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Abstract

Point cloud registration is a common step in many 3D

computer vision tasks such as object pose estimation, where

a 3D model is aligned to an observation. Classical regis-

tration methods generalize well to novel domains but fail

when given a noisy observation or a bad initialization.

Learning-based methods, in contrast, are more robust but

lack in generalization capacity. We propose to consider it-

erative point cloud registration as a reinforcement learn-

ing task and, to this end, present a novel registration agent

(ReAgent). We employ imitation learning to initialize its

discrete registration policy based on a steady expert pol-

icy. Integration with policy optimization, based on our pro-

posed alignment reward, further improves the agent’s reg-

istration performance. We compare our approach to classi-

cal and learning-based registration methods on both Mod-

elNet40 (synthetic) and ScanObjectNN (real data) and show

that our ReAgent achieves state-of-the-art accuracy. The

lightweight architecture of the agent, moreover, enables re-

duced inference time as compared to related approaches.

Code is available at github.com/dornik/reagent.

1. Introduction

Depending on the application domain, point cloud reg-

istration methods need to fulfill a range of properties. For

example, AR applications and robotics applications require

real-time inference speed and robustness to unexpected ob-

servations. In such real-world deployment, generalization

to categories that were not seen during training is required.

Further, registration approaches also need to generalize to

different tasks, such as object pose estimation or scan align-

ment. Finally, an interaction with or scrutiny by a human

might be required. For this, the method’s steps need to

be interpretable. These properties are often competing and

thus difficult to achieve using a single approach.

As diverse as the required properties are the approaches

that are proposed to solve point cloud registration. Dis-

tinctive features of proposed methods are global [28, 30]

Figure 1: Iterative registration using ReAgent. The source

point cloud (cyan) is aligned to the target point cloud (gray),

starting from an initial source (magenta). ReAgent follows

policy π by taking action ai = argmaxa π(a|Oi) given the

current observation Oi, improving registration step-by-step.

or local optimality [3], as well as one-shot [24] or iterative

computation [1]. Global considerations allow for greater

robustness to initial conditions than local methods, albeit at

the cost of significantly increased computation time. While

iterative methods may achieve higher accuracy than one-

shot approaches through repeated registration, they may di-

verge over multiple steps. Furthermore, learning-based ap-

proaches are proposed in related work [24, 1, 25, 5], which

are shown to be more robust to initialization and noise than

classical approaches. However, these methods are not ro-

bust to domain change, e.g., when transferred to novel tasks.

In an effort to bridge this performance gap between

methods, we design a novel registration approach that uni-

fies accuracy, robustness to noise and initialization with in-

ference speed. While reinforcement learning methods for

RGB-based object pose refinement are proposed [22, 4], to

the best of our knowledge, we are the first to consider 3D

point cloud registration as a reinforcement learning prob-

lem. Our approach is based on a combination of Imitation

Learning (IL) and Reinforcement Learning (RL); imitating

an expert to learn an accurate initial policy, reinforcing a

symmetry-invariant reward to further improve the policy.
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As illustrated in Figure 1, the proposed registration agent

(ReAgent) treats registration as an iterative classification of

the observed point cloud pair into discrete steps. In sum-

mary, we

• combine imitation and reinforcement learning for ac-

curate and robust point cloud registration,

• propose a lightweight agent for fast inference and in-

terpretability using iterative discrete actions and

• improve accuracy compared to state-of-the-art meth-

ods on synthetic and real datasets, while reducing in-

ference time compared to related approaches.

We discuss related point cloud registration and reinforce-

ment learning methods in Section 2. Section 3 presents the

proposed registration agent. Section 4 provides experiments

on synthetic and real data. The impact of the presented con-

tributions is discussed in Section 5. Section 6 concludes the

paper. Additional details and results on the related object

pose estimation task are found in the supplement.

2. Related Work

The presented approach is influenced by previous work

in point cloud registration and work that applies reinforce-

ment learning to the related task of object pose estimation.

Classical Point Cloud Registration: The most influen-

tial work in point cloud registration is Iterative Closest Point

(ICP) [3]. First, the (closest) points in the source and tar-

get points clouds are matched. Then, a transformation that

minimizes the error between the matched points is found in

closed form. These steps are repeated until convergence.

Many variants are proposed, e.g., considering surface nor-

mals [17], color [14] or using non-linear optimization [6].

ICP may only find local optima. A branch-and-bound

variant [28] trades global optimality for increased run-

time. Other global approaches use local features [18]

with RANSAC or directly optimize a global objective [30].

TEASER [27] achieves high robustness to large amounts of

outliers through a truncated least squares cost and allows to

certify global optimality of the estimated registration.

Learning-based Point Cloud Registration: Recent ap-

proaches based on neural networks (NN) use the idea of ICP

and its global variants. Local features are extracted to de-

termine a matching between the input clouds. Using this

matching, the transformation is found either in closed form

using differentiable Weighted SVD [24, 25, 29] or by opti-

mization using stochastic gradient descent [5]. This enables

the definition of end-to-end learnable registration pipelines.

Notably, the method by Yew and Lee [29] additionally uses

surface normals to compute Point Pair Features (PPF) as

input. While there is effort to extract more robust features

[29, 5], these methods typically use secondary networks that

predict the sharpness of the match matrix to deal with im-

perfect correspondences and outliers [25, 29].

In contrast, another class of NN-based methods uses

global features that represent whole point clouds and as

such are more robust to imperfect correspondences. Sem-

inal work in this direction by Aoki et al. [1] poses itera-

tive registration as the alignment of global features using

an interpretation of the Lucas-Kanade algorithm. A deter-

ministic formulation that replaces the approximate with an

exact Jacobian is proposed in [12], which increases the sta-

bility of the approach. The method in [19] allows one-shot

registration of global features. We show that global feature

representations may be used as state representation in RL

and learned jointly with the agent’s policy.

Reinforcement Learning in Object Pose Estimation:

In the related domain of object pose estimation, Krull et al.

[10] use RL to find a policy that efficiently allocates refine-

ment iterations to a pool of pose hypotheses. Closely re-

lated to our approach, in RGB-based object pose estimation

[22, 4], RL is used to train policies that manipulate an ob-

ject’s pose. Based on 2D segmentation masks, these agents

learn to predict discrete refinement actions. In contrast, we

focus on learning registration actions from 3D point clouds

– while RGB-based methods use pretrained optical flow es-

timation as state, we use siamese PointNets. Additionally,

we integrate IL to quick-start training and stabilize RL.

3. Point Cloud Registration Agent

In the following, we present our novel point cloud reg-

istration approach, based on imitation and reinforcement

learning, called ReAgent. For readers unfamiliar with point

cloud registration, Section 3.1 gives a brief introduction. In

Section 3.2, we propose the fast and interpretable network

architecture of the agent. Sections 3.3 and 3.4 present the

learning procedure that enables accurate and robust registra-

tion. In Section 3.5, we discuss design choices that facilitate

generalization to novel test categories and real data.

3.1. Background: Point Cloud Registration

Assume two point clouds, the source X and target Y ,

that represent an object or scene surface are given. In the

simplest case, both sets are identical but may in general only

partially overlap. The observed source X ′ is offset by an

unknown rigid transformation T ′ = [R′ ∈ SO(3), t′ ∈ R
3],

where R′ is a rotation matrix and t′ a translation vector. We

define the tuple O = (X ′, Y ) as the observation, where

X ′ = T ′ ⊗X. (1)

Given O, the task of point cloud registration is to find a rigid

transformation T̂ such that

T̂ ⊗X ′ = X. (2)
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Figure 2: Architecture overview for one iteration of ReAgent.

The optimal transformation would thus be T̂ = T ′−1 such

that we retrieve the original alignment (X,Y ). In general,

however, T̂ is an error afflicted estimate of the registration.

The target Y guides this registration process.

When n steps are taken to compute this transformation,

this is referred to as iterative registration. In every step i, a

rigid transformation T̂i is estimated and the observed source

is updated by

X ′

i = T̂i ⊗X ′

i−1. (3)

The goal is that the final estimate after n steps is again

X ′

n = T̂n ⊗ ...⊗ T̂1 ⊗X ′

0 = T̂ ⊗X ′ = X. (4)

In a more general setting, one or both point clouds are

noise afflicted. For example, their 3D coordinates may be

jittered, their order may not correspond, not every point in

the source may have a correspondence in the target and the

number of points may not be identical. Such noise is typi-

cally due to the sensor recording the point clouds, varying

view points or (self)occlusion.

3.2. The ReAgent Architecture

The proposed architecture for our point cloud registra-

tion agent is shown in Figure 2. The registration starts with

a feature embedding that transfers the raw observed point

clouds into global feature vectors. The concatenation of the

source’s and target’s global feature vector is used as state

representation, encoding the agent’s information about the

current registration state. A policy network uses the state

representation to predict two action vectors, one for rotation

and one for translation. Finally, the resulting transformation

is applied to the observed source, iteratively improving the

registration. In each such step, the agent receives a reward

that judges how well it performs its task. The individual

parts are now discussed in more detail.

Learned state representation: The observed source

and target may have varying shape and may be noise af-

flicted. Our goal is to learn a more robust and more pow-

erful representation than the bare point clouds. This is

achieved by the feature embedding Φ(O), mapping from

N × 3 dimensional observation to 1×M dimensional state

O

π(a|O)

-           0           + -           0           + -           0           +

Figure 3: Illustration of interpretable actions. Top: Ob-

served sources (cyan) with varying offset to the target

(gray). Bottom: The probability of selecting each step size.

space. The source and target are passed through the embed-

ding separately with shared weights. The concatenation of

both global feature vectors is used as state S.

Discrete action space: We observe that, when trying

to reach an exact registration in every iteration (i.e, by re-

peated one-shot registration), a bad estimate in one step may

lead to divergence of the whole registration process. To this

end, related work proposes to robustify the matching pro-

cess [25, 29]. In an orthogonal approach, we aim to robus-

tify the update steps themselves by using discrete, limited

step sizes in each iteration. The discrete steps may be in-

terpreted as the result of a classification of the observation

into misalignment bins, as shown in Figure 3. Inspired by

recent work by Shao et al. [22], we use a set of discrete

steps along and about each axis as action space. We pro-

pose to use an exponential scale for the step sizes to quickly

cover a large space during initial registration, while allow-

ing accurate fine-registration in later steps.

Given state S, the agent’s policy π(S) gives the proba-

bility of selecting action a. The policy is computed by the

agent’s action head and predicts the step sizes for the itera-

tion. Note that a is a vector of 6 sub-actions, one per rota-

tion axis and translation axis. In addition, a value head esti-

mates the baseline v̂(S). During the RL update, the baseline

is subtracted from the returns of the actions to compute the

advantage. This is commonly used to reduce variance as

compared to using the returns directly.

Disentangled transformation: The concatenation of

multiple rigid transformations with the source in Equa-

tion (4) may follow different conventions. The basic ap-

proach is to compute the matrix product of all T̂i in homog-
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Figure 4: A transformation sequence and its effect on a

point cloud using global (top) and disentangled transforma-

tion (bottom).

enized form and apply this to X ′. Yet, as shown in Figure 4,

when the rotation center is not the origin, a rotation induces

an additional translation of the point cloud since

[

R1 t1
0 1

] [

R0 t0
0 1

]

=

[

R1R0 R1t0 + t1
0 1

]

. (5)

Note that this is equal to iterative application of T̂i to X ′ as

R1(R0X + t0) + t1 = R1R0X +R1t0 + t1. (6)

To support interpretability, however, we would like a ro-

tation action to only result in a local rotation of the object.

Moreover, we want the rotation and translation axes to align

with the global coordinate axes such that an action in a spe-

cific axis always results in the same global displacement.

Formally, we want iterative transformations to result in

Xi = (
∏ i

Ri)X +
∑ i

ti. (7)

Such disentanglement of rotation and translation not only

benefits interpretability but, as shown for image-based ob-

ject pose estimation by Li et al. [13], is also beneficial for

training of the agent; it does not need to account for the

rotation-induced translation.

Following this idea, we propose a disentangled applica-

tion of T̂ to 3D point clouds. For iterative registration, we

define the update rule for an accumulator Ti = [Ri, ti] by

Ri = R̂iRi−1, ti = t̂i + ti−1, (8)

which is initialized with T0 = [I3×3, 0] and applied to the

observed source by

X ′

i = Ri(X
′ − µX′) + µX′ + ti. (9)

Thereby, rotations are applied with the centroid of the ob-

served source µX′ as the origin. Since we only apply rigid

transformations, the relation between points and the cen-

troid does not change. The outcome is that no additional

translation is introduced. This also holds when applying the

accumulated transformation.

3.3. Imitating an Expert Policy

Learning a complex task, such as point cloud registra-

tion, from scratch using RL may take long to converge or

may get stuck with a suboptimal policy; even more so if the

state representation is learned jointly with the policy. To

circumvent this issue, we initialize the state representation

and the policy using IL.

In IL, the goal is to imitate the behavior of some domain

expert. The simplest form of IL is Behavioral Cloning (BC).

This assumes that, in every step, the agent has access to

feedback from the expert. The feedback is used similarly to

training data labels in supervised learning.

Expert policy: The expert feedback may come from

interactions of a human expert or another algorithmic ap-

proach to solve the task. Since we can create training sam-

ples from point clouds by generating the initial rigid trans-

formation, we have access to T ′. We exploit this by defining

two expert policies that reduce the true transformation error

in the current step, given by

δRi = R′R⊤

i , δti = t′d − ti, (10)

where t′
d

is the disentangled form of t′ that accounts for the

translation induced by R′ using

t′d = t′ − µX′ +R′µX′ . (11)

The expert policy either takes the largest possible step

that reduces the absolute error (greedy) or the signed er-

ror (steady). The steady expert produces trajectories with

monotonously decreasing error, while the greedy expert

produces optimal trajectories at the cost of oscillation.

Data gathering: The initial transformation alone is,

however, insufficient to train our agent. The agent will ob-

serve certain trajectories during inference that are not cov-

ered by the generated initial errors T ′. To this end, we

rollout trajectories by following the stochastic policy of the

agent to gather a replay buffer. The distribution of train-

ing data in this buffer is more representative of what the

agent will observe during inference and dynamically adapts

as the agent improves. By using the stochastic policy, we

also guarantee exploration. As the training converges, the

entropy of the policy H(π) – and consequentially the ex-

ploration – reduces.

Behavioral cloning: The gathered training data, to-

gether with the annotation from the expert policy, allows us

to train the agent using a 6-dimensional cross-entropy loss.

For every observation, we gather registration trajectories.

Once a certain number of trajectories is reached, the agent

is updated using mini-batches from the shuffled buffer.

3.4. Improving through Reinforcement

The resulting agent policy is in two ways limited by the

expert. On one hand, the agent cannot find a better policy

than the expert as its actions would differ from the expert

labels. On the other hand, different transformations will,

in general, lead to different expert actions. If the observed
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sources are, however, indistinguishable due to symmetry,

they might be represented by an identical state vector. This

hinders training of the agent as this would require different

actions to follow from the same state vector.

Reward function: The overall goal of the agent is to

align source and target. Following the expert policy, this

alignment will reflect the initial transformation T ′. Rather,

the alignment should be treated equally for equivalent trans-

formations T̃ ′ that result in indistinguishable observations

where X ′ ∼ X̃ ′. Instead of training the agent to exactly

imitate the expert policy, we thus additionally use RL and

define the training objective by a reward function.

In the proposed RL task, equal consideration of equiva-

lent transformations is achieved by using the mean Chamfer

distance (CD) between the currently observed source X ′

and true source X = T ′−1X ′. This measure is insensitive

to transformations that result in the same distance between

closest points, e.g., rotations about a symmetry axis. Note,

though, that the sampling rate of the point cloud may in-

troduce fluctuations as X ′ moves through undersampled re-

gions of X and vice-versa. However, this effect is lessened

by considering the mean over all distances. Based on this,

we define a step-wise reward

r =











−ε−, CD(X ′

i
, X) > CD(X ′

i−1, X)

−ε0, CD(X ′

i
, X) = CD(X ′

i−1, X)

ε+, CD(X ′

i
, X) < CD(X ′

i−1, X).

(12)

Steps that reduce CD are rewarded by ε+, “stop” gets a

negative penalty −ε0 to discourage pausing and divergent

steps are penalized by −ε−. We choose ε− > ε+ to dis-

courage alternating diverging and converging steps.

Policy optimization: The policy learned using IL al-

ready performs accurate registration. Large changes to the

policy due to RL might result in forgetting and thereby

worsening of the agent’s performance. Rather, we want the

policy after an RL update to be close to the previous pol-

icy. This is achieved by trust-region approaches such as

Proximal Policy Optimization (PPO) [21]. The main idea

of the clipped version of PPO is to limit the ratio between

the previous and the updated policy by a fixed threshold.

In addition, as observed in related work combining BC and

GAIL [8], it is benefitial to jointly optimize BC and RL ob-

jectives as to further limit divergence of the policy. In our

combined approach, both IL and RL use the same replay

buffer. Since the RL term considers equivalent transforma-

tions, the agent is able to differentiate between bad steps

(discouraged by IL and RL), equivalent steps (discouraged

by IL, encouraged by RL) and the best steps (encouraged

by IL and RL).

3.5. Implementation Details

The final combination of IL and RL that is used to train

the agent is presented in Algorithm 1, where agent imple-

Algorithm 1 Combined Imitation and Reinforcement

Learning using a Replay Buffer

1: for all observations O in O do

2: % Gather replay buffer

3: for N trajectories do

4: for n refinement steps do

5: agent predicts policy π(O) and value v̂

6: action a is sampled from policy π(O)
7: take action a, receive reward r and next O′

8: add sample to buffer b, step observation O = O′

9: end for

10: end for

11: % Process replay buffer

12: compute return R, shuffle buffer b

13: for all samples in buffer b do

14: agent predicts new policy π′(O) and value v̂′

15: % Imitate expert

16: expert predicts action a∗

17: compute cross-entropy loss lIL of π′(O) and a∗

18: % Reinforce

19: compute PPO loss lRL of π′(O) and π(O)
20: % Update agent

21: l = lIL + lRL · α

22: backpropagate combined loss l

23: end for

24: clear buffer b

25: end for

ments the architecture shown in Figure 2.

Agent: We choose a PointNet-like architecture [15] as

feature embedding. As indicated by the findings of Aoki et

al. [1], the T-nets in the original PointNet architecture are

unnecessary for registration and are therefore omitted. We

further observe that a reduced number of embedding layers

is sufficient to learn an expressive embedding. The feature

embedding Φ therefore reduces to 1D convolution layers of

size [64, 128, 1024], followed by max pooling as symmet-

ric function. The concatenation of these 1024 dimensional

global features gives a 2048 dimensional state vector.

In each iteration, the policy gives a step size for all 6

degrees of freedom. This is implemented as a prediction of

the logits of a multi-categorical distribution. There is a total

of 11 step sizes per axis: [0.0033, 0.01, 0.03, 0.09, 0.27] in

positive and negative direction, as well as a “stop” step. For

rotation, step sizes are interpreted in radians.

Shao et al. [22] propose to use shared initial layers for

the action and value heads in an actor-critic design. We

adapt this approach to our architecture and implement each

head as fully-connected layers of size [512, 256, D], where

D is 33 for rotation and translation estimation and 1 for the

value estimate. The concatenation of the middle layer of

both action heads serves as input to the value head.

Expert: While the greedy policy achieves a lower er-

ror, when used to train the agent, both experts result in the

same agent accuracy. We thus favor the more interpretable

trajectories learned from the steady policy.

PPO: We use the PPO formulation from [21] for actor-
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critic architectures with an entropy term that encourages

exploration. The advantage Â in the PPO loss uses the

agent’s value estimate and Generalized Advantage Estima-

tion (GAE) [20]. For the reward function, we experimen-

tally determine (ε+, ε0, ε−) = (0.5, 0.1, 0.6) to success-

fully guide the agent.

Hyperparameters: Further parameters are the number

of registration steps n = 10, the number of trajectories per

update N = 4, the discount factor γ = 0.99 and the GAE

factor λ = 0.95. The RL loss term is scaled by α = 2.

Regularization: While related methods use weight de-

cay, batch or layer normalization for regularization [1, 24],

we observe that affine data augmentation achieved better

results with our architecture. Namely, we use 1) random

scaling sampled from N (1, 0.1), clipped to [0.5, 1.5], 2)

shearing in uniformly random direction by a random an-

gle sampled from N (0, 5), clipped to [−15, 15] deg and 3)

mirroring about a plane with uniformly random normal.

4. Experiments

In the following, we evaluate the proposed point cloud

registration agent on synthetic and real data. To evaluate

our initial design goals of accuracy, inference speed and

robustness, we consider noise-afflicted conditions on syn-

thetic data. The generality of the approach is shown by re-

sults on held-out categories on synthetic data and the trans-

fer to real data.

Baselines: For comparison, we evaluate two classi-

cal and two learning-based approaches. The former are

Point-to-Point Iterative Closest Point (ICP) [3] and Fast

Global Registration (FGR) [30], both as implemented in

Open3D [31]. PointNetLK [1] is an iterative approach

based on global PointNet features. As with our approach,

we set the number of iterations to 10. Deep Closest Point

with Transformer (DCP-v2) [24] is a local feature-based ap-

proach, predicting one-shot registration. As the latter meth-

ods provide no pretrained models on the ModelNet40 cate-

gory splits, we retrain them using the published code.

Datasets: As in prior work, we evaluate on Model-

Net40 [26], which features synthetic point clouds sampled

from CAD models. To additionally evaluate performance

on real data, we provide results on ScanObjectNN [23], fea-

turing observations captured from an RGB-D sensor. Note

that all learning-based methods (including ours) use only

3D coordinates, while the FPFH features used by FGR addi-

tionally require surface normals. On ModelNet40, the mod-

els’ normals are used; on ScanObjectNN, the normals are

computed from the respective observations.

Metrics: In line with prior work [24, 25], we provide the

Mean Average Error (MAE) over Euler angles and trans-

lations. Yew and Lee [29] propose to additionally evalu-

ate the isotropic error for rotation and translation (ISO), as

well as a modified Chamfer distance (C̃D) to cover sym-

metric ambiguity. The isotropic rotation error is computed

by the geodesic distance between the rotation matrices and

the isotropic translation error uses the Euclidean norm. All

angles are given in degrees. Moreover, we provide the area

under the precision-recall curve (AUC) for the Average Dis-

tance of Model Points with Indistinguishable Views (ADI)

[7], a metric commonly used in object pose estimation. The

ADI is normalized to the model diameter and we clip at a

precision threshold of 10% of the diameter. Note that C̃D

and ADI AUC implicitly consider symmetry.

Training: All methods are evaluated using an Intel Core

i7-7700K and an NVIDIA GTX 1080. We train the pro-

posed agent using Adam [9] with AMSGrad [16] and a

batch size of 32. The replay buffer contains 4 trajectories

of 10 steps each, resulting in a total of 1280 observations.

We pretrain the agent for 50 epochs using IL (α = 0) on

clean point clouds from ModelNet40. During pretraining,

we start with a learning rate of 1e−3, and halve it every

10 epochs. We then fine-tune the policy for an additional

50 epochs on the first 20 categories of ModelNet40 with

the noise defined in Section 4.1. Fine-tuning uses the same

learning rate schedule, albeit starting from 1e−4. We pro-

vide separate results for training with only IL (ours IL) and

using the combined approach (ours IL+RL). Note that this

policy is used for all experiments and thus shows the gener-

alization performance of the proposed approach.

4.1. Synthetic Data: ModelNet40

To validate generalization to unseen points clouds and

novel categories, we follow related work [1, 24, 25] and

use the point clouds generated by [15] based on Model-

Net40. All approaches are trained on the training split of

the first 20 categories. The data augmentations follow re-

lated work [29]: Of the 2048 points, 1024 are randomly and

independently subsampled for source and target to intro-

duce imperfect correspondences. The source is transformed

by a random rotation R′ of [0, 45] deg per-axis and a ran-

dom translation t′ of [−0.5, 0.5] per-axis. Random noise is

sampled (again independently for source and target) from

N (0, 0.01), clipped to 0.05 and applied to the point clouds.

Finally, the point clouds are shuffled as to permute the order

of points. Table 1 (left) shows results on the test split of the

first 20 categories. Table 1 (right) shows results on the test

split of the second 20 categories. For consistency, we train

the other learning-based approaches in the noisy condition.

As shown in Table 1, our approach successfully general-

izes to novel point clouds and novel categories. We report

improved accuracy across all metrics as compared to related

work. The comparison in the rightmost column shows that

our approach is also the fastest of the evaluated learning-

based point cloud registration methods. Inference speed is

even comparable to the one-shot method DCP-v2. How-

ever, the performance of DCP-v2 deteriorates with imper-
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Held-out Models Held-out Categories

MAE (↓) ISO (↓) ADI (↑) C̃D (↓) MAE (↓) ISO (↓) ADI (↑) C̃D (↓) T (↓)

R t R t AUC ×1e−3 R t R t AUC ×1e−3 [ms]

ICP 3.59 0.028 7.81 0.063 90.6 3.49 3.41 0.024 7.00 0.051 90.5 3.08 9

FGR+ 2.52 0.016 4.37 0.034 92.1 1.59 1.68 0.011 2.94 0.024 92.7 1.24 68

DCP-v2 3.48 0.025 7.01 0.052 85.8 2.52 4.51 0.031 8.89 0.064 82.3 3.74 23

PointNetLK 1.64 0.012 3.33 0.026 93.0 1.03 1.61 0.013 3.22 0.028 91.6 1.51 45

ours IL 1.46 0.011 2.82 0.023 94.5 0.75 1.38 0.010 2.59 0.020 93.5 0.95
21

ours IL+RL 1.47 0.011 2.87 0.023 94.5 0.75 1.34 0.009 2.48 0.020 93.3 0.99

Table 1: Results on ModelNet40 with held-out point clouds from categories 1-20 (left) and on held-out categories 21-40

(right). Note that ↓ indicates that smaller values are better. Runtimes are for a single registration with 1024 points per cloud.
+ indicates that FGR additionally uses normals, while the remaining methods only use 3D coordinates.

.

Figure 5: Convergence of ReAgent with 10 random seeds on held-out models (top) and categories (bottom) of ModelNet40.

The lines show the mean and the shaded areas indicate the 95%-confidence intervals. Best viewed digitally.

Segmented Objects

MAE (↓) ISO (↓) ADI (↑) C̃D (↓) T (↓)

R t R t AUC ×1e−3 [ms]

ICP 5.34 0.036 10.47 0.076 88.1 2.99 19

FGR+ 0.11 0.001 0.19 0.001 99.7 0.16 131

DCP-v2 7.42 0.050 14.93 0.102 72.4 4.93 54

PointNetLK 0.90 0.010 1.74 0.020 92.5 1.09 45

ours IL 0.77 0.006 1.33 0.012 95.7 0.30
21

ours IL+RL 0.93 0.007 1.66 0.014 95.4 0.34

Table 2: Results on ScanObjectNN with the object seg-

mented from the observation. Learning-based methods use

the model trained on ModelNet40. Note that ↓ indicates

that smaller values are better. Runtimes are for a single reg-

istration and 2048 points per cloud. + indicates that FGR

additionally uses normals.

fect correspondences, as is the case with noisy observations.

When generalizing to held-out models, as shown in Fig-

ure 5, the addition of RL successfully improves accuracy on

the rotation-based metrics. As indistinguishable observa-

tions are due to rotations in this scenario these benefit most

from the policy optimization. Yet, this improvement dimin-

ishes with novel categories, also indicated by the results on

ScanObjectNN. Surprisingly, the consideration of symme-

try via RL even slightly decreases mean performance on

ADI AUC and C̃D over 10 random seeds.

4.2. Real Data: ScanObjectNN

To evaluate generalization from synthetic to real data, we

use the point clouds with segmented objects from ScanOb-

jectNN dataset with 2048 points each. The same type of

rigid transformations as in the previous condition are ap-

plied to the source. No additional noise is applied as the

dataset already represents the characteristics of a specific

depth sensor. For learning-based methods, the same models

as in the previous conditions are used without any retraining

or fine-tuning.

As shown in Table 2, our approach transfers from train-

ing on ModelNet40 to testing on ScanObjectNN with high

accuracy. Only FGR, additionally using normals to com-

pute FPFH features, performs consistently better under this

condition. However, inference time of FGR is almost 6

times higher compared to our approach. Notably, the in-

ference time of PointNetLK and of our approach is barely

affected by the doubling of the number of points. While

DCP-v2 requires repeated neighborhood computation that

negatively affects inference time, both PointNet-based ap-

proaches benefit from the independent embedding per point.

Qualitative examples are shown in Figure 6.

Further experiments on real data and the related object

pose estimation task are found in the supplement.
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×1e−4 (↓)

X X X global 42.08

X X X global 11.81

X X X X global 2.61

X X X X global 2.92

X X X X X 3.90

X X X X local 3.74

X X X X global 2.63

Table 3: Ablation study. Results of ours IL, pretrained on

clean point clouds from held-out ModelNet40 categories.

5. Discussion

In this section, we motivate several key design choices.

We discuss current limitations of the proposed approach and

suggest avenues for future work.

5.1. Design of the Agent

Table 3 presents results for central design choices. As

shown, the use of the stochastic agent policy to gather ad-

ditional training data (stoch.) is essential to the success of

the method. To a lesser extent, the regularization by aug-

menting data through affine transformations (augm.) pre-

vents overfitting. In Section 3.3, the steady policy was al-

ready suggested to be more interpretable than the greedy

policy. Even though the greedy policy on its own is more

accurate than the steady policy, the results in Table 3 show

that the agent trained using a steady policy achieves equally

high accuracy. We support our choice to reduce the depth

of the embedding (deep) and, instead, increasing the width

of the head networks (wide) by the slightly increased ac-

curacy. Finally, Table 3 highlights the importance of the

representation and application of transformations. There

is only a slight improvement by using a disentangled rep-

resentation with rotations applied locally (Ri = Ri−1R̂i)

as compared to using homogenized transformation matri-

ces (basic). Using globally applied disentangled rotations

(Ri = R̂iRi−1), as suggested in Section 3.2, improves

both accuracy and interpretability of our agent. By using

a disentangled representation, the agent does not need to

account for the rotation-induced translation. With global ro-

tations, additionally, the rotation axes remain aligned with

the global coordinate axes throughout trajectories.

5.2. Limitations and Future Work

Discrete steps induce finite accuracy, bound by the

smallest step size. Similarly, the largest step size bounds the

initial error that may be overcome by the agent in a given

number of iterations. To further generalize our approach, a

dynamically predicted scale factor could adapt step sizes.

For application to object pose estimation, a semantic seg-

mentation head as proposed in the original PointNet pa-

Figure 6: Qualitative examples. Columns show target

(gray), initial (magenta) and registered source (cyan).

per [15] may be adapted to iteratively improve object seg-

mentation during refinement. In addition, the combination

of ReAgent with rendering-based verification such as pro-

posed in [2] should be explored to efficiently consider mul-

tiple initial pose estimates.

Further applications of the proposed method, such as self

localization in large maps, will require efficient means to

determine a state embedding from vast numbers of points.

Replacing the PointNet embedding with (Deep) Lean Point

Networks [11] would increase model capacity, allowing

transfer to such complex domains.

6. Conclusion

We present a novel point cloud registration agent,

called ReAgent, that leverages imitation and reinforcement

learning to achieve accurate and robust registration of 3D

point clouds. Its discrete actions and steady registration

trajectories are shown to be interpretable, while achieving

fast inference times. The generality of our approach is

evaluated in experiments on synthetic and real data. On the

synthetic ModelNet40 dataset, our approach outperforms

all evaluated classical and learning-based state-of-the-art

registration methods. On ScanObjectNN, featuring real

data, our approach achieves state-of-the-art for all com-

parable methods that only use 3D coordinates. While

introducing normals, such as in FGR, achieves slightly

better registration accuracy, our method is 6 times faster,

making it more suitable for real-time applications. We

believe that these properties make ReAgent useful in many

application domains, such as object pose estimation or scan

alignment.
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