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Figure 1. Our network generates a super-resolved RGB image from an input burst consisting of multiple noisy RAW frames. In contrast to

the single image baseline, our approach combines information from multiple frames to obtain a more detailed reconstruction of the scene.

The results shown are for super-resolution by a factor of 4.

Abstract

While single-image super-resolution (SISR) has at-

tracted substantial interest in recent years, the proposed

approaches are limited to learning image priors in order to

add high frequency details. In contrast, multi-frame super-

resolution (MFSR) offers the possibility of reconstructing

rich details by combining signal information from multiple

shifted images. This key advantage, along with the increas-

ing popularity of burst photography, have made MFSR an

important problem for real-world applications.

We propose a novel architecture for the burst super-

resolution task. Our network takes multiple noisy RAW

images as input, and generates a denoised, super-resolved

RGB image as output. This is achieved by explicitly aligning

deep embeddings of the input frames using pixel-wise opti-

cal flow. The information from all frames are then adap-

tively merged using an attention-based fusion module. In

order to enable training and evaluation on real-world data,

we additionally introduce the BurstSR dataset, consisting of

smartphone bursts and high-resolution DSLR ground-truth.

We perform comprehensive experimental analysis, demon-

strating the effectiveness of the proposed architecture.

1. Introduction

Super-resolution (SR) is the task of generating a high-

resolution (HR) image, given one or several low-resolution

(LR) observations. It is a widely studied problem [6, 8, 20,

21, 23, 24, 26, 29, 39, 42, 45, 48, 51] with numerous prac-

tical applications. In recent years, the SR community has

mainly focused on the single image super-resolution (SISR)

task, where an HR image is estimated from a single LR

input. Due to the ill-posed nature of the SISR problem,

these methods are limited to adding high frequency details

through learned image priors.

The multi-frame super-resolution (MFSR), on the other

hand, aims to reconstruct the original HR image using mul-

tiple LR images. If the input images have sub-pixel shifts

with respect to each other, due to e.g. camera motion, they

provide different LR samplings of the underlying scene.

MFSR approaches can thus exploit this additional signal in-

formation to generate a higher quality image, compared to

the SISR approaches (see Fig. 1). The MFSR problem nat-

urally arises in the increasingly popular mobile burst pho-

tography, where the images have different sub-pixel shifts

due to natural hand tremors [45]. This opens up the possi-

bility of using MFSR to overcome the resolution constraint
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in mobile cameras imposed by the cost and size restrictions.

Despite the aforementioned advantages, MFSR has re-

ceived little attention in recent years. This is in stark con-

trast to SISR, where deep learning has led to significant

advancements in SR performance. Compared to the SISR

case, the MFSR problem imposes significant challenges

when developing deep learning based solutions. Firstly, a

MFSR architecture must be able to align the noisy input

frames with sub-pixel accuracy in order to enable fusion.

Secondly, it should be able to effectively fuse the informa-

tion from the aligned frames, while being robust to align-

ment errors. Furthermore, the lack of benchmark datasets

for the general MFSR task has led to a limited interest in

the MFSR problem. We address these issues by proposing

a novel deep learning based approach for the MFSR prob-

lem, along with a real-world dataset.

Our network directly operates on noisy RAW bursts cap-

tured from a hand-held camera and generates a denoised,

demosaicked, and super-resolved image as output. This is

achieved by developing a novel attention-based fusion mod-

ule which can adaptively merge an arbitrary number of in-

put frames in order to produce a high quality output. Our

approach is not limited to simple motions between the im-

ages, such as translation or homography. Instead, we esti-

mate dense pixel-wise optical flow to align the deep feature

encoding of each input frame. The aligned representations

of each frame are then merged by computing element-wise

fusion weights. This allows the network to adaptively select

the reliable and informative content from each image, while

discarding, e.g., misaligned regions.

The conventional approach in SISR is to train and eval-

uate models on synthetically generated data. However, this

has been shown to not generalize to real-world images due

to inaccuracies in data generation model [3, 30, 31, 32]. Ac-

curately modelling the image formation process for MFSR

is further challenging due to the additional complexity in-

troduced by camera motion. We therefore introduce the

BurstSR dataset: the first real-world burst super-resolution

dataset. Our dataset consists of 200 RAW bursts captured

using a hand held mobile camera. Furthermore, we provide

a high quality HR ground truth for each burst using a DSLR

with zoom lens. We believe that our BurstSR dataset can

serve as a valuable benchmark and source of training data

to stimulate future research in MFSR.

Contributions: Our main contributions are summarized

as follows. (i) We introduce the first real world burst

super-resolution dataset consisting of RAW bursts and cor-

responding HR ground truths. (ii) We propose a novel

MFSR architecture which can perform joint denoising, de-

mosaicking, and SR using bursts captured from a handheld

camera. (iii) Our architecture employs an attention-based

fusion method to adaptively merge the input images to gen-

erate high quality HR output (iv) We further address mis-

alignment issues encountered when training on real world

data by introducing a loss function which can internally cor-

rect these mis-alignments.

We perform comprehensive experiments on a synthetic

dataset, as well as the BurstSR test set, in order to validate

our contributions. Our approach demonstrates promising

SR performance on real world bursts, significantly outper-

forming alternative methods in a user study. We also pro-

vide a detailed ablative study, analysing the impact of key

components in the proposed MFSR architecture.

2. Related Work

Single Image Super-Resolution: SISR is a widely stud-

ied task with a variety of proposed methods, for example

based on the frequency domain [19, 34, 36], interpolation

techniques [5, 16, 25], sparse representations [28, 46, 47]

or patch and examples [4, 11, 13]. Dong et al. [7] were

the first to train a deep CNN to directly map the input LR

image to the HR output. A number of approaches have

subsequently improved upon this work using more effec-

tive network architectures [8, 21, 23, 26, 39, 51] and loss

functions [20, 24, 29, 42, 48].

Multi-Frame Super-Resolution: Compared to SISR ap-

proaches which solely rely on image priors to perform

super-resolution, MFSR methods aim to merge multiple

aliased images of the same scene to reconstruct a higher

resolution output. The MFSR problem was first addressed

by Tsai and Huang [40], who proposed a frequency domain

based method that assumes known translations between in-

put images. Later, Peleg et al. [35] and Irani and Peleg [18]

introduced the iterative back-projection approach. They es-

timate an initial HR image and simulate the imaging pro-

cess to generate the LR images. The reconstruction error

between the generated and input LR images is then mini-

mized iteratively to refine the HR image. Hardie et al. [14]

extended this approach with an improved observation model

and a regularization term. Farsui et al. [9] proposed a

joint multi-frame demosaicking and super-resolution ap-

proach using a maximum a posteriori estimation frame-

work. Zomet et al. [52] use information from multiple

sensors to perform super-resolution. Recently, Wronski

et al. [45] proposed a MFSR method for hand-held cam-

eras, where a kernel regression technique is employed to

merge aligned input frames robustly. Unlike in SISR, only

a few deep learning based approaches have been proposed

for MFSR. Ustinova and Lempitsky [41] proposed a multi-

frame network for face super-resolution. Deudon et al. [6]

developed HighRes-net, a MFSR network for satellite im-

agery. HighRes-net aligns each input frame to a reference

frame implicitly, and merges them using a recursive fusion

method. Another approach for satellite imagery, namely

DeepSUM [33], assumes only translation motion between
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frames and utilizes 3D convolution for fusion. In contrast

to these previous approaches which are focused on remote

sensing, we tackle the general problem of burst SR from any

handheld camera.

Learning real world super-resolution: SR approaches

are commonly trained using synthetically generated LR im-

ages. However, such a training strategy has been shown to

not generalize well to real-world images [3, 30, 31, 32]. A

few recent works have tried to address this issue by learn-

ing real world degradation models [3, 30, 44]. Another ap-

proach is to learn camera specific SR models directly us-

ing real world data. Such a strategy allows the network to

learn the characteristics of the particular sensor, leading to

improved performance [50]. This is however challenging

due to difficulties in collecting paired training data for SR.

Zhang et al. [50] address this by using LR-HR pairs cap-

tured using a zoom lens for training. In order to handle the

spatial and color mis-alignments between LR-HR pairs, a

novel contextual bilateral loss is employed for training.

3. Burst Super-Resolution Network

In this section, we describe our burst super-resolution

network. Our network inputs multiple noisy, RAW, low-

resolution (LR) images captured in a single burst. The ar-

chitecture processes and combines the information in indi-

vidual images to generate a high-resolution (HR) RGB im-

age as output. Thus, our network performs joint denois-

ing, demosaicking, and SR. Since the images in a burst are

captured in a rapid sequence from a hand-held device, they

include small inter-frame offsets. This ensures multiple

aliased versions of the same scene, providing additional sig-

nal information for SR. Consequently, by effectively merg-

ing the information from the whole burst, our network can

better reconstruct the underlying scene to generate a higher

quality output, compared to single frame approaches.

An overview of our architecture is shown in Figure 2.

Our network takes a RAW burst sequence {bi}
N
i=1

of any

arbitrary size N as input. Here, each image bi ∈ R
W×H

is the RAW sensor data obtained from the camera. The

images in the burst are first encoded independently in or-

der to obtain deep feature representations {ei}
N
i=1

. Next,

we align and warp each of the feature maps to a common

reference frame b1 using the offsets estimated by an align-

ment network. The aligned feature maps are then combined

by our fusion module to obtain a merged feature map ê.

We propose an attention-based fusion approach that pre-

dicts element-wise fusion weights. This allows the network

to adaptively select the most useful information from each

image in the burst. The merged feature map is then passed

to the decoder module which outputs the final RGB image

y ∈ R
sW×sH×3, where s is the super-resolution factor. We

detail each network module of our architecture in the sub-

sequent sections.

3.1. Encoder

The encoder module E independently maps each input

burst image bi to a deep feature representation ei. To ensure

translational invariance, we first pack each 2×2 block in the

raw Bayer pattern along the channel dimension, obtaining a

4 channel image b̃i ∈ R
W
2
×

H
2
×4 at half the initial resolu-

tion. This LR image is passed through the encoder, consist-

ing of an initial convolutional layer followed by a series of

residual blocks. In order to achieve a high-dimensional en-

coding that allows more effective fusion of several frames,

we radically expand the feature dimensionality with a final

convolutional layer. The resulting D-dimensional encoding

E(b̃i) = ei ∈ R
W
2
×

H
2
×D thus achieves a rich embedding

of the input image. We use D = 512 in our experiments.

3.2. Alignment Module

One of the important challenges in burst SR is that the

pixel-wise displacement between the images is unknown.

The displacements stem from both global camera motion

and scene variations. In order to achieve an effective fu-

sion of multiple frames, the information first needs to be

aligned. We address this problem by explicitly aligning the

individual image embeddings ei to a common reference LR

image, called the base frame. For convenience, we let the

first image b̃1 denote the base frame. Camera motion is of-

ten modelled using a homography when imaging static and

distant scenes. However, we found these assumptions to

seldom hold in the real-world scenario. Thus, we allow

greater flexibility in our alignment module by computing

dense pixel-wise optical flow fi ∈ R
W
2
×

H
2
×2 between ev-

ery burst image b̃i and the reference image b̃1. Pixel-wise

flow can capture global camera motion while also account-

ing for any object motion in the scene. The estimated flow

vectors fi are then used to warp the feature maps ei to the

base frame using a bilinear kernel

ẽi = φ(ei, fi) , fi = F (b̃i, b̃1) (1)

Here, φ denotes the warping operation, F is the flow estima-

tor, while ẽi is the warped feature map. The warped feature

maps {ẽi}
N
i=1

, as well as the computed flow vectors {fi}
N
i=1

are then passed to the fusion module. Here, the flow vectors

f1 for the base frame is set to 0. We use a state-of-the-art

optical flow network PWC-Net [38] as our flow estimator

F due to it’s high accuracy and speed. Since PWC-Net is

trained to operate on RGB images, we discard one of the

two green channels in b̃i to generate input RGB images.

3.3. Fusion Module

The fusion module combines information across the in-

dividual burst images to generate a merged feature embed-

ding ê. In order to be able to operate on bursts of arbitrary

sizes, the fusion module must be able to merge any num-

ber of input frames. Consequently, it is infeasible to e.g.
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Figure 2. An overview of our burst super-resolution architecture. Each image bi in the input burst is first passed independently through the

encoder. The resulting feature maps are then warped to the base frame (b1) coordinates using the flow vectors fi predicted by the alignment

module. The aligned feature maps are then merged using an attention-based fusion module, using fusion weights computed by the weight

predictor. The merged feature map ê is then passed through to decoder module to obtain the super-resolved RGB image as output.

directly concatenate the input feature maps along the chan-

nel dimension. We further found simple pooling operations

such as element-wise max or average pool across the burst

to provide unsatisfactory results. This is because the fu-

sion module needs be able to merge adaptively based on

e.g. image content, noise levels, etc. For instance, it can be

beneficial to have uniform fusion weights for textureless re-

gions in order to perform denoising. On the other hand, it

is preferable to have low fusion weights for any mis-aligned

frame in order to avoid ghosting artifacts. We therefore pro-

pose an attention-based fusion approach, where element-

wise fusion weights are predicted by a weight predictor net-

work W . This provides flexibility to the network to effec-

tively extract the useful information from each image, while

also being able to process arbitrary number of input images.

The weight predictor network W utilizes both the

aligned feature maps ẽi and the flow vectors fi to estimate

the unnormalized attention weights w̃i ∈ R
W
2
×

H
2
×D for

each embedding ẽi. We first project ẽi to a lower dimen-

sion feature map ẽ
p
i for computational efficiency. To com-

pute the attention weights for ẽi, we use the projected base

frame feature map ẽ
p
1
, as well as the residual ri = ẽ

p
i − ẽ

p
1

between ẽ
p
i and ẽ

p
1
. The base frame map ẽ

p
1

contains infor-

mation about the local image content. This is informative

to determine e.g. whether to use uniform fusion weights to

achieve denoising, or perform edge-aware fusion in order to

avoid over smoothing edges. On the other hand, the resid-

ual ri can provide an estimate of alignment errors and thus

help assign low fusion weights to misaligned regions. Addi-

tionally, we use the flow vectors fi for weight estimation as

they provide the sub-pixel sampling location of the image

data. We obtain the sub-pixel offset by computing modulo

1 of the flow vectors fi and pass it through a small CNN

to obtain the flow features f̂i. The reference frame features

ẽ
p
1
, the feature residual ri, and the flow features f̂i are con-

catenated along the channel dimension and passed through

a residual network to obtain the raw fusion weights w̃i. The

raw fusion weights are then normalized across the burst us-

ing a softmax function to obtain the final attention weights

wi. The merged feature map ê is then be obtained as the

following weighted sum,

ê =

N
∑

i=1

wi · ei , wi =
ew̃i

∑

j e
w̃j

, w̃i = W(ẽ1, ri, f̂i). (2)

Here, · denotes element-wise multiplication. The merged

feature map ê is then passed to the decoder module to gen-

erate the final output.

3.4. Decoder

The decoder module generates the output high-

resolution RGB image from the fused feature map ê. We

first project the input feature map to 128 channels and pass

it through a residual network. Next, we upsample this to

the desired resolution sH × sW using sub-pixel convo-

lution [37]. We use a convolution layer to increase the

feature dimension to 22s2D′, obtaining a tensor of shape
H
2
× W

2
× 22s2D′. The feature vectors at each spatial loca-

tion are then re-arranged into a 2s×2s×D′ map to obtain a

higher resolution feature map of shape H ×W ×D′. Here,

D′ is the output feature dimension of the sub-pixel convolu-

tion layer. Compared to performing naı̈ve upsampling using
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e.g. bilinear interpolation, sub-pixel convolution allows us

to effectively decode the sub-pixel information encoded in

the different feature channels. In order to avoid checker-

board artifacts, we use the ICNR initialization [1] for the

sub-pixel convolution layer and additionally apply Gaussian

smoothing to its output. The upsampled feature map is then

passed through another set of residual blocks, followed by

a conv layer to obtain the high resolution RGB image y.

4. BurstSR Dataset

The aim of this work is to propose a burst SR method

for real-world photography applications. In order to vali-

date the performance of our approach, it is essential to train

and evaluate our models on real data. Hence, we collect a

new dataset, called BurstSR. To the best of our knowledge,

it is the first real world burst super-resolution dataset. The

BurstSR dataset consists of 200 RAW burst sequences, and

corresponding high-resolution ground truths. Each burst se-

quence contains 14 RAW images captured using identical

camera settings (e.g. exposure, ISO). All bursts are captured

using a handheld smartphone camera. Our dataset therefore

contains natural hand tremors, resulting in small random

offsets between the images within a burst that are essential

for MFSR [40]. For each burst sequence, we also capture a

high-resolution image using a DSLR camera mounted on a

tripod to serve as ground truth. Our BurstSR dataset will be

released upon publication. We believe that it can serve as an

important training set and benchmark for the community, in

order to raise the interest in the important MFSR problem.

We capture the burst images in our datset using a hand-

held Samsung Galaxy S8 smartphone camera. In order to

capture and store RAW bursts, we developed a custom app

using Camera2 API. On pressing the shutter, the app runs

the camera’s auto-focus, auto-exposure, and auto-white-

balance algorithms to determine the camera settings. These

settings are then used to capture a fixed number of RAW

images. The corresponding ground truth images for each

burst are collected using a Canon 5D Mark IV DSLR cam-

era mounted on a tripod. We use a zoom lens with a focal

length of 70mm to obtain images with ≈ 4 times higher

spatial resolution compared to burst images captured from

the phone camera. The images are taken using a smaller

aperture size (F18) to have a wider depth of field. Other

capture settings are automatically determined by the cam-

era. We hold the phone camera just above the DSLR when

taking bursts in order to minimize misalignments between

the two images. Additionally, we use a timer on the DSLR

to synchronize the capture time between the two cameras.

In order to minimize the effect of any error in temporal syn-

chronization, we try to capture static scenes with little (e.g.

leaves moving due to wind) or no motion. We collect 200
bursts in total, which are split into train, validation, and test

sets consisting of 160, 20, and 20 sequences, respectively.

5. Training

In this section, we describe our training pipeline in de-

tail. Due to the high cost and effort associated with col-

lecting real-world paired data for MFSR, it is impractical to

obtain large scale real world datasets for training our model

from scratch. We therefore exploit methods for synthetic

data generation to first pre-train our networks. The result-

ing model serves as a strong initialization, which is then

finetuned on our BurstSR dataset to perform real-world SR.

5.1. Synthetic data training

We generate synthetic RAW bursts for pre-training our

model using the sRGB images from the training split of

Zurich RAW to RGB dataset [17]. Given a sRGB image, we

apply the inverse camera pipeline described in [2] to obtain

raw sensor values. Next, we generate a synthetic burst of

size N by applying random translations and rotations to the

converted RGB image. The translation and rotation values

are sampled independently from the range [-24, 24] pixels

and [-1, 1] degrees, respectively. The transformed images

are then downsampled by the desired super-resolution fac-

tor s to obtain the low resolution RGB burst. We use bilin-

ear kernel for both image translation/rotation and downsam-

pling. Next, we add shot and read noise to the burst images,

as described in [2]. We then discard two color channels per

pixel according to the Bayer CFA to obtain the mosaicked

RAW burst. We extract 96 × 96 crops from the resulting

RAW burst for our training. Our network is trained in a fully

supervised manner by minimizing the L1 loss between the

network prediction and the ground truth image. The loss is

computed in the linear sensor space, before any post pro-

cessing e.g. gamma compression or tone-mapping.

5.2. Real data training

In order to reconstruct the HR image using multiple

aliased LR observations, a MFSR model needs to learn the

image formation process in a camera. However, due to dif-

ferences in the image formation process in a real camera

and the one modelled by our synthetic pipeline, a network

trained on only synthetic data is thus expected to have sub-

optimal performance when applied to real data. Hence, we

fine-tune the pre-trained synthetic data model on our real

world BurstSR dataset in order to adapt the model to the

particular camera sensor.

Data Processing: Here, we describe the pipeline used to

pre-process the collected BurstSR data for training. Since

the images captured using phone and DSLR cameras have

different field of views (FOV), we first crop out matching

field of view from each image in the burst. This is done

by estimating a homography between the first image in the

burst and DSLR image using SIFT [27] and RANSAC [10].

Next, we extract 160×160 crops from the burst images in a
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sliding window manner, with a stride of 80 pixels. For each

crop, we again estimate homography between the crop and

the corresponding region in DSLR image to perform local

alignment. The aligned DSLR image region is then down-

sampled to 160s× 160s to obtain the ground truth crop. In

order to filter out crops with incorrect alignment, we discard

phone-DSLR pairs which have a normalized cross correla-

tion of less than 0.9 between them.

Training loss: There are several challenges when train-

ing our model on real bursts due to the unavoidable mis-

alignments between the input burst and the ground truth.

Firstly, even though we align the burst images to DSLR us-

ing homography, there can still be misalignments between

the pair due to perspective shifts, error in homography es-

timation, etc. Secondly, since the burst and ground truth

images are captured using two different sensors, there is a

color mis-match between the two. Thus, it is not feasible

to train the model by directly computing a pixel-wise error

between the network prediction y and the ground truth yGT.

In order to handle the spatial mis-alignment issue, we

first estimate the optical flow fPred,GT between the predic-

tion and ground truth using PWC-Net. The estimated flow

is then used to warp the network prediction to the ground

truth co-ordinates. Next, we estimate a global color map-

ping between the burst and the ground truth in order to han-

dle the color mis-match. We first downsample the ground

truth image to the same resolution as the input burst images.

The estimated flow fPred,GT is then used to align the first im-

age in the burst to the downsampled ground truth. In order

to minimize the effect of small mis-alignments, we apply

Gaussian smoothing on both the images to obtain the pro-

cessed burst image b̄1 and ground truth image ȳGT. Given

this aligned input-ground truth pair, we estimate a pixel-

wise color mapping C between the two images. We assume

that the color mapping is linear and model it as a 3×3 color

correction matrix, which is computed by minimizing a least

squares loss. Using the estimated color correction matrix,

we can map the network prediction to the same color space

as the ground truth and compute pixel-wise error. Our train-

ing loss ℓ(y, yGT) is thus computed as

ℓ(y, yGT) =
∑

n

mn ·L1(ŷ
n, ynGT) , ŷ = C(φ(y, fPred,GT))

(3)

Here, ŷ is the aligned and color mapped network prediction.

The summation is over all pixel coordinates n in the image.

The factor mn is a binary masking variable used to filter

out image regions which are not aligned correctly. It is set

to 0 in regions where the error R =
∥

∥ȳGT − C(b̄1)
∥

∥

2
after

color mapping the processed burst image b̄1 is greater than

a threshold. Note that the images ȳGT and b̄1 have lower-

resolution compared to the model prediction y. Thus the

error map R is upsampled to the same resolution as y, be-

fore computing the mask m.

5.3. Training details

We use pre-trained PWC-Net weights for our flow esti-

mator F . All other modules are initialized using [15]. Our

model is first trained using the synthetic data for 100k it-

erations, and then fine-tuned on the BurstSR dataset for an

additional 40k iterations. We use the ADAM [22] optimizer

for out training. Data augmentation is performed using ran-

dom cropping and flipping. Our entire training takes 30

hours on a single Nvidia V100 GPU. All our networks are

trained using a burst size of 8.

6. Experiments

We perform comprehensive qualitative and quantitative

evaluation of our approach. All our experiments are per-

formed for super-resolution by a factor s = 4. Additional

details and results are provided in the suppl. material.

6.1. Analysis of our approach

Here, we analyze the impact of different components in

the proposed burst SR architecture. We report results on

a synthetically generated test set containing 300 bursts, as

well as our BurstSR validation dataset. The synthetic test

set is generated using the pipeline described in Sec 5.1, us-

ing sRGB images from the test set of the Zurich RAW to

RGB dataset [17]. We evaluate the networks trained using

only the synthetic training data on this set. Since an accurate

ground truth HR image is naturally available, the synthetic

test set allows us to evaluate the impact of different archi-

tectural choices. We also report results on our BurstSR val-

idation set, using the models fine-tuned on BurstSR training

set. Since the input burst and HR ground truth in BurstSR

are captured using different cameras, there exists spatial and

color misalignments between them. We therefore align the

network prediction to the ground truth and perform color

transformation as described in Sec 5.2. The resulting image

is then compared with the ground truth in order to compute

performance metrics. We report the standard fidelity based

metrics PSNR and SSIM [43], as well as the learned per-

ceptual score LPIPS [49] on both datasets. All metrics are

computed in linear sensor space. Note that the images in

our BurstSR dataset are generally underexposed, leading to

high PSNR scores for all methods. Unless specified, all the

methods are evaluated using a burst size of 8.

Impact of using multiple frames: Here, we investigate

the impact of using multiple frames for SR by comparing

our MFSR approach with a single image baseline. We train

a SISR network with exactly the same encoder and decoder

architecture as employed in our approach. In order to ensure

that the SISR performance is not limited by model capacity,

we increased the depth of the single image network until its

performance saturated. We compare this single image base-

line with our multi-frame approach, evaluated using bursts
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Synthetic data BurstSR

PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑

Single Image 36.42 0.123 0.913 46.41 0.041 0.979

Burst-2 34.90 0.133 0.893 46.10 0.040 0.977

Burst-4 37.18 0.092 0.927 47.06 0.033 0.981

Burst-8 38.61 0.084 0.941 47.52 0.031 0.983

Burst-14 39.09 0.084 0.945 47.76 0.030 0.984

Table 1. Comparison of the baseline SISR network with our multi-

frame approach, evaluated using different number of input frames.

Synthetic data BurstSR

PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑

Ours 38.61 0.084 0.941 47.52 0.031 0.983

No Alignment 36.66 0.119 0.915 46.50 0.040 0.979

Single Image 36.42 0.123 0.913 46.41 0.041 0.979

Table 2. Comparison of our approach performing explicit align-

ment with a baseline which does not employ an alignment module.

of different sizes. The result of this comparison is shown

in Table 1. Even when using only 4 input frames, our ap-

proach significantly outperforms the single image baseline

with an improvement of 0.76 dB in PSNR on the synthetic

set. Note that although our model is trained using a fixed

burst size of 8, it generalizes to bursts with varying input

sizes, providing a consistent improvement with increasing

burst size. This shows that our approach can effectively uti-

lize the information from multiple frames in order to im-

prove SR performance. When using bursts of size 14, our

approach obtains an improvement of 2.67 dB in PSNR on

the synthetic set, clearly demonstrating the advantages of

using multiple frames for SR.

Impact of alignment module: We analyse the impact of

the alignment module in our architecture by evaluating a

baseline network which does not perform any explicit align-

ment. We directly concatenate the encoded base frame

features to all other frames, and pass the resulting feature

maps through additional residual blocks, before merging

them. The result of this comparison is shown in Table 2.

Our approach, performing explicit sub-pixel alignment us-

ing a flow estimator, outperforms the baseline No Align-

ment with an improvement of 1.02 dB in PSNR on the

BurstSR validation set. Interestingly, the No Alignment net-

work only obtains a slight improvement over the SISR base-

line. These results show that accurate alignment of input

frames is essential in order to benefit from multiple frames.

Analysis of fusion architecture: We compare our pro-

posed attention-based fusion module with 4 different al-

ternatives. i) MaxPool: The encoded feature maps are

merged by performing element-wise max pooling across

the burst. ii) AvgPool: The merged feature map is com-

puted as element-wise mean across the burst. iii) Concate-

nate: The encoded feature maps are concatenated along the

channel dimension to obtain the merged features. Note that

this architecture is constrained to operate on bursts of fixed

size. iv) RecMerge: The recursive fusion strategy proposed

in [6]. Pairs of encoded feature maps are concatenated and

Synthetic data BurstSR

PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑

Ours 38.61 0.084 0.941 47.52 0.031 0.983

MaxPool 36.24 0.116 0.912 46.74 0.039 0.980

AvgPool 35.45 0.131 0.902 46.53 0.040 0.979

Concatenate 37.80 0.098 0.928 47.17 0.034 0.981

RecMerge 37.55 0.098 0.927 47.12 0.033 0.981

Table 3. Analysis of different fusion approaches for merging the

information from input frames.

Synthetic data BurstSR

PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑

Only Feature 37.46 0.101 0.927 47.11 0.034 0.981

Only Residual 38.14 0.093 0.935 47.46 0.031 0.982

Residal+Base 38.41 0.085 0.939 47.46 0.030 0.983

Residal+Base+Flow 38.61 0.084 0.941 47.52 0.031 0.983

Table 4. Impact of different inputs used by the weight predictor.

passed through a small network to merge them. This pro-

cess is repeated recursively until a single merged feature

map is obtained. All four baseline networks employ the

same encoder, decoder, and alignment modules as used in

our approach to ensure a fair comparison.

The result of this analysis is shown in Table 3. We ob-

serve that MaxPool and AvgPool approaches obtain poor

results, indicating that simple pooling operations are in-

sufficient to perform effective merging. Both Concatenate

and RecMerge achieve better results with PSNR of 37.80
dB and 37.55 dB respectively, on the synthetic set. Our

attention-based fusion obtains the best results on both the

synthetic set as well as BurstSR, showing that it can effec-

tively merge the information from the input frames.

Analysis of weight predictor network: Here, we analyse

the impact of different inputs used by our weight predictor

network to determine the element-wise fusion weights. We

evaluate 4 different versions of the weight predictor, using

different sets of inputs, i) Only Feature: Only the projected

feature map ẽ
p
i is used. ii) Only Residual: Only the feature

residual ri = ẽ
p
i − ẽ

p
1

is used. iii) Residual+Base: Both

the feature residual ri and the base frame features ẽ
p
1

are

used. iv) Residual+Base+Flow: The feature residual ri,

base frame features ẽ
p
1
, as well as the flow features f̂i are

used. The result of this comparison is shown in Table 4.

Compared to using only the input feature ẽ
p
i , using the resid-

uals ri instead leads to better performance. Additionally

using the base frame features ẽ
p
1

improves the performance

further by 0.27 dB in PSNR on the synthetic set. The best

results are obtained when using the feature residual ri, the

base frame features ẽ
p
1
, and the flow features f̂i together,

showing that they each provide complementary information

to the weight predictor.

6.2. Comparison with other approaches

In this section, we evaluate our proposed burst super-

resolution network on the test set of our BurstSR dataset.

We compare our approach with three methods: i) Single

Image Our SISR baseline network; ii) DeepJoint+RRDB
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Single Image            DeepJoint+RRDB              HighRes-net                     Ours                      HR Reference
Figure 3. Qualitative comparison of our approach on real world bursts from the BurstSR test set. Our approach can effectively merge

information from multiple frames to reconstruct high-frequency image details.

MOR ↓ %Top ↑ PSNR ↑ LPIPS ↓ SSIM ↑

DeepJoint+RRDB 3.42 8.9 42.13 0.088 0.957

Single Image 2.41 18.3 44.02 0.051 0.972

HighRes-net 2.36 19.2 43.99 0.051 0.972

Ours 1.81 53.6 45.17 0.037 0.978

Table 5. Comparison of our method with existing SR approaches

on the BurstSR test set. We report the results of our user study, as

well as the standard quality metrics PSNR, LPIPS, and SSIM.

A two stage network which performs single frame demo-

saicking and denoising using DeepJoint [12] and super-

resolves the resulting RGB image using the RRDB [42] net-

work; and iii) HighRes-net A recent deep learning based

MFSR approach [6] proposed for remote sensing applica-

tions. HighRes-net performs implicit registration of the in-

put frames, without using any independent alignment mod-

ule. Fusion is performed in a recursive manner. We use pre-

trained weights for the DeepJoint and RRDB networks. The

Single Image baseline, as well as HighRes-net, are trained

to perform joint denoising, demosiacking, and SR using the

exact training pipeline used by our approach. In order to en-

sure a fair comparison, we increased the depth of the origi-

nal HighRes-net network to have the same number of resid-

ual blocks as in our approach.

We conducted a user study on Amazon Mechanical Turk

to compare the four approaches. We obtain the HR predic-

tion for each of our network on the 20 test images. Next,

we extract 15 random 200 × 200 crops from each of our

20 test images. Each of the 300 crops are then resized to

400 × 400 using nearest neighbor interpolation. We show

the participants the ground truth HR image, as well as the

network predictions. The participants are asked to rank the

predictions from the 4 approaches according to the visual

quality w.r.t. the provided DSLR reference image. The net-

work predictions were anonymized and randomized in order

to avoid any bias. We obtained 5 independent rankings for

each crop. The mean ranking (MOR) over all the crops,

as well as the percentage of times a method was ranked

first (%Top) are shown in Table 5. Our approach obtains a

MOR of 1.81, significantly better than all other approaches.

Furthermore, our approach is ranked as the best among all

methods 53.6% of the times, more than 2.5 times the second

best method. We also report the PSNR, LPIPS, and SSIM

scores on the test set, computed as described in Sec. 6.1. A

qualitative comparison is also provided in Fig. 3. Our ap-

proach obtains the best results in terms of all three metrics,

outperforming HighRes-net by 1.18 dB in terms of PSNR.

7. Conclusions

We address the problem of real-world multi-frame super-

resolution. We introduce a new dataset BurstSR containing

RAW burst sequences captured from a handheld camera,

and corresponding high-resolution ground truths obtained

using a zoom lens. We further propose a multi-frame super-

resolution network which can adaptively combine the in-

formation from multiple input images using an attention-

based fusion. Our approach obtains promising results on

real world bursts, outperforming both single frame as well

as multi-frame alternatives.
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