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Abstract

We propose an architecture and training scheme to pre-

dict video frames by explicitly modeling dis-occlusions and

capturing the evolution of semantically consistent regions

in the video. The scene layout (semantic map) and motion

(optical flow) are decomposed into layers, which are pre-

dicted and fused with their context to generate future lay-

outs and motions. The appearance of the scene is warped

from past frames using the predicted motion in co-visible

regions; dis-occluded regions are synthesized with content-

aware inpainting utilizing the predicted scene layout. The

result is a predictive model that explicitly represents objects

and learns their class-specific motion, which we evaluate

on video prediction benchmarks.

1. Introduction

Anticipating the future is critical for autonomous agents

to operate intelligently in the environment, such as for nav-

igation, manipulation, and other forms of physical interac-

tion. We hypothesize that decomposing the scene into inde-

pendent entities, each with its own attributes, is beneficial

to prediction. For example, in Fig. 1, different objects have

different geometry and motion, which induces distinctive

temporal changes in the video.

We propose a video prediction architecture that explicitly

models the different dynamics of semantically consistent re-

gions (Fig. 2). The model, described in detail in Sec. 3.1,

decomposes the video into regions, corresponding to differ-

ent semantic classes in the scene, and learns class-specific

characteristics while ensuring that their re-composition can

predict the image, along with class labels and flow fields.

Unlike warping the past using globally predicted flow

fields [20, 19, 27, 9], in our semantic-aware dynamic model

(SADM), local regions are represented by binary semantic

masks, whose evolution is simpler and easier to learn than

the motion of the entire video frames (see Fig. 1). Each of

the regions is predicted and then fused with its content to

generate future semantic maps and flow fields. The predic-

tion in co-visible regions of future frames is warped from

Figure 1. Different representations (video frame, semantic map,

flow field) have dynamics with different complexity. Also, differ-

ent classes have different dynamics within a given representation.

Top: a sequence of video frames (left), semantic maps (middle),

and flow fields (right). Bottom: dynamics or changes visualized in

terms of their difference. The dynamics in video frames is much

more complex than that in semantic maps and flow fields.

the past, with dis-occlusion detection mediated by the pre-

dicted semantic maps. Furthermore, the dis-occluded re-

gions are filled-in by a generative model or conditional ren-

derer, trained with not only the warped images, but also

the predicted semantic maps, enabling more structured and

semantically-aware synthesis. Modeling dis-occlusions ex-

plicitly spares the model the effort otherwise needed to learn

this complex phenomenon.

We incorporate semantic segmentation (scene layout),

optical flow (scene motion) and synthesis (scene appear-

ance) into a complete generative model for videos, which

facilitates semantically and geometrically consistent predic-

tion of complete video frames. SADM achieves state-of-

the-art performance in video prediction benchmarks such

as [7, 11, 10].

2. Related Work

Video generation methods produce image sequences ei-

ther from noise [41] or other input including pose [5] and

text [26]. SVG-LP [8] proposes to sample noise from
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Figure 2. Our video prediction architecture with learned semantic-aware dynamics. It first decomposes the scene into semantically con-

sistent regions to facilitate the modeling of class-specific characteristics. Each region is predicted and fused to generate the future scene

layout (semantic map) and motion (flow field) using the proposed semantic-aware dynamic model. Content-aware video inpainting for

dis-occlusions is performed after warping to generate the future video frames.

learned priors; MoCoGAN [38] samples latent variables

from the motion and content spaces separately to improve

temporal consistency. Similarly, TGAN [34] employs a

temporal generator and an image generator to model tem-

poral correlations; [13] models the dynamics in the latent

space with attribute controls. Given that the visual scene

is highly structured, [40, 5, 53] propose to generate a se-

quence of poses, which are transformed into images for

human action sequences; [57] generates videos of a single

object by first generating a sequence of conditions using a

3D morphable model, while [12] controls the video gener-

ation using sparse trajectories specified by the user. VGAN

[41] trains video generators with explicit separation of the

foreground and background, assuming static background.

Seg2vid [27] resorts to warping using flows generated by

the semantic mask, hoping to preserve the scene structure

implicitly. We also employ semantic maps in the gener-

ation of future flows but with a semantic-aware dynamic

model. [54] decomposes images into objects utilizing con-

textual information separation [55] and synthesizes motion

of single objects through perturbations in the object-centric

latent space.

Video prediction models are typically approximations

of conditional generative models [14, 1, 47, 41, 34, 8, 38,

30, 50]. The quality of predictions is typically evaluated

by image quality and temporal consistency. Given the high

complexity and dimensionality of the signal to be predicted,

the process usually requires explicit modeling or constraints

[27, 9]. PredNet [23] proposes a predictive model with

coding-based regularization. ContextVP [4] uses a context-

aware module with parallel LSTMs. SDC-Net [30] ap-

plies flow guided spatially-displaced convolutions, while

[15] predicts with dynamic filters that depend on the inputs.

DDPAE [14] and [47] map the observed images to a low-

dimensional space, so temporal correlations are easier to

learn. TPK [42] predicts future poses to guide appearance

changes. To address the loss of realism, [29, 20, 25, 19]

explicitly model the flows, and DVF [22] uses flow to syn-

thesize future frames. Similar to MCNet [39] and [52],

DPG [9] proposes motion-specific propagation and motion-

agnostic generation with confidence-based occlusion maps.

[24] predicts future semantic maps, and [16] jointly pre-

dicts the future semantic maps and flow fields. We use a

semantic-aware model such that the predicted maps can ex-

ploit class-specific motion priors. Our method generates

both future optical flows and semantic maps before ren-

dering future images. In [48], moving object segmentation

masks are used, but restricted to 2D affine motions, with

two categories: moving and static.

Image inpainting [28, 51, 17], image synthesis [3, 31,

44], and video-to-video synthesis [43] are also related to our

handling of dis-occlusions.

3. Method

Notation and goal. Let xt ∈ R
H×W×3 be a video frame at

time t, with f t ∈ R
H×W×2 andmt ∈ {1, 2, ..., C}H×W be

the corresponding optical flow field and semantic map re-

spectively. Here C is the number of semantic classes in the

semantic map. Given past observations {xt, f t,mt}Tt=1 up

to time T , our goal is to predict K frames into the future,

i.e., {xt}T+K
t=T+1

. The predictions should match the statis-

tics, quality and content of past frames of the same scene,

and exhibit variations that are consistent with the motion of

objects within. As illustrated in Fig. 2, our approach falls

into the direction of prediction by propagation, where video
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Figure 3. The architecture of our semantic-aware dynamic model (SADM) for learning class-specific dynamics of the scene layout and

motion. Input semantic maps and flow fields are parsed and processed by the semantic-aware recurrent encoders φrnn and decoders

ψrnn, with context incorporated into the prediction through a multi-layer perceptron. The predictions of semantically consistent regions

are combined by the fusion network ψcnn to generate the prediction on the whole image domain, which further improves contextual

compatibility in the predicted semantic maps and flow fields. The illustration is for two classes, but can be easily extended to more classes.

prediction for the co-visible part1 of the scene can be ac-

complished by warping, i.e., propagating pixels via the cor-

responding flow field.

3.1. Semantic­Aware Dynamic Model

We aim to explicitly model the semantic aware dynamics

of both the semantic maps (scene layout) and flow fields

(scene motion). In general, the proposed semantic aware

dynamic model takes as input the flow fields and semantic

maps up to time T , i.e., {(mt, f t)}Tt=1 and outputs the K
future flow fields and semantic maps {(mt, f t)}T+K

t=T+1
, as

shown in Fig. 3. The components therein are elaborated

below.

Semantic-aware recurrent encoder. Letmt
c = ✶(mt = c)

be the binary mask that indicates the region of semantic

class c at time t. Similarly, f tc = f t · mt
c is the masked

flow field showing only the motion of the pixels that are

classified as c. The semantic aware recurrent encoder φrnnc

will be operating recursively to produce a hidden represen-

tation of the past {(mt
c, f

t
c)}

T
t=1 while enforcing temporal

continuity of the representation:

htc = φrnnc ([mt
c, f

t
c ], h

t−1
c ) (1)

with hTc the hidden representation that summarizes the past

regions and flow fields of the pixels within class c, up to

time T . For now, we instantiate C such semantic aware

recurrent encoders, {φrnnc }Cc=1, which together generate the

hidden representation HT = {hTc }
C
c=1 that summarizes the

past semantic maps and flow fields, covering all semantic

classes.

Note that the collection HT explicitly represents inde-

pendent objects. While this may appear inefficient, in re-

ality the model reduces the number of parameters needed,

since the individual objects are simpler to represent. We

also carry out an ablation study (in the supplementary) on

different C’s by merging some of the semantically similar

1image regions that are observed/visible across multiple frames

classes, showing the accuracy-efficiency trade-offs. More-

over, we can easily parallelize the computation using the

grouped convolution operator proposed in [18]. Next, we

describe the procedure to predict the future semantic maps

and flow fields.

Semantic aware recurrent decoder. Given the hidden rep-

resentation of the past,HT = {hTc }
C
c=1, the semantic aware

recurrent decoder produces K future semantic maps and

flow fields {(mt, f t)}T+K
t=T+1

. We first describe a determin-

istic decoding procedure, for simplicity, which can then be

easily adapted to a stochastic one to account for the random-

ness of the future.

Again, we consider decoders that learn the dynamics and

predict the future in a semantic aware manner. Let ψrnn
c be

the recurrent decoder for semantic class c, which generates

the prediction for {(mt
c, f

t
c)}

T+K
t=T+1

by recursively execut-

ing the following procedures:

htc, e
t
c = ψrnn

c (ht−1
c ,MLPc(H

T )), t ≥ T + 1 (2)

m̃t
c = ψrnn

c,m(etc); f̃ tc = ψrnn
c,f (e

t
c) (3)

Here we abuse the notation ψrnn
c to refer to the recurrent

unit that updates the latent representation htc, while gener-

ating a common embedding etc, which is then decoded into

the predicted semantic mask m̃t
c and flow fields f̃ tc , respec-

tively through separate decoding heads ψrnn
c,m and ψrnn

c,f . This

separate decoding design aligns with the practice that im-

proves the decoding efficiency in multi-task learning. Note,

we also apply a multi-layer perceptron MLPc (due to its

efficiency) on the collection of the hidden representations

for all classes HT = {hTc }
C
c=1, to ensure that the semantic

aware decoder has access to the context provided by other

classes within the scene (Fig. 3).

The decoders for each class {ψrnn
c,m, ψ

rnn
c,f }

C
c=1 can also

be running in parallel, so that we have the semantic aware

predictions for each class, i.e., {(m̃t
c, f̃

t
c)} with t ∈ {T +

1, ..., T + K} and c ∈ {1, ..., C}. Next, we apply

late fusion to get predictions that can be directly com-

pared to the ground-truth semantic maps and flow fields
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{(mt, f t)}T+K
t=T+1

, and to further improve the contextual

compatibility between different classes.

Context-aware late fusion. Given {(m̃t
c, f̃

t
c)}

T+K
t=T+1

for

each c ∈ {1, ..., C}, we apply a three-layer ConvNet to first

fuse the binary semantic maps:

m̃t = ψcnn(concat({m̃t
c}

C
c=1)) (4)

where the dimension of m̃t is H×W ×C. We use softmax

as the last layer for ψcnn, such that each slice of m̃t indexed

by the last dimension, i.e., m̃t(c) = m̃t[:, :, c] (in Python

style), is still a scalar field indicating the probability of each

pixel belonging to class c. And the fused flow field f t is

obtained as following:

f̃ t(i, j) =
∑

c

m̃t(i, j, c) · f̃ tc(i, j); i ≤ H, j ≤W (5)

which is a linear combination of the flow vectors predicted

by each semantic aware recurrent decoder, whose visibility

comes from the fused semantic map m̃t.

Training loss for φrnnc ,MLPc, ψ
rnn
c , ψrnn

c,m, ψ
rnn
c,f , ψ

cnn.

With the ground-truth {(mt, f t)}T+K
t=T+1

, the training loss

for flow fields is the L1 loss:

Lf =

T+K∑

t=T+1

‖f̃ t − f t‖1 (6)

which penalizes the discrepancy between the predicted flow

and the ones computed from the ground-truth images. For

the semantic maps we apply the cross entropy loss:

Lm =

T+K∑

t=T+1

(1 + α G ∗ ∇mt) · H(mt, m̃t) (7)

Here H represents the cross-entropy, which is weighted by

whether the pixel is near the boundaries between different

classes or not. Note ∇ is the gradient operator, and we bina-

rize its response to 0 and 1 to discount the artifacts caused

by naming different classes with different integers. The bi-

narized boundary map is then smoothed by a Gaussian ker-

nel G to expand the weights to nearby pixels, making the

boundaries thicker. The variance of the Gaussian, which

determines the spatial extent of the boundaries is set to 9.0
and fixed. With this weighting scheme, the network will fo-

cus more on the pixels near the semantic boundaries, thus

better preserves the shape of each semantic segment in the

prediction. The relative importance between boundary and

non-boundary pixels is controlled by the scalar α, which is

set to 5.0 for all experiments.

So far, we have described the proposed semantic aware

dynamic model in its deterministic mode. However, extend-

ing it to account for the stochasticity of the future is straight-

forward. For this purpose, we instantiate C semantic aware

recurrent encoders θrnnc , which operate in a similar way as

the encoders for the past:

ztc = θrnnc ([mt
c, f

t
c ], z

t−1
c ); ztc = [utc, v

t
c], t ≥ T + 1 (8)

The goal of the recurrent encoder θrnnc is to generate a

random variable ztc, represented by its mean and variance

[utc, v
t
c] through reparameterization, whose initial value is

set to zTc = [hTc , I].
2 At the end of the recursion, we

would like zT+K
c = [uT+K

c , vT+K
c ] to be a zero-mean unit-

variance Gaussian. Then, ZK = {(uT+K
c , vT+K

c )}Cc=1 will

be added to HT in Eq. (2), also through reparameterization,

for decoding the future with randomness. To learn θrnnc ’s,

we add a KL-divergence term to the loss:

Lkl = KL(N (uT+K , vT+K),N (0, I)) (9)

where N represents the normal distribution. We summarize

the training loss for the stochastic semantic aware dynamic

model in the following:

Ldynamic = Lf + Lm + βLkl (10)

with β the weight on the KL-divergence term. As in VAEs,

{θrnnc }Cc=1 are used only during the training for the stochas-

tic decoder, and will not be used during testing since the ran-

dom noise can be directly sampled from the prior N (0, I).

3.2. Warping with Semantic Informed Dis­occlusion

We warp the past video frames to provide an anchor

point for future synthesis using the predicted future se-

mantic masks and flows fields {(m̃t, f̃ t)}T+K
t=T+1

from the

semantic-aware dynamic model. To ease the warping and

comply with the literature, here we mark the predicted flow

f̃ t as the backward flow, i.e., from t + 1 to t. The warping

can be simply performed via bilinear interpolation:

x̂t+1(p) = xt(p+ f̃ t+1(p)), p /∈ Ωd (11)

The key is to estimate the dis-occluded area Ωd, which in-

validates the assumption that a pixel in frame xt+1 is prop-

agated from the previous frame xt.
Note, [9] proposes to use pixel occupancy for dis-

occlusion detection, however, miss-detection happens due

to errors in flow prediction on the object boundaries where

dis-occlusion resides (see Fig. 4). Given that semantic

masks are easier to predict than flows, particularly, with

our semantic-aware dynamic model, we propose a seman-

tic consistency criteria for dis-occlusion estimation, i.e.,

p ∈ Ωd, if m̃
t+1(p) 6= mt(p). The above semantic consis-

tency criteria can still correctly detect dis-occlusions even

if the flow is wrong as shown in Fig. 4. In our experiments,

we use both the pixel occupancy and the proposed semantic

2this ensures that the generation of the random variable is conditioned

on the past.
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Figure 4. Left: Two criteria for dis-occlusion detection. Pixel Oc-

cupancy: pixels A, B in the target image domain are mapped onto

pixel C in the input image domain, which is occupied by more

than one pixel when the predicted (backward) flow (blue arrows)

is correct; in this case, pixel A, as the cause of over-occupancy,

can be detected as dis-occlusion. Pixel Semantic Consistency: if

the predicted flow is incorrect, pixel occupancy fails in detecting

A as dis-occlusion; however, given that semantic mask can be ac-

curately predicted, A will be mapped to pixel C with inconsistent

semantic labels, thus can be correctly detected as dis-occlusion.

Right: Semantic-aware dis-occlusion synthesis, where both the

generator and the discriminator take in predicted semantic mask,

and the generator is dis-occlusion aware.

consistency criterion for dis-occlusion detection given their

complementarity.

After warping, we end up with the future frames warped

from the past and the corresponding dis-occlusion masks,

i.e., {(x̂t,Ωt
d)}

T+K
t=T+1

. Note x̂t is only valid (up to noise)

in the complement of Ωt
d, which will be extrapolated as we

describe next.

3.3. Semantic­Aware Dis­occlusion Synthesis

Using the warped frames {x̂t}T+K
t=T+1

as the anchor, we

employ a conditional inpainting network to further com-

plete the dis-occluded parts and improve the quality of the

synthesized images via adversarial training. The condi-

tional inpainting network ϕ takes as input the anchor frame

x̂t, and tries to complete the missing region indicated by Ωt
d

based on the predicted semantic map m̃t in a content-aware

manner:

x̃t = ϕ(x̂t,Ωt
d, m̃

t) (12)

Note, image details and their temporal consistency can be

improved by semantic maps informing the scene content as

shown in [43], which only focuses on translating known se-

mantic maps to images. Given the ability to model the dy-

namics of the semantic map and its prediction, our condi-

tional inpainting network can be informed about the scene

content, thus able to generate better synthesis (see Fig. 5).

To help the training of the content-aware conditional in-

painting, we also employ two discriminators Dv , Dx for

the video clip and frame respectively, with Dv focuses on

the temporal continuity and Dx focuses on the image qual-

ity. So the training loss for the content-aware inpainting

network is:

Lϕ =
T+K∑

t=T+1

(1− Ωt
d) · ‖x̃

t − x̂t‖1 + λLper(x̃
t, xt)

+ γ

T+K∑

t=T+1

Dx(x̃
t, m̃t) + ηDv({x̃

t}, {m̃t}) (13)

where the first term measures the discrepancy between the

completed image and the warped image in the co-visible

area; the loss Lper measures the perceptual similarity be-

tween the generated images and the real images [27]. Dx

and Dv measure the plausibility of images/videos condi-

tioned on the semantic content. The final predictions of

our model are {(m̃t, f̃ t, x̃t)}T+K
t=T+1

, i.e., predicted semantic

maps, flow fields and video frames with the semantic-aware

dynamics model as their driving force.

4. Experiments

Datasets. We evaluate our method on multiple predic-

tion tasks, e.g., video frames and semantic maps, using

three commonly used datasets, Cityscapes [7], KITTI Flow

[11] and KITTI Raw [10]. Cityscapes [7] contains driving

sequences recorded in 50 different cities. We use the train-

ing split for training our semantic-aware dynamic model

and the validation set for evaluation. The training and eval-

uation subsets contain 2975 and 500 videos, respectively.

Pixel-wise annotations for semantic segmentation are only

available every 20 frames for the Cityscapes dataset. KITTI

Raw [10] contains 156 long sequences. Following [48], we

use 4 of them for testing, and the rest for training. KITTI

Flow [11] is designed for benchmarking optical flow algo-

rithms, and is more challenging than KITTI Raw [10]. It

consists of 200 training videos and 200 test videos. Follow-

ing [9], we downsample the videos to 128 × 424 and then

center-crop to 128×256, yielding 4000 clips for both train-

ing and testing. Since per-frame dense semantic maps and

optical flow annotations are not available, we leverage the

off-the-shelf semantic segmentation network DeepLabV3

[6] to extrapolate annotations for 20 classes, and compute

the optical flow using the PWC-Net [36].

Implementation and training. We adapt the grouped

Conv-LSTM network [49] for the semantic-aware recurrent

encoders and decoders to perform temporal aggregation of

semantic maps and flow fields. The inpainting network is

a modified U-Net [32], conditioned on predicted anchor

frames and semantic maps. We also replace the convolu-

tional layers in the encoder with the partial convolution pro-

posed in [21], which masks dis-occluded area in the feature
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MS-SSIM (×1e-2) ↑ LPIPS (×1e-2) ↓

Method t+1 t+5 t+1 t+5

PredNet [23] 84.03 75.21 25.99 36.03

MCNET [39] 89.69 70.58 18.88 37.34

Voxel Flow [22] 83.85 71.11 17.37 28.79

Vid2vid [43] 88.16 75.13 10.58 20.14

Seg2vid [27] 88.32 61.63 9.69 25.99

FVS [48] 89.10 75.68 8.50 16.50

SADM 95.99 83.51 7.67 14.93

Table 1. Quantitative comparison on the Cityscapes dataset.

space at different resolutions. The video and image dis-

criminators are similar to those in CycleGAN [58], except

that the video discriminator has ordinary 2D convolutions

replaced with 3D convolutions.

Though our model can be trained end-to-end, we split the

training into two stages to manage on a single work-station:

1) Training the semantic-aware dynamic model with loss

(10); 2) Training the inpainting network to fill-in the dis-

occluded area with loss (13). The training is performed on

2 GeForce GTX 1080 Ti GPUs with batch size equals to 6,

and each video clip in the batch contains 10 frames. Learn-

ing rates for both stages start from 0.001 and decay by 0.8

every 20 epochs. The weights of each term in the losses are

detailed in the supplementary. The training of the semantic

aware dynamic model needs 40 hours to converge, and the

training of the inpainting network takes about 20 hours.

Model complexity and inference. The semantic-aware

dynamic model for predicting semantic maps and flow

fields contains 8.6M parameters. The inpainting network

contains 5.18M parameters. Inference can be performed on

a single GeForce GTX 1080 GPU with 8GB memory. The

inference runs at 19 frames per second.

4.1. Quantitative Results

Video prediction. Table 1 and 2 report the multi-frame

video prediction performance evaluated in terms of Multi-

scale Structural Similarity Index Measure (MS-SSIM) [46]

and LPIPS [56], on the Cityscapes and the KITTI Raw

datasets respectively. Higher MS-SSIM scores and lower

LPIPS distances suggest better performance. Specifically,

on longer horizon prediction (t + 5), our model improves

Seg2vid [27], which also employs semantic segmentation,

by 35.50% (MS-SSIM) and 20.85% (LPIPS). Moreover,

our model outperforms FVS [48], which infers 2D affine

transformations of moving objects, by 10.35% (MS-SSIM)

and 9.39% (LPIPS) on the t+ 5 predictions.

Following DPG [9], we report the next-frame predic-

tion results on the KITTI Flow dataset in Table 3. For a

fair comparison, we also include the commonly used Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity In-

dex Measure (SSIM) [45] as the evaluation metrics, in addi-

MS-SSIM (×1e-2) ↑ LPIPS (×1e-2) ↓

Method t+1 t+3 t+5 t+1 t+3 t+5

PredNet [23] 56.26 51.47 47.56 55.35 58.66 62.95

MCNet [39] 75.35 63.52 55.48 24.05 31.71 37.39

Voxel Flow [22] 53.93 46.99 42.62 32.47 37.43 41.59

FVS [48] 79.28 67.65 60.77 18.48 24.61 30.49

SADM 83.06 72.44 64.72 14.41 24.58 31.16

Table 2. Quantitative comparison on the KITTI Raw dataset.

Method PSNR↑ SSIM (×1e-2)↑ LPIPS (×1e-2)↓

Repeat [9] 16.5 48.9 19.0

PredNet [23] 17.0 52.7 26.3

SVP-LP [8] 18.5 56.4 20.2

MCNet [39] 18.9 58.7 23.7

MoCoGAN [38] 19.2 57.2 18.6

DVF [22] 22.1 68.3 16.3

CtrlGen [12] 21.8 67.8 17.9

DPG [9] 22.3 69.6 11.4

SADM 24.47 71.1 10.9

Table 3. Quantitative comparison in next-frame prediction on the

KITTI Flow dataset.

Method t+1 t+5 t+9

Repeat 67.1 52.1 38.3

S2S-dil [24] - 59.4 47.8

PSPNet [35] 71.3 60 -

Jin [16] 66.1 - -

Terwilliger [37] 73.2 67.1 51.5

Bayes-WD-SL [2] 74.1 65.1 51.2

F2MF-DN121 [33] - 69.6 57.9

SADM 73.8 70.3 60.1

Table 4. Quantitative results of semantic map prediction on the

Cityscapes dataset measured by the mIoU score.

tion to Learned Perceptual Image Patch Similarity (LPIPS)

[56]. Our model improves DPG [9], the previous state-of-

the-art method evaluated on this dataset, by 9.7% in terms

of PSNR, 2.2% in terms of SSIM, and 4.4% in terms of

LPIPS.

Semantic segmentation mask prediction. We eval-

uate our model’s performance on semantic mask predic-

tion using the Cityscapes dataset, with the standard mean

Intersection-over-Union score (mIoU) as the evaluation

metric. Following [24], the scores are computed with re-

spect to the ground-truth segmentation of the 20th frame

in each sequence. Table 4 shows the semantic mask pre-

diction performance on multiple prediction lengths. Our

method performs the best among the other methods, espe-

cially when the prediction horizon gets longer.
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Figure 5. Visual comparison on the Cityscapes dataset. Both the predicted video frames (a) and flow fields (b) are presented. Left: the

flow predicted by our network clearly shows the silver car moves to the left and the camera moves forward, while the flow predicted from

Seg2vid [27] is dominated by “major” camera motion exhibited in the dataset, i.e., zooming-in caused by the movement of the running

car. FVS [48] wrongly predicts the motion of the silver car, resulting in incorrect car locations at t + 3 and t + 5. Note that, at t + 5,

the black car on the left should move outside the image domain, which is only captured by our model. Again, the “ghost effect” presents

near the objects’ boundaries in the predictions from the other two methods. Right: without conditioning on semantic segmentation masks,

the dis-occluded area of the building is incorrectly inpainted by the inpainting network as part of the moving car, causing distortions in the

results from FVS.

Figure 6. Ablation study: our model predicts video frames and flow fields by swapping semantic-aware encoders for the classes of “car”

and “road”, verifying that semantic-aware dynamics is learned with the proposed model.

4.2. Qualitative Results

In Fig. 5, we compare to FVS [48] and Seg2vid [27],

two most recent methods that employ semantic segmenta-

tion or moving object segmentation to facilitate video pre-

diction. The motivation of Seg2vid [27] is that the high-

level semantics of the scene will result in more accurate

predictions. However, without an explicit modeling, such

as SADM, predicted flow fields from [27] still suffer from

over-smoothing. Moreover, given that most of the videos in

Cityscapes are captured by a camera moving forward with

a car, there is a strong tendency in the model from Seg2vid

to produce flow fields showing zooming-in motion. On the
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other hand, FVS [48] separates the whole scene into mov-

ing and non-moving segments by moving object detection.

Although 2D affine transformations are predicted per frame

to approximate the object motion, complex motion, includ-

ing deformation and 3D rotation, may not be captured by a

single 2D affine transformation. Even for non-moving rigid

objects whose motion is induced by the camera motion, e.g.,

parked cars and buildings, their projected 2D flow fields still

depend on the 3D geometries and thus are not 2D affine.

With semantic-aware dynamics and inpainting, our model

can generate high-quality video frames with more accurate

motions.

4.3. Ablation Study

To demonstrate the effectiveness of decomposing the

video into semantically consistent regions for video predic-

tion, we train a baseline model (“single class” in Fig. 7)

with the same network architecture as SADM, and with a

naive concatenation of semantic masks and flow fields as

the input to the baseline model. The encoder and decoder

of this baseline model share similar structures as those in

SADM, besides that ordinary convolutions are used. Note

that an ordinary convolution layer has more parameters than

a grouped convolutional layer (O(K2) v.s. O(K)). As

shown in Fig. 7, without explicitly modeling the class-

wise dynamics, the baseline model trained to predict flow

fields or video frames has difficulties estimating the motion

near the boundaries between different semantic regions (the

black car in the top left). There is a heavy over-smoothing

near the boundary of the car, which is problematic for the

consecutive warping procedure, since the flow there will

warp pixels on the car to the background or vice versa,

generating the “ghost effect”. With the proposed seman-

tic aware dynamic model, the motion of either the car or the

background can be accurately estimated since the influence

on motion estimation from occlusions is automatically han-

dled through the decomposition. Similarly, in the bottom

left of Fig. 7, the warped image using the flow predicted by

the baseline model shows far more artifacts on the red car.

To show that the learned dynamics from our model is

indeed semantic-aware, we test the model with semantic la-

bels intentionally swapped in the input. For example, we

input the “car” segments to the semantic-aware encoder that

learns the dynamics of the “road” class, and vice versa. As

expected (Fig. 6), the predicted motion of the “car” seg-

ments using the encoder for the “road” class (middle row)

now looks like the one of the “road” (bottom row). Simi-

larly, the predicted motion of the “road” segments using the

encoder for the “car” class (middle row) now looks more

like the one from the “car” (bottom row). This shows ex-

actly that semantic-aware dynamics is captured by the pro-

posed model.

Figure 7. A baseline model without explicit modeling of the

semantic-aware dynamics (single class) shows less accurate mo-

tion prediction than SADM and has more artifacts in the predicted

video frames.

Figure 8. Complicated dis-occluded regions cause difficulties for

the inpainting network, even if the estimated occlusions are accu-

rate (top row).

5. Discussion

We have tested the hypothesis that representing object-

level motion in a video can be beneficial for prediction. To

that end, we have proposed a model that captures occlusions

explicitly, and represents class-specific motion. While such

high-level modeling is beneficial to prediction, there are

failure cases. Specifically, hallucinating the dis-occluded

regions can lead to failure when the background is complex

(Fig. 8). As the time horizon grows, the prediction becomes

increasingly unrealistic, as with other video prediction mod-

els, but the explicit modeling of objects and class-specific

motion yields improvements over generic models. Also, we

are constrained by classes for which we have training data,

which limits generalization. So, our work is only a first step

to incorporate dynamical models that are informed by the

semantics of objects in the scene, which we expect will ulti-

mately facilitate intelligent interaction with physical scenes

by autonomous agents.
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