, SfM pipelines consist of the following steps,

see Fig. 2. First, features are extracted in all n images.

Such step is easily parallelizable and has O(n) time com-

plexity. These features are then often used to order the

image pairs from the most probable to match to the most

Figure 1: Reconstruction by initializing Theia’s [52] global

SfM with the pose-graph from the proposed algorithms.

difficult ones, e.g., via bag-of-visual-words [47]. Next,

tentative correspondences are generated between all image

pairs by matching the often high-dimensional (e.g., 128
for SIFT [27]) descriptors of the detected features. Then,

the correspondences are filtered and relative poses are esti-

mated between by applying RANSAC [15]. Usually, the

feature matching and geometric estimation steps are by

far the slowest parts, both having quadratic complexity in

the number of images. Moreover, feature matching has a

quadratic worst-case time complexity as it depends on the

product of the number of features in the respective images.

Finally, a global bundle adjustment obtains the accurate re-

construction from the pair-wise poses. Interestingly, this

step has negligible time demand, i.e., a few minutes in our

experiments, compared to the initial pose-graph generation.

This paper has three major contributions – three new

algorithms which allow removing the need of RANSAC-

based geometric estimation and, also, to make descriptor-

based feature matching “light-weight”. First, a method

is proposed exploiting the partly-built pose-graph to avoid

the computationally demanding RANSAC-based robust es-

timation. To do so, we propose a heuristic for the A∗ [19]

algorithm which guides the path-finding even without hav-

ing a metric distance between the views. The lack of such

a distance originates from the fact that the edges of a pose-

graph represent relative poses and, thus, neither the global

scale nor the length of any of the translations are known.

Second, we propose a technique to make the expensive
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Figure 2: The architecture of a global SfM pipeline.

descriptor-based feature matching “light-weight” by using

the pose determined by A∗. This guided matching approach

uses the fundamental matrix to efficiently select keypoints,

which lead to correspondences consistent with the pose,

via hashing. Third, an algorithm is proposed to adaptively

re-rank the point-to-point correspondences based on their

history – whether one or both of the points had been in-

liers in previous estimations. The method exploits the fact

that these inlying feature points likely represent 3D points

consistent with the rigid reconstruction of the scene. This

adaptive ranking speeds up the robust estimation by guid-

ing PROSAC [11] to find a good sample early. The pro-

posed techniques were tested on the 1DSfM dataset [56],

see Fig. 1 for an example reconstruction. They consistently

and significantly speed up the pose-graph generation.

1.1. Related Techniques

Robust estimation. To speed up robust estimation, there

has been a number of algorithms proposed over the years.

NAPSAC [34], PROSAC [11] and P-NAPSAC [7] modify

the RANSAC sampling strategy to increase the probabil-

ity of selecting an all-inlier sample early. PROSAC exploits

an a priori predicted inlier probability rank of the points and

starts the sampling with the most promising ones. NAPSAC

is built on the fact the real-world data often are spatially co-

herent and selects samples from local neighborhoods, where

the inlier ratio is likely high. P-NAPSAC combines the ben-

efits of PROSAC and NAPSAC by first sampling locally,

and then progressively blending into global sampling. The

Sequential Probability Ratio Test [12] (SPRT), inspired by

Wald’s theory, is applied for rejecting models early if the

probability of being better than the previous best model falls

below a threshold. All of the mentioned RANSAC improve-

ments consider the case of a single, isolated two-view robust

estimation. Here, we exploit information arising while per-

forming estimation on some subset of the
(

N
2

)

image pairs

where some images are matched more than once.

Feature matching can be sped up in several ways, e.g., by

the use of binary descriptors [43, 2, 54] or by limiting the

number of features detected, as often done in SLAM sys-

tems [33]. However, this often results in inaccurate camera

poses for the general 3D reconstruction problem [23]. Of-

ten, approximate nearest neighbor algorithms are employed,

Symbols used in this paper

G = (V, E) - Directed graph,

v ∈ V - A vertex from the vertex set

e = (vi, vj) ∈ E - Edge between vertices vi and vj
f ∈ {e, e−1} - An edge or its inverse

φ(e) : E → SE(3) - Relative pose of edge e

ρ(e) : E → R - Quality of edge e

δ(vi, vj) : V × V → R - Distance of vertices vi and vj
W ∈ {(f1, . . . , fn) | 1 < n} - A walk

ρ(W) : {(f1, . . . , fn)} → R - Quality of walkW

such as kd-tree or product quantization [32, 25]. Hardware-

based speed-ups include using a GPU [24]. None of these

techniques consider that the matching is performed on a

number of image pairs, where the relative pose might be

known, at least approximately, prior to the matching.

Global image similarity. Matching an unordered image

collection is usually a harder and more time consuming task

than, matching, e.g., a video sequence. There are two rea-

sons for that. First, many image pairs might not have any

commonly visible part of the scene and the time spent on

matching attempts is wasted. Moreover, no-match is the

worst case scenario for RANSAC, which will run the maxi-

mum number of iterations, often orders of magnitude more

than in the matching-possible case. Second, the time spent

on the estimation of epipolar geometry highly depends on

the inlier ratio of the tentative correspondences [14]. The

inlier ratio, in turn, depends on the difference between the

two viewpoints: the bigger the difference, the fewer tenta-

tive correspondences are correct [30, 29]. A natural ques-

tion would be – is it possible to order the image pairs from

the most probable ones to the most difficult or impossible to

match? Image retrieval techniques are commonly used for

it, e.g., one could re-use extracted local features to find the

most promising candidates for matching via bag-of-visual-

words [47] and then quickly reorder the preliminary list us-

ing geometric constraints [37, 45] as it is implemented in

COLMAP SfM [44]. Such systems work well, but have sig-

nificant memory footprint and are now overcome by CNN-

based global descriptors [41, 40, 55], which are both faster

to compute and provide more accurate results.

We use the following approach to generate a fully con-

nected image similarity graph as a preliminary step. First,

we extract GeM [41] descriptors with ResNet-50 [22] CNN,

pre-trained on GLD-v1 dataset [35]. Then we calculate the

inner-product similarity between all the descriptors, result-

ing in an n × n similarity matrix. The calculation of the

similarity matrix is the only quadratic step of our pipeline.

However, the scalar product operation is extremely fast. In

practice, the creation and processing of the similarity matrix

takes negligible time.
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Figure 3: A schematic pose-graph, used for initializing

global SfM algorithms. Vertices (images) are connected by

edges representing relative pose (tij ,Rij) ∈ SE(3).

2. Relative Pose from Directed Walks

We propose an approach to speed up the pose-graph gen-

eration by avoiding running RANSAC when possible. The

core idea exploits the fact that when estimating the relative

pose of the (t + 1)th image pair from an image collection,

we are given a pose-graph consisting of t edges, i.e., t view

pairs. These t edges can be used to estimate the relative

pose without running RANSAC.

In the rest of the paper, we assume that the view pairs are

ordered by their similarity scores. Thus, we start the pose

estimation from the most similar pair. Assume that we have

matched t image pairs successfully and, thus, we are given

pose-graph Gt = (V, Et), where Et ⊆ {(v1, v2) | v1, v2 ∈
V} are the |Et| = t edges and V is the set of images in the

dataset, see Fig. 3 for an example. Function φ : Et → SE(3)

maps edge e ∈ Et to its estimated relative pose.

When estimating the relative pose between the (t+ 1)th
view pair, we are given two options. The traditional one is to

run robust estimation on the corresponding points between

the two images. The estimated pose P ∈ SE(3) is then

added to the pose-graph as the pose of the new edge. Thus,

Et+1 = Et ∪ {e = (vs, vd)}
1 and φ(e) = P. The problem

with this step is that when having few inliers and, thus, low

inlier ratio, the estimation can be often time-consuming.

Due to this step being done approximately
(

|V|
2

)

times, the

slow pair-wise pose estimation has a severe impact on the

processing time of the entire pose-graph estimation.

Therefore, instead of estimating the pose blindly be-

tween a pair of views (vs, vd), we propose to use the previ-

ously generated pose-graph Gt. Let us assume that there ex-

ists a finite directed walkW = (fw1
, fw2

, . . . , fwn−1
), for

which there is a sequence of vertices (vw1
, vw2

, . . . , vwn
)

such that fwi
∈ {ewi

, e−1
wi
}, ewi

= (vwi
, vwi+1

) for i =
1, 2, . . . , n− 1, and vw1

= vs, vwn
= vd. See Fig. 4 for ex-

amples. The direction of edge e can be inverted as e−1 by

inverting the relative pose as φ(e−1
i ) = φ(ei)

−1 and swap-

1vs – source view, vd – destination view

ping its vertices as e−1
i = (vi+1, vi). We define the pose

implied by walkW recursively as

φ(W) = φ(fw1
, fw2

, . . . , fwn−1
)

= φ(fw1
, fw2

, . . . , fwn−2
)φ(fwn−1

)
= φ(fw1

, fw2
, . . . , fwn−3

)φ(fwn−2
)φ(fwn−1

)
= . . .

= φ(fw1
)φ(fw2

) . . . φ(fwn−1
).

(1)

Consequently, the relative pose between views vs and vd is

calculated as φ(W) given a finite walkW .

The problem with (1) is that a single incorrectly esti-

mated pose φ(f), f ∈ W , makes the entire φ(W) wrong.

Therefore, we aim at finding multiple walks within a given

distance, i.e., the maximum depth is restricted to avoid in-

finitely long walks. The walks returned are evaluated se-

quentially and immediately, see Alg. 1. Whenever a new

walk W is found, its inlier ratio is calculated from pose

φ(W) and the correspondences between the source and des-

tination images, vs and vd, respectively.

Termination. There are two cases when the procedure of

finding and testing walks terminates. They are as follows:

1. The process finishes when there are no more walks found

within the maximum distance.

2. If there is a reasonably good pose P found, the process

terminates. We consider a relative pose reasonably good if

it has at least Imin inliers.2

Pose refinement. In case the pose is obtained successfully

from one of the walks, it is calculated solely from the edges

of pose-graph Gt without considering the correspondences

between images vs and vd. In order to improve the accu-

racy and obtain P∗, we apply iteratively re-weighted least-

squares fitting initialized by the newly estimated model P.

Finally, Et+1 = Et ∪ {e = (vs, vd)} and φ(e) = P∗.

Failures. There are cases when at least a single walk ex-

ists between views vs and vd, but the implied pose is in-

correct, i.e., it does not lead to a reasonable number of in-

liers. In those cases, we apply the traditional approach, i.e.,

RANSAC-based robust estimation [6].

Visibility. Deciding if there is at least a single walk in the

pose-graph between views vs and vd can be done by the

union-find algorithm [16] in O(1) time. On average, the

time complexity of the update is O(log(n)).
Parallel graph building. Building graph G, checking the

visibility, finding and evaluating walks in parallel on multi-

ple CPUs is efficiently doable by using readers-writer lock-

ing mechanisms where each thread matches the next best

view pair. The readers are the processes trying to find walks

between two views or the ones checking if view vs is visible

from vd. A process becomes writer only when it adds a new

edge to the pose-graph or updates the union-find method for

visibility checking which both takes only a few operations.

2Typically, Imin ∈ [15, 30] in most of the recent SfMs [52, 44].
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Figure 4: Example walks between vertices vs and vd with edge inversion allowed. The relative pose Psd = (tsd,Rsd) ∈
SE(3) from vs to vd is calculated as Psd = Pnd . . .P12Ps1, where Ps1 is the pose of the first edge in the walk and Pnd is

that of the last one, n is the length of the walk.

Algorithm 1 Pose from Pose-Graph.

Input: Gt – current pose-graph; vs, vd – views to match

V – visibility table; P – point correspondences

dmax – maximum depth

Output: P – pose; I – inliers

1: if ¬Visible(V, vs, vd) then

2: return

3: while ¬ Terminate(I) do

4: W ← GetNextWalk(Gt, vs, vd, dmax)
5: if EmptyWalk(W) then

6: break

7: PW ← φ(W)
8: IW ← GetInliers(PW ,P)
9: if |IW | > |I| then

10: P← PW , I ← IW

Algorithm 2 Epipolar Hashing.

Input: K1, K2 – sets of keypoints; R, t – relative pose;

µ – inlier-outlier threshold; b – bin number

Output: P – point correspondences

1: E = [t]×R ⊲ Get essential matrix

2: B ← Hashing(K2,E, b)
3: for p1 ∈ K1 do

4: d1 ← Descriptor(p1), δ ←∞,p∗ ← 0

5: for p2 ∈ B(p1) do

6: if ǫ(p1,p2,E) < µ then ⊲ Sampson dist.

7: d2 ← Descriptor(p2)
8: if |d2 − d1| < δ then

9: δ ← |d2 − d1|,p
∗ ← p2

10: P ← P ∪ {(p1,p
∗)}

2.1. Pose­graph Traversal

It is a rather important question how to find a walk be-

tween views vs and vd efficiently. There are a number of

graph traversals, however, most of them are not suitable for

returning walks in a large graph in reasonable time. We

choose the A∗ [19] algorithm since it works well for such a

task when a good heuristic exists. In this section, we pro-

pose a way of obtaining multiple walks in pose-graph Gt by

defining a heuristic for the A∗ algorithm.

The objective is to define a heuristic which guides the

A∗ algorithm from node vs to node vd while visiting as few

vertices as possible. Since we are given a graph of relative

poses, we are unable to define a metric, measuring the Eu-

clidean distance of a view pair. When having relative poses,

both the global and local scales remain unknown and, thus,

all translations have unit length. As a consequence, it is un-

clear whether two views are close to or far from each other.

The proposed heuristic is composed of two functions.

First, the global similarity of views vs and vd is mea-

sured as δ(vs, vd), δ : V × V → R. It is determined via

the inner-product of GeM [41] descriptors with ResNet-

50 [22] CNN, pre-trained on GLD-v1 dataset [35] as de-

scribed earlier. Second, reflecting the fact that a single in-

correctly estimated edge severely affects the pose of the en-

tire walk, we also consider the quality of edge e via function

ρ(e) : E → R. To our experiments, the inlier ratio is usually

a good indicator of the pose quality. Function ρ(e) returns

the inlier ratio calculated given the pose φ(e) of the current

edge and the point correspondences.

To measure the quality of the entire walk W , we have

to consider that a single incorrect pose makes φ(W ) in-

correct as well. Thus, the quality of W is measured as

Q(W) = minf∈W ρ(f), i.e., the quality of the least ac-

curate edge. To measure the similarity of walkW between

the destination view vd, we define function ∆(W, vd) =
maxf=(v1,v2)∈W δ(v2, vd), i.e., the most similar vertex de-

termines the similarity. The heuristic considering both the

quality of the walk and similarity to the destination is as

h(W) = λ min
f∈W

ρ(f) + (1− λ) max
f=(v1,v2)∈W

δ(v2, vd), (2)

where λ ∈ [0, 1] is a weighting parameter. Expression
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minf∈W ρ(f) forces the A∗ algorithm to find a walk max-

imizing the minimum inlier ratio along the walk. Expres-

sion maxf=(v1,v2)∈W δ(v2, vd) affects the graph traversal

in a way such that it maximizes the maximum similarity to

the destination view along the path.

3. Guided Matching with Pose

When matching an image collection, the most time-

consuming process is often the local descriptor match-

ing [23] a.k.a. establishing tentative correspondences. The

reason is that it has O(n2) complexity both, w.r.t. the num-

ber of local features, i.e. for a single image pair, and w.r.t.

the number of images, i.e. for the whole collection. We have

already addressed the second problem (see Section 1.1), but

matching a single image pair still takes a significant amount

of time. The common way to accelerate feature matching

is by using approximate nearest neighbor search, instead

of the exact one, e.g. using the kd-tree algorithm as imple-

mented in FLANN [32]. Yet, even the approximate match-

ing still takes a considerable amount of time and decreases

the accuracy of the camera pose [23]. We propose an alter-

native solution instead – to exploit the poses coming from

walks in the current pose-graph to establish tentative corre-

spondences. These poses will be used to make the standard

descriptor matching “light-weight” by checking only those

correspondences which are consistent with the pose.

Guided feature matching with pose. Let us assume that

we are given sets of keypoints Ki,Kj in the ith and jth im-

ages, respectively, and a relative pose Pij = (tij ,Rij) ∈
SE(3) from the ith image to the jth one. One can easily

calculate essential matrix Eij = [tij ]×Rij and use it to

measure the distance ǫ of point pairs via the Sampson Dis-

tance or the Symmetric Epipolar Error [21]. Therefore, the

objective is to find pairs of points (pi,pj), where pi ∈ Ki,

pj ∈ Kj and ǫ(pi,pj ,Eij) is smaller than the inlier-outlier

threshold. In contrast to the traditional approach, where the

feature matching is defined over the high-dimensional de-

scriptor vectors of all possible keypoints using the L2 norm,

we propose to select a small subset of candidate matches

using the essential matrix. Consequently, the descriptor

matching becomes significantly faster.

Due to doing the matching in 2D, the procedure can be

done by hashing instead of a brute-force or approximated

pair-wise process. Using the essential matrix, finding pos-

sible pairs of a point in the source image degrades to find-

ing points in the destination one where the corresponding

epipolar lines project to the correct position, i.e., onto the

selected point in the source image. Therefore, the points in

the destination image can be put into bins according to their

epipolar lines in the source image. A straightforward choice

is to define the bins on the angles of the epipolar lines as it

is visualized in Fig. 5. We call this technique in the further

sections Epipolar Hashing (EH). Note that EH is applica-

ble even when the intrinsic camera parameters are unknown

and, thus, we only have a fundamental matrix.

Let us denote the angle of the corresponding epipolar

line l in the first image of point (x, y) in the second image

as α(x,y) ∈ [0, π). Due to the nature of epipolar geometry,

certain α(x,y) angles are impossible. Therefore, we define

the interval consisting of the valid angles and, thus, which

we will cover by a number of bins as [a, b], where

a = min
(

α(0,0), α(w2,0), α(0,h2), α(w2,h2)

)

,

b = max
(

α(0,0), α(w2,0), α(0,h2), α(w2,h2)

)

.

Point (0, 0) is the top-left corner of the second image, w2

is its width, and h2 is its height. When hashing the points,

the size of a bin will be b−a
#bins

. This is an important step in

practice since sometimes the epipole is far outside the im-

age and, thus, the range of angles is < 1. Without the adap-

tive bin size calculation, the algorithm does not speed up

the matching in such cases. Note that [a, b] is [0, π) when

the epipole falls inside the image. When doing the tradi-

tional descriptor matching, we consider only those matches

which are in the corresponding bin and have lower Sampson

distance than the threshold used for determining the pose.

After the guiding is performed, descriptor matching is

done on 2 to 30 possible candidates instead of all keypoints.

To further clean it up, we apply standard SIFT ratio test [27,

23] with adaptive ratio threshold, depending on number of

nearest neighbors – the smaller the pool, the stricter the ratio

test is. Details are added to the supplementary material.

The matching process is applied after A∗ if that finds a

good pose. Since A∗ requires a set of correspondences to

determine if a pose is reasonably good, we use correspon-

dences from those point tracks where the current images are

visible. The multi-view tracklets are calculated and updated

when a new image pair is matched successfully. Since both

global and incremental SfM algorithms require point tracks,

this step does not add to the final processing time.

Note that [46] proposed a guided matching where the

points are put in a 2D grid and each neighbor selection re-
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Table 1: Run-time of pose estimation on 402 130 view pairs

from the 1DSfM dataset using GC-RANSAC, breadth-first

traversal and A∗ with the proposed heuristic (unit: seconds).

method avg med total

GC-RANSAC [6] 0.815 0.915 327 574

Breadth-first 2.916 0.703 1 429 423

A∗ 0.173 0.056 82 672

quires iterating through K grid cells which the correspond-

ing epipolar lines select, thus, implying O(K) complexity.

The proposed EH operates in 1D and all neighbors are from

a single cell implying O(1) complexity.

4. Adaptive Correspondence Ranking

In this section, we propose a strategy to adaptively set

the weight of the point correspondences for PROSAC sam-

pling [11] when doing pair-wise relative pose estimation in

large-scale problems. PROSAC exploits an a priori pre-

dicted inlier probability rank of the points and starts the

sampling with the most promising ones. Progressively,

samples which are less likely to lead to the sought model are

drawn. The main idea of the proposed algorithm is based on

the fact that features detected in one image and matched to

the other ones often appear multiple times when matching

the image collection. Therefore, correspondences contain-

ing points which were inliers earlier are to be used first in

the PROSAC sampling. Conversely, points that were out-

liers in the previous images should be drawn later.

Assume that we are given the t-th image pair to match

with sets of keypoints Ki, Kj . Each keypoint p, from ei-

ther set, has score s
(t)
p ∈ [0, 1] for determining its outlier

rank among all keypoints. After successfully estimating the

pose Pij of the image pair, we are given the probability

P ((p,q) | Pij) of (p,q) being outlier given pose Pij ,

where (p,q) is a tentative correspondence, p ∈ Ki, q ∈
Kj . Probability P ((p,q) | Pij) can be calculated, e.g., as

in MSAC [53], MLESAC [53] or MAGSAC++ [7] from the

point-to-model residuals assuming normal or χ2 distribu-

tions. Since we do not know how probabilities P (p | Pij)
and P (q | Pij) relate, we assume that p and q being con-

sistent with the rigid reconstruction are independent events

and, thus, P ((p,q) | Pij) = P (p | Pij)P (q | Pij). To

be able to decompose probability P ((p,q) | Pij), we as-

sume that P (p | Pij) = P (q | Pij) =
√

P ((p,q) | Pij).
This probability is then used to update score sp and sq af-

ter the t-th image pair matched as s
(t+1)
p = s

(t)
p P (p | Pij)

and s
(t+1)
q = s

(t)
q P (q | Pij). Let us set s

(0)
p = 1 since all

keypoints are similarly likely to be outliers in the beginning.

When the (t + 1)th image pair is matched by using

PROSAC sampling, the correspondences are ordered ac-

Table 2: Run-time of matchers used for forming tentative

correspondences with and without exploiting the relative

pose in the proposed way (unit: seconds).

avg med
matcher

w/o pose pose w/o pose pose

Brute-force 7.609 1.078 1.047 1.139

FLANN [32] 0.992 0.318 0.728 0.137

Epipolar Hashing – 0.057 – 0.046

cording to their outlier ranks s
(0)
p increasingly, such that the

first one is the least likely to be an outlier.

5. Experiments

We tested the proposed algorithms on the 1DSfM

dataset [56]. It consists of 13 scenes of landmarks with

photos of varying sizes collected from the internet. 1DSfM

provides 2-view matches with epipolar geometries and a

reference reconstruction from incremental SfM (computed

with Bundler [48, 49]) for measuring error. We used the

SIFT features [27] as implemented in OpenCV with Root-

SIFT [3] descriptors. In each image, 8000 keypoints are de-

tected in order to have a reasonably dense point cloud recon-

struction and precise pair-wise geometry camera poses [23].

We combined mutual nearest neighbor check with standard

distance ratio test [26] to establish tentative point corre-

spondences, as recommended in [23]. The bin number for

Epipolar Hashing was set to 45. We matched all image pairs

with global similarity higher than 0.4 with which we got ac-

curate reconstruction in reasonable time. This leads to using

only 1–2% (402 130 in total) of all pairs.

The methods are implemented in C++ using the Eigen

and Sophus [51] libraries. The graph traversal algorithms

are implemented by ourselves. For robust estimation,

we always use the GC-RANSAC algorithm [6] with the

five-point algorithm of Stewenius et al. [50]. Note that

the used GC-RANSAC implementation contains PROSAC

sampling [11], SPRT test [12] and a number of sample and

model degeneracy tests to be as efficient as possible.

Alternatives for RANSAC. Pose-graph generation al-

gorithms are compared in this section, including the pro-

posed A∗-based technique. The compared methods are:

1. The standard exhaustive matching (EM) where each

tested image pair is matched by FLANN + GC-RANSAC.

2. A minimal spanning tree (MST) where the global simi-

larity score is used as weights.

3. The proposed A∗-based technique, where the pose comes

from a path determined by A∗ if possible. Otherwise, the

standard matching is applied.

4. Breadth-first (BF) traversal applied in the same way as

the proposed A∗ algorithm.

14551



0 50 100 150 200

rotation error (in degrees)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b

il
it

y

Rotation error CDF

Exhausive matching

A-Star

Breadth-first

0 50 100 150 200

translation error (in degrees)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b

il
it

y

Translation error CDF

Exhausive matching

A-Star

Breadth-first

0 0.2 0.4 0.6 0.8 1

Time (in seconds)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b

il
it

y

Processing time CDF

Exhausive matching

A-Star

Breadth-first

Figure 6: The cumulative distribution functions of the errors (in degrees) and processing times (in seconds) of the pose-graphs

generated by different initialization techniques on all scenes of the 1DSfM dataset. All algorithms returned 402 130 poses.

Table 3: The results of a global SfM [52] averaged over the scenes from the 1DSfM dataset [56]. The SfM is initialized with

pose-graphs generated by the traditional exhaustive matching (EM), breadth-first-based (BF), A∗-based (A∗), and Spanning-

tree-based (MST) pose-graph building. The reported properties are: pose-graph generator method (1st), number of views

(2nd) and multi-view tracks (3rd) reconstructed by the SfM given an initial pose-graph; the total time of the pose-graph

generation and bundle adjustment on a single CPU (4th); rotation error of the reconstructed poses in degrees (5th), position

error in meters (6th) and focal length errors (7th).

time orientation err (◦) position err (m) focal len. err (×10−2)

# views # tracks (hours) AVG MED STD AVG MED STD AVG MED STD

EM 437 76 837 202 9.8 6.6 6.2 10.9 8.4 13.9 2.0 1.2 3.7
BF 463 73 864 507 7.7 7.0 7.1 10.7 6.1 18.8 2.2 1.2 3.9

A∗ + FLANN 439 69 312 58 8.6 6.9 6.6 11.2 6.6 19.4 2.2 1.2 3.8
A∗ + EH 444 78 335 29 7.8 6.1 5.2 10.8 6.2 19.5 2.4 1.4 4.1

MST 84 10 334 4 25.4 10.6 7.6 12.5 23.0 7.9 2.4 1.5 3.5

The CDFs of the rotation and translation errors (angles) and

run-times (seconds) are shown in Fig. 6. We do not in-

clude MST since it matches significantly fewer image pairs

(9922) than the others (402 130). The A∗-based technique

leads to the most accurate rotation matrices while having

similar translation errors as the breadth-first-based and ex-

haustive matching. The proposed A∗-based technique leads

to a significantly faster pose-graph generation than EM or

BF. Note that the break-points in the run-time curves are

caused by setting the maximum number of RANSAC itera-

tions to 5000 to avoid extremely long runs.

The average, median and total processing times of the

pair-wise pose estimation algorithms are shown in Table 1.

The run-times contain those cases as well when no valid

pose was found by the A∗ or breadth-first traversals and,

thus, GC-RANSAC was applied to recover the pose. The

A∗ algorithm leads to a speedup of almost an order of mag-

nitude with its median time being approx. 20 times lower

than that of GC-RANSAC. It validates the proposed heuris-

tic that the breadth-first algorithm is significantly slower

than A∗. Consequently, the proposed heuristic guides the

path-finding in the pose-graph successfully.

Matching with Pose. We compare the feature match-

ing speed with or without exploiting the pose determined

by the A∗ algorithm. In FLANN and brute-force match-

ing, this means that we find all candidate matches which

lead to smaller epipolar error than the inlier-outlier thresh-

old. The best candidate is then selected by descriptor-based

matching. The run-times are reported in Table 2. Using the

pose speeds up both the FLANN-based and brute-force al-

gorithm significantly. The proposed Epipolar Hashing leads

to a more than 17 times speedup compared to the tradi-

tional FLANN-based feature matching. Also, by the Epipo-

lar Hashing, the neighbors are found precisely without ap-

proximation as done in FLANN.

On scene Madrid Metropolis, the number of recon-

structed 3D points is 9486 without and 29 665 with using

EH to find more correspondences.

Adaptive Ranking. The avg., median and total run-

times (seconds) of the robust estimation using different cor-

respondence ranking techniques for PROSAC are shown

in Table 4. Three methods are compared: the uniform

matching from RANSAC (unordered); PROSAC when the

correspondences are ordered according to their SIFT ra-

tios [11]; and the proposed adaptive re-ranking consider-

ing the prior information about the points from earlier es-
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Table 4: Run-time of PROSAC using different ordering

techniques: unordered (RANSAC-like uniform [15]), SIFT

ratio [11] and the proposed adaptive one (unit: seconds).

ordering avg med total

Unordered 0.736 0.768 295 997

SIFT ratio 0.664 0.698 266 849

Adaptive ordering 0.615 0.643 247 320

timations. While ordering the correspondences according

to their SIFT ratios speeds up the estimation by 10% com-

pared to the uniform sampling, the proposed adaptive re-

ranking leads to an additional 8% speedup on average.

Applying Global SfM Algorithm. Once relative poses

are estimated they are fed to the Theia library [52] that per-

forms global SfM [10, 56]. That is, feature extraction, im-

age matching and relative pose estimation were performed

by our code either using the proposed algorithm or the tra-

ditional brute-force pair-wise matching using the 5PT [50]

solver. The key steps of global SfM are robust orienta-

tion estimation, proposed by Chatterjee et al. [10], followed

by robust nonlinear position optimization by the method of

Wilson et al. [56]. The estimation of global rotations and

positions enables triangulating 3D points, and the recon-

struction is finalized by the bundle adjustment of camera

parameters and point coordinates. Since the reconstruction

always failed on scene Gendarmenmarkt, we did not con-

sider that scene when calculating the errors.

Table 3 reports the results of Theia initialized by

pose-graphs generated by the exhaustive matching (EM),

breadth-first graph traversal (BF), the proposed A∗-based

graph-traversal, and by using a minimum spanning tree

(MST). While the generation of the minimum spanning

tree-based pose-graph is extremely fast, it can be seen that

it is not good enough for a global SfM algorithm to pro-

vide a reconstruction of reasonable size. The avg. number

of views reconstructed when initialized by MST is signifi-

cantly lower than using other techniques. The proposed A∗-

based methods lead to similar number of views and similar

error to the traditional approach. Note that the proposed

method extremely cheaply creates cycles that are important

for having stable results with a global SfM [31, 5].

Heuristic for A* Traversal. The A∗ traversal parame-

ters are tuned on scene Alamo. For this purpose, the ground

truth pose-graph is loaded and the pose is obtained by A∗

between all image pairs without direct connection. The pa-

rameters tuned are weight λ from (2) and the maximum

depth allowed when obtaining the walks. They were then

used for all other tests and scenes.

In Fig. 7, the avg. number of nodes visited by A∗ (left)

and the ratio of accurate poses obtained (right) are plotted

as the function of λ. Parameter λ = 0 means that there
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Figure 7: Average # of nodes visited by A∗ (left) and ratio

of accurate relative poses obtained (right) in scene Alamo

plotted as the function of weight λ and the max. depth.

is no constraint on the edge quality, the only goal is to get

to a node similar to the destination. Parameter λ = 1 is

interpreted as walking on the highest quality edges with-

out trying to get close to the destination. The number of

nodes visited, i.e. proportional to the processing time, is

nearly constant for λ ∈ [0, 0.8]. The highest success rate

is achieved by λ = 0.8 and Depthmax = 5. Since λ = 0.8
with Depthmax = 5 also leads to a reasonably low number of

nodes visited, we chose these values in all our experiments.

Additional experiments are in the supplementary material.

6. Conclusions

The final bundle adjustment of global SfM algorithms

has a negligible time demand compared to the initial pose-

graph generation. To speed this step up by almost an or-

der of magnitude, we proposed three new algorithms. The

standard procedure (i.e., feature matching by FLANN; pose

estimation by RANSAC-like robust estimation) for estimat-

ing the pose-graph for all scenes from the 1DSfM dataset

took a total of 726 487 seconds on a single CPU – approx.

202 hours. By using the proposed set of algorithms (i.e.,

A∗-based pose estimation; Epipolar Hashing for match-

ing; adaptive re-ranking), the total run-time is reduced to

105 593 seconds (29 hours). In the experiments, A∗ found

a valid pose in 93.8% of the image pairs. Thus, tradi-

tional FLANN-based feature matching and pose estimation

by RANSAC was applied only to 6.2% of the image pairs.
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