
Vectorization and Rasterization: Self-Supervised Learning

for Sketch and Handwriting

Ayan Kumar Bhunia1 Pinaki Nath Chowdhury1,3 Yongxin Yang1,3 Timothy M. Hospedales1,2

Tao Xiang1,3 Yi-Zhe Song1,3

1SketchX, CVSSP, University of Surrey, United Kingdom 2University of Edinburgh, United Kingdom.
3iFlyTek-Surrey Joint Research Centre on Artificial Intelligence.

{a.bhunia, p.chowdhury, yongxin.yang, t.xiang, y.song}@surrey.ac.uk, t.hospedales@ed.ac.uk

Abstract

Self-supervised learning has gained prominence due to

its efficacy at learning powerful representations from un-

labelled data that achieve excellent performance on many

challenging downstream tasks. However, supervision-free

pre-text tasks are challenging to design and usually modal-

ity specific. Although there is a rich literature of self-

supervised methods for either spatial (such as images) or

temporal data (sound or text) modalities, a common pre-

text task that benefits both modalities is largely missing. In

this paper, we are interested in defining a self-supervised

pre-text task for sketches and handwriting data. This data

is uniquely characterised by its existence in dual modalities

of rasterized images and vector coordinate sequences. We

address and exploit this dual representation by proposing

two novel cross-modal translation pre-text tasks for self-

supervised feature learning: Vectorization and Rasteriza-

tion. Vectorization learns to map image space to vector

coordinates and rasterization maps vector coordinates to

image space. We show that our learned encoder modules

benefit both raster-based and vector-based downstream ap-

proaches to analysing hand-drawn data. Empirical evi-

dence shows that our novel pre-text tasks surpass existing

single and multi-modal self-supervision methods.

1. Introduction

Deep learning architectures [65, 24] have become the de-

facto choice for most computer vision applications. How-

ever, their success heavily depends on access to large

scale labelled datasets [51] that are both costly and time-

consuming to collect. In order to alleviate the data anno-

tation bottleneck, many unsupervised methods [43, 31, 15,

10, 23] propose to pre-train a good feature representation

from large scale unlabelled data. A common approach is

to define a pre-text task whose labels can be obtained free-

of-cost, e.g. colorization [66], jigsaw solving [43], image

rotation prediction [18], etc. The motivation is that a net-

Rasterization

Sketch Vector Sketch Image

Vectorization

Sketch VectorSketch Image

Figure 1. Schematic of our proposed self-supervised method for

sketches. Vectorization drives representation learning for sketch

images; rasterization is the pre-text task for sketch vectors.

work trained to solve such a pre-text task should encode

high-level semantic understanding of the data that can be

used to solve other downstream tasks like classification, re-

trieval, etc. Apart from traditional object classification, de-

tection or semantic segmentation, self-supervision has been

extended to sub-domains like human pose-estimation [32],

co-part segmentation [27], and depth estimation [19].

In this paper, we propose a self-supervised method for a

class of visual data that is distinctively different than photos:

sketches [65, 55] and handwriting [50] images. Although

sketch and handwriting have been studied as two separate

topics by different communities, there exists an underlying

similarity in how they are captured and represented. More

specifically, they are both recorded as the user’s pen tip

follows a trajectory on the canvas, and rendered as sparse

black and white lines in image space. Both are abstract, in

the sense that the same object or grapheme can be drawn

in many possible ways [57, 22]; while sketch in particular

poses the challenge of variable levels of detail [52] depicted.

Both sketch [62] and handwriting [20] can be represented

in rasterized pixel space, or as a temporal point sequence

[22]. While each modality has its own benefits, we pro-

pose a novel self-supervised task that takes advantage of

this dual image/vector space representation. In particular,

5672

we use cross modal translation between image and vector

space as a self-supervised task to improve downstream per-

formance using either representation (Figure 1).

Most existing self-supervised methods are defined for

single data modalities. Existing methods for images [11,

23, 18] or videos [34] are designed for pixel perfect ren-

derings of scenes or objects, and as such are not suited

for sparse black and white handwritten images. For ex-

ample colorization [66] and super-resolution [35] pre-texts,

and augmentation strategies such as color distortion, bright-

ness, and hue adjustment used by state of the art contrastive

methods [23, 11, 21] – are not directly applicable to line

drawings. For vector sequences, self-supervised methods

typically addressed at speech such as Contrastive Predic-

tive Coding (CPC) [25] could be used off-the-shelf but do

not explicitly handle the stroke-by-stroke nature of hand-

writing. Conversely, BERT-like pre-training strategies have

had some success with vector-modality sketches [37] but

cannot be applied to image-modality sketches. In contrast,

our framework can be used to learn a powerful representa-

tion for both image and vector domain sketch analysis tasks.

Although a multi-view extension of contrastive learning for

self-supervision [59] has been attempted, we show empiri-

cally that our cross-view rasterization/ vectorization synthe-

sis approach provides a superior self-supervision strategy.

In summary, we design a novel self-supervised frame-

work that exploits the dual raster/vector sequence nature of

sketches and handwritten data through cross-modal transla-

tion (Figure 1). Our cross-modal framework is simple and

easy to implement from off-the-shelf components. Nev-

ertheless it learns powerful representations for both raster

and vector represented downstream sketch and handwrit-

ing analysis tasks. Empirically, our framework surpasses

state of the art self-supervised methods and approaches and

sometimes surpasses the fully supervised alternatives.

2. Related Works

Sketch Representation Learning: Learning good

sketch representations benefits a variety of sketch-specific

problems like classification [64], retrieval [62], scene un-

derstanding [38], sketch based image retrieval [7, 45, 46,

14, 16, 4, 53, 52], generative sketch modelling [57, 22, 6]

etc. While photos are pixel perfect depictions represented

by 2D spatial matrices, sketches can be described either as

2D static pixel level rasterized images or vector sketches

with an ordered sequence of point coordinates. Typically,

sketch images are processed by convolutional neural net-

works [7, 14], whereas vector sketches needs Recurrent

Neural Networks (RNNs) or Transformers [62, 54, 37] for

sequential modelling. There exists no consensus on which

sketch modality (image or vector) is better than the other, as

each has its own merits based on the application scenario.

While rasterized sketch images are usually claimed to be

better for driving fine-grained retrieval [64, 58], they fail

to model the varying level of abstraction [57] in the sketch

generative process. Conversely, vector sketches are more

effective to simulate the human sketching style [22] for gen-

eration, however, it fails [7] for fine-grained instance level

image retrieval. From a computational cost perspective, co-

ordinate based models provides faster cost-effective real-

time performance [63] for sketch-based human-computer

interaction, compared to using rasterized sketch images that

impose a costly rendering step and transfer cost of a large

pixel array. Attempts have been directed towards com-

bining representations from both sketch images and vector

sketches for improved performance in sketch hashing and

category level sketch-based image retrieval [62].

Image-Net pretrained weights are widely used to ini-

tialise standard convolutional networks for sketch images,

with the first self-supervised alternatives specifically de-

signed for raster sketch images being proposed recently

[46]. Vector sketches relying on RNN or Transformer do

not have the ImageNet initialization option. Thus, Lin et

al. [37] employ BERT-like self-supervised learning on vec-

tor sketches. Nevertheless, these existing self-supervised

are proposed for specific modalities (raster image vs vector

sketches) and do not generalize to each other. We therefore

propose a unified pipeline that leverages this dual represen-

tation of sketches to learn powerful features for encoding

sketches represented in both vector and raster views.

Handwriting Recognition: Similar to sketches, hand-

writing recognition has also been heavily explored involv-

ing both image space (‘offline’ recognition) [50, 5, 8, 39,

61] and vector space (‘online’ recognition) [26, 20]. Unlike

sketch, there is a consensus in the handwriting community

[9, 30] that vector representation of handwriting provides

better recognition accuracy over offline images. Connec-

tionist temporal Classification (CTC) criterion by Graves et

al. [20] made end-to-end sequence discriminative learning

possible. Following this seminal work [20], earlier hand-

crafted feature extraction methods [3, 26, 1] in both the

modalities have now been replaced by data driven feature

learning [5, 50, 9] as in many computer vision domains.

Nevertheless, data scarcity still remains a bottleneck for

both offline and online handwriting recognition, despite ad-

vances such as modelling handwriting style variation via ad-

versarial feature deformation module [5] or learning an op-

timal augmentation strategy [39] using reinforcement learn-

ing. We demonstrate the first use of self-supervision to im-

prove both offline and online handwriting recognition.

Self-supervised Learning: Self-supervised learning is

now a large field, too big to review in detail here, with re-

cent surveys [29] providing a broader overview. As a brief

review: Generative models such as VAEs [31] learn repre-

sentations by modelling the distribution of the data. Con-

trastive learning [21, 11, 23] aims to learn discriminative

5673

features by minimising the distance between different aug-

mented views of the same image while maximizing it for

views from different images. Clustering based approaches

[10] first cluster the data based on the features extracted

from a network, followed by re-training the same network

using the cluster-index as pseudo-labels for classification.

Different pre-text tasks have been explored for self-

supervised feature learning in imagery, e.g., image col-

orization [66], super-resolution [35], solving jigsaw puzzles

[43, 46], in-painting [49], relative patch location prediction

[15], frame order recognition [42], etc. Compared to these

approaches, our work is more similar to the few approaches

addressing multi-modal data. For instance, pre-text tasks

like visual-audio correspondence [2, 34], or RGB-flow-

depth correspondence [59] within vision. However, these

approaches use contrastive losses, which raise a host of

complex design issues in batch size, batch sampling strate-

gies, and positive/negative balancing [11, 48, 23, 25, 59]

that are necessary to tune, in order to obtain good perfor-

mance. Furthermore they tend to be extremely expensive

to scale due to the ultimately quadratic cost of comparing

sample pairs [11, 48, 59, 36]. In contrast, our simple cross-

modal synthesis avoids all of these design issues and com-

pute costs, while achieving state of the art performance in

both vector and raster view downstream performance.

3. Methodology

Overview: Our objective is to design a self-supervised

learning method that can be applied over both rasterized im-

age and vector representation of any hand drawn data (e.g.,

sketch or handwriting); and furthermore it should exploit

this complementary information for self-supervised learn-

ing. Towards this objective, we pose the feature learning

task as a cross-modal translation between image and vector

space using state-of-the-art encoder-decoder architectures.

In other words, the training objective is to learn a latent

space for the source modality from which the correspond-

ing sample in the target modality is predictable. Once the

cross-modal translation model is trained, we can remove the

decoder and use the encoder as a feature extractor for source

modality data. For instance, learning to translate from im-

age space to vector space, we obtain an encoder that can

embed raster encoding of hand drawn images into a mean-

ingful latent representation, and vice-versa.

Touch-screen devices and stylus-pens give us easy ac-

cess to hand drawn data represented in both modalities si-

multaneously. Our training dataset consists of N samples

{Ii, Vi}
N
i=1, where I ∈ I and V ∈ V are rasterized im-

age and vector representation respectively. In particular, I

is a spatially extended image of size R
H×W×3, and V is

a sequence of pen states (v1, v2, · · · , vT), where T is the

length of the sequence. In order to learn feature represen-

tation on image space, we learn a vectorization operation

I 7→ V . Conversely, a rasterization operation V 7→ I is

trained to provide a vector space representation. It is impor-

tant to note that we do not use any category-label for sketch

data or character/word annotation for handwritten data in

our feature learning process. Thus, it can be trained in a

class agnostic manner without any manual labels, satisfy-

ing the criteria of self-supervised learning.

3.1. Model Architecture

For cross-modal translation, encoder E(·) embeds the

data from source modality into a latent representation,

and decoder D(·) reconstructs the target modality given

the latent vector. E(·) and D(·) will be designed differ-

ently for the different source and target modalities. While

rasterized image space is represented by a three-channel

RGB image R
H×W×3, we use five-element vector vt =

(xt, yt, q
1
t , q

2
t , q

3
t) to represent pen states in stroke-level

modelling. In particular, (xt, yt) is absolute coordinate

value in a normalised H × W canvas, while the last three

elements represent binary one-hot vector [22] of three pen-

state situations: pen touching the paper, pen being lifted

and end of drawing. Thus, the size of vector representation

is V ∈ R
T×5, where T is the sequence length.

Vectorization: For translating an image to its sequen-

tial point coordinate equivalent, image encoder EI(·) can be

any state-of-the-art convolutional neural network [33] such

as ResNet. To predict the sequential point coordinates, de-

coder DV (·) could be any sequential network, e.g. RNN. In

particular, given an image I , let the extracted convolutional

feature map be F = EI(I) ∈ R
h×w×d, where h, w and d

signify height, width and number of channels respectively.

Applying global max pooling (GAP) to F and flattening,

we obtain a vector lI of size R
d, which will be used as the

representation for input image I once the encoder-decoder

model is trained. Next, a linear-embedding layer is used to

obtain the initial hidden state of the decoder RNN as fol-

lows: h0 = WhlI + bh. The hidden state ht of decoder

RNN is updated as follows: ht = RNN(ht−1; [lI , Pt−1]),
where Pt−1 is the last predicted point and [·] stands for

a concatenation operation. Thereafter, a fully-connected

layer is used to predict five-element vector at each time step

as: Pt = Wyht + by , where Pt = (xt, yt, q
1
t , q

2
t , q

3
t) is

of size R
2+3, whose first two logits represent absolute co-

ordinate (x, y) and the latter three for pen’s state position

(q1, q2, q3). We use simple mean-square error and cate-

gorical cross-entropy losses to train the absolute coordinate

and pen state prediction (softmax normalised) respectively.

Thus, (x̂t, ŷt, q̂
1
t , q̂

2
t , q̂

3
t) being the ground-truth coordinate

at t-th step, the training loss is:

LI→V =
1

T

T
∑

t=1

‖x̂t − xt‖2 + ‖ŷt − yt‖2

−
1

T

T
∑

t=1

3
∑

i=1

q̂it log
(exp(qit)
∑3

j=1 exp(q
j
t)

)

(1)

5674

Classification
Head

RN
N

GAP
Latent
Vector

Backbone
CNN

Sketch Image

In
itia

liz
e

Hi
dd

en
 S

ta
te

GAP
Latent
Vector

Backbone
CNN

Sketch Image

Sketch Vector

RN
N

RN
N

Sketch Vector

Latent
Vector

Convolutional
Decoder

Sketch Image

fc-layer

Sketch Vector

Latent
Vector

Classification
Head

Sequential
 Encoder

Sequential
 Encoder

(a) (b) (c) (d)
Figure 2. Illustration of the architecture used for our self-supervised task for sketches and handwritten data (a,c), and how it can subse-

quently be adopted for downstream tasks (b,d). Vectorization involves translating sketch image to sketch vector (a), and the convolutional

encoder used in the vectorization process acts as a feature extractor over sketch images for downstream tasks (b). On the other side,

rasterization converts sketch vector to sketch image (c), and provides an encoding for vector-based recognition tasks downstream (d).

Rasterization: To translate a sequence of point coordi-

nates V to its equivalent image representation I , any se-

quential network such as RNN [12, 20] or Transformer [37],

could be used as the encoder EV (·), and we experiment

with both. For RNN-like architectures [22], we feed the

five elements vector vt at every time step, and take the hid-

den state of final time step as the encoded latent represen-

tation. For Transformer like encoders, we take input via

a trainable linear layer to convert each five element vec-

tor to the Transformer’s model dimension. Additionally,

we prepend a learnable embedding to the input sequence,

similar to BERT’s class token [13], whose state at the out-

put acts as the encoded latent representation. Finally, the

encoder latent representation lV ∈ R
d is fed via a fully-

connected layer to a standard convolutional decoder DI(·).
DI(·) consists of series of fractionally-strided convolutional

layers [28] to up-sample the spatial size to H × W at the

output. Given the vector V and raster I data pairs, we use

mean-square error as the training objective:

LV→I = −E(I,V)∼(I,V) ‖I −DI(EV (V))‖2 (2)

We remark that due to the well known regression to

mean problem [41], the generated images are indeed blurry.

Adding an adversarial loss [28] does not give any improve-

ment in our representation learning task, and sometimes

leads to worse results due to mode collapse issue in adver-

sarial learning. However, synthesising realistic images is

not our goal in this work. Rather, it is a pretext task for

learning latent representations for vector sequence inputs.

3.2. Application of Learned Representation

We apply our self-supervised learning method on both

sketch [22, 17] and handwriting data [40], as both can be

represented in image and vector space.

Sketch Analysis: We use sketch-recognition [65] and

sketch-retrieval [62, 37] as downstream tasks to evaluate

the quality of learned latent representation obtained by our

self-supervised pre-training. For both classification and re-

trieval, we evaluate performance with both sketch image

and sketch vector representations using vectorization and

rasterization as pre-training task respectively. For classifi-

cation, we simply apply a fully-connected layer with soft-

max on the extracted latent representation from pre-trained

encoder. For retrieval, we could use the latent represen-

tation itself. However we find it helpful to project the la-

tent feature through a fully connected layer into 256 dimen-

sional embedding space, and optimise the model through

triplet loss [14, 7]. Along with triplet loss, that minimises

intra-class distance while maximising inter-class distance,

we also apply a classification loss through a linear layer [12]

to further aid the retrieval learning framework.

Handwriting Recognition: As handwriting recognition

[5] is a (character) sequence task oriented at decoding a

whole word from an image, we use a slightly modified vec-

torization encoder EI(·) for offline/image recognition com-

pared to the sketch tasks. Following [56], the (word) image

encoder extends a conventional ResNet architecture with a

2-layer BLSTM image feature encoder before producing a

final state that provides the latent vector for the input im-

age. This feature is then fed to a sequential decoder to

‘sketch’ the word during cross-modal self-supervised pre-

training, and to a recognition model to recognise the word in

the downstream task. In contrast, the rasterization encoder

EV (·) is defined similarly as for the sketch tasks. For the

downstream task, after encoding either vector and raster in-

puts, we follow [44] in using an attentional decoder [56, 67]

to recognize the word by predicting the characters sequen-

tially. This decoder module consists of a BLSTM layer fol-

lowed by a GRU layer that predicts the characters.

4. Experiments

Datasets: For sketches, we use the standard QuickDraw

[22] and TU-Berlin [17] datasets for evaluation as they con-

tain both raster and vector image representations. Quick-

Draw contains 50 million sketches from 345 classes. We

use the split from [22] where each class has 70K training

samples, 2.5K validation, and 2.5K test samples. Mean-

5675

while, TU-Berlin comprises of 250 object categories with

80 sketches in each category. We apply the Ramer-Douglas-

Peucker (RDP) algorithm to simplify the sketches. For

handwriting we use IAM offline and online datasets [40]:

The offline set contains 115,320 word images, while the on-

line set contains point coordinate representation of 13, 049
lines of handwriting. We pre-process line-level online data

to segment it into 70, 648 valid words, and use synthetic ras-

terization to create training data for vector and raster views.

Implementation Details: We implemented our framework

in PyTorch [47] and conducted experiments on a 11 GB

Nvidia RTX 2080-Ti GPU. While a GRU decoder of hid-

den state size 512 is used in all the vectorization process,

we use convolutional decoder from [28] in the rasterization

process. Following a recent self-supervised study analysis

[33, 21], we use ResNet50 as the CNN encode images, un-

less otherwise mentioned. For vector sketch recognition,

we use a Transformer [60] encoder with 8 layers, hidden

state size 768, MLP size 2048, and 12 heads. For offline

handwritten images, the encoder architecture is taken from

[56] and comprises a ResNet like convolutional architec-

ture followed by a 2 layers BLSTM. For online handwrit-

ing, we feed 5-element vectors at every time step of a 4-

layers stacked BLSTM [9] with hidden state size 512. We

use Adam optimiser with learning 0.0001 and batch size of

64 for all experiments.

Evaluation Metrics: For sketch recognition, Top-1 and

Top-5 accuracy is used, and for category level sketch-

retrieval, we employ Acc@top1 and mAP@top10 as the

evaluation metric. For handwriting recognition, we use

Word Recognition Accuracy following [5].

Competitors: We compare with existing self-supervised

learning methods that involve pre-text task like context pre-

diction [15], Auto-Encoding [31], jigsaw solving [43], rota-

tion prediction [18]. Clustering based representation learn-

ing Deep Cluster [10] is also validated on sketch datasets.

Furthermore, we compare with three state-of-the-art con-

trastive learning based self-supervised learning methods,

namely, SimCLR [11], MoCo [23], and BYOL [21]. While

these self-supervised learning methods are oriented at RGB

photos rather than sketch or handwritten data, we also com-

pare with Sketch-Bert [37] as the only work employing

self-supervised learning on vector sketches. We note that

self-supervised methods designed for image data can not be

used off-the-shelf for vector sketches. The only exception

is Contrastive Predictive Coding (CPC) [44] which has been

used to handle both images and sequential data (e.g. speech

signals). Finally, we compare with a state of the art multi-

modal self-supervised method Contrastive Multi-view Cod-

ing (CMC) [59], which performs contrastive learning of

(mis)matching instances across modalities. Here, we use

the same encoder for raster sketch and vector sketch like

ours for a fair comparison.

4.1. Results on Sketch Representation Learning

Sketch Recognition: Following the traditional protocol

of evaluation for self-supervised learning [11, 21], we first

evaluate our representations by training a linear classifier

on the top of frozen representation. We report the recog-

nition accuracy in Table(left) 1. On QuickDraw, Top-1 ac-

curacy of 71.9% and 67.2% is obtained for sketch images

and sketch vectors respectively, approaching the supervised

counterparts of 76.1% and 73.5%. For TU-Berlin accura-

cies of 70.6% and 55.6% also approach the supervised fig-

ures 78.6% and 62.9%. The gap with supervised method

is larger for TU-Berlin dataset because of having less data

compared to QuickDraw dataset. Interestingly, the perfor-

mance over image level data is comparatively better than

using sketch vectors.

We next evaluate the semi-supervised setup, where we

fine-tune the whole network using smaller subset of train-

ing data, 1% and 10%. Our self-supervised methods helps

to learn good initialization such that in this low data regime,

ours is significantly better than its supervised counter part

as shown in Table 2. Finally, we evaluate the learned

features from various depths of our convolutional encoder

for sketch raster image classification in Table 3. Over-

all, our close competitors are contrastive learning based

family of self-supervised methods, e.g. SimCLR, BYOL,

MoCo. We attribute the superiority of our method over

other self-supervised methods, on the sketch dataset, to the

task-design that exploits the intrinsic dual representation of

sketch data.

Sketch Retrieval: For sketch retrieval, first we use

the extracted latent feature from pre-trained self-supervised

network for triplet metric learning of an additional linear

embedding layer. From the retrieval performance in Table 1

(right) we see a relative performance between the methods

that is similar to the previous sketch classification experi-

ments. However, the retrieval performance using the fixed

self-supervised latent feature is 9 − 10% below the super-

vised version. In the semi-supervised experiment, we fine-

tune the complete model including linear layer and the pre-

trained feature extractor using 1% and 10% of the training

data respectively. Table 2 shows that our self-supervised

method has a clear edge over supervised counter part in this

low data regime. Qualitative cross-modal generated and re-

trieved results are shown in Figure 4 & 5, respectively.

4.2. Results on Handwriting Recognition

To the best of our knowledge, there has been no work

applying self-supervised learning to handwritten data. We

compare our self-supervised method with CPC which can

handle sequential data. In Table 4, we use the extracted

frozen sequential feature from each encoder to train an at-

tentional decoder based text recognition network. We see

that our Sketch2Vec surpasses CPC, but both methods do

5676

Table 1. Linear model evaluation of fixed pre-trained features. ResNet50 for image space and Transformer for vector space inputs.

Recognition Retrieval

Image Space Vector Space Image Space Vector Space

QuickDraw TU-Berlin QuickDraw TU-Berlin QuickDraw TU-Berlin QuickDraw TU-Berlin

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 A@T1 mAP@t10 A@T1 mAP@t10 A@T1 mAP@T10 A@T1 mAP@T10

Supervised 76.1% 91.3% 78.6% 90.1% 73.5% 90.1% 62.9% 80.7% 62.3% 69.4% 69.1% 74.7% 58.5% 77.1% 50.2% 67.4%

Random 15.5% 26.2% 18.4% 29.3% 12.7% 23.6% 9.6% 19.4% 10.6% 21.3% 13.4% 26.7% 9.8% 21.5% 9.2% 17.6%

Context [15] 44.6% 69.2% 43.3% 67.5% - - - - 30.7% 34.9% 28.4% 32.7% - - - -

Auto-Encoder [31] 26.4% 48.1% 22.6% 47.5% - - - - 16.4% 24.4% 15.3% 20.4% - - - -

Jigsaw [43] 46.9% 71.5% 45.7% 69.8% - - - - 31.6% 38.9% 30.6% 35.4% - - - -

Rotation [18] 53.5% 78.7% 51.2% 77.1% - - - - 37.5% 45.1% 36.4% 41.8% - - - -

Deep Cluster [10] 39.4% 62.7% 38.7% 60.2% - - - - 29.2% 36.8% 27.3% 31.9% - - - -

MoCo [23] 65.7% 85.1% 64.3% 82.8% - - - - 42.5% 46.8% 42.5% 46.9% - - - -

SimCLR [11] 65.5% 85.1% 64.3% 82.9% - - - - 43.3% 50.7% 41.5% 46.7% - - - -

BYOL [21] 66.8% 85.8% 65.7% 83.7% - - - - 45.4% 52.5% 43.8% 49.1% - - - -

Sketch-BERT [37] - - - - 65.6% 85.3% 52.9% 78.1% - - - - 48.9% 68.1% 40.7% 58.8%

CMC [59] 63.6% 83.9% 61.7% 81.3% 61.2% 81.5% 51.4% 77.5% 40.6% 45.8% 38.5% 43.3% 45.2% 66.7% 40.3% 58.2%

CPC [44] 54.3% 79.0% 52.9% 77.9% 59.3% 81.3% 50.5% 76.6% 37.9% 43.1% 36.4% 40.9% 43.1% 63.6% 39.3% 57.9%

Ours-(L) 71.9% 89.7% 70.6% 85.9% 67.2% 86.5% 55.6% 79.4% 52.3% 59.5% 47.7% 59.1% 49.5% 68.9% 42.1% 59.6%

Table 2. Semi-supervised fine-tuning using 1% and 10% labelled training data on QuickDraw.

Recognition Retrieval

Image Space Vector Space Image Space Vector Space

1% Training 10% Training 1% Training 10% Training 1% Training 10% Training 1% Training 10% Training

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 A@T1 mAP@t10 A@T1 mAP@t10 A@T1 mAP@T10 A@T1 mAP@T10

Supervised 25.1% 47.3% 55.4% 79.0% 17.3% 37.5% 43.9% 65.9% 13.4% 34.3% 43.9% 63.7% 9.1% 29.0% 41.0% 60.8%

Context [15] 33.9% 55.8% 56.8% 80.5% - - - - 24.4% 30.5% 42.6% 48.4% - - - -

Auto-Encoder [31] 21.5% 40.7% 45.1% 70.6% - - - - 15.2% 21.4% 32.7% 37.6% - - - -

Jigsaw [43] 36.5% 57.4% 57.4% 80.3% - - - - 27.7% 35.2% 44.7% 51.2% - - - -

Rotation [18] 38.8% 59.1% 59.6% 80.7% - - - - 28.4% 35.2% 44.7% 51.8% - - - -

Deep Cluster [10] 32.2% 54.5% 54.7% 79.2% - - - - 24.4% 31.2% 43.6% 47.7% - - - -

MoCo [23] 46.0% 70.5% 62.2% 83.7% - - - - 35.9% 43.1% 52.7% 57.4% - - - -

SimCLR [11] 46.1% 70.5% 62.1% 83.6% - - - - 35.1% 42.7% 52.3% 57.4% - - - -

BYOL [21] 47.3% 72.0% 62.7% 84.1% - - - - 36.5% 43.0% 52.8% 59.8% - - - -

Sketch-BERT [37] - - - - 45.1% 69.8% 62.4% 81.7% - - - - 36.5% 60.0% 52.9% 72.9%

CMC [59] 44.6% 68.2% 61.7% 82.7% 44.6% 68.4% 61.7% 81.6% 34.7% 41.9% 51.1% 57.4% 35.4% 58.1% 52.6% 72.8%

CPC [44] 40.6% 65.7% 60.7% 81.9% 43.5% 67.7% 61.6% 81.7% 33.4% 40.1% 50.5% 57.7% 34.1% 56.6% 52.3% 72.8%

Ours 51.2% 76.4% 65.6% 85.2% 46.8% 70.9% 63.2% 83.9% 38.6% 45.6% 60.4% 81.4% 37.1% 61.5% 53.2% 74.3%

Table 3. Accuracy on QuickDraw dataset with linear classifier

trained on representation from various depth within the network.

Method Block1 Block2 Block3 Block4 Pre-logits

Supervised 7.0% 14.9% 35.6% 72.5% 76.1%

Jigsaw [43] 4.2% 8.1% 26.8% 39.9% 46.9%

Rotation [18] 5.2% 11.2% 27.5% 45.4% 53.5%

Deep Cluster [10] 4.1% 8.6% 19.6% 33.4% 39.4%

CMC [59] 6.1% 11.9% 29.7% 56.7% 63.6%

MoCo [23] 7.7% 13.5% 31.6% 60.3% 65.7%

SimCLR [11] 6.7% 12.6% 32.0% 59.5% 65.5%

BYOL [21] 9.0% 15.1% 32.2% 61.2% 66.8%

Ours 10.1 15.2% 34.4% 67.5% 71.9%

Table 4. Handwriting recognition using feature extracted from

fixed pre-trained encoder.

Offline Online

Lexicon No Lexicon Lexicon No Lexicon

Supervised [56] 87.1% 81.5% 88.4% 82.8%

Random 10.4% 6.3% 7.4% 4.9%

CPC [44] 72.2% 63.7% 71.5% 62.8%

Ours 75.4% 68.6% 73.1% 66.9%

Table 5. Handwriting recognition under semi-supervised setup.

Offline Online

1% Training 10% Training 1% Training 10% Training

Supervised [56] 19.7% 40.6% 20.5% 42.4%

CPC [44] 29.1% 55.4% 27.8% 54.2%

Ours 38.5% 59.2% 36.8% 56.7%

not match supervised performance. In a semi-supervised

setup (Table 5), we add an attentional decoder and fine-tune

the whole pipeline using 1% and 10% training data respec-

tively. In this case, the self-supervised methods achieve a

significant margin over the supervised alternative. Further-

more, we observe that initialising the network (both offline

and online) with weights pre-trained on our self-supervised

setup, followed by training (supervised) the entire pipeline,

yields higher results than initialising with random weights,

by a margin of 1.4% and 1.2%, under the same experimental

setup. This concludes that our smart pre-training strategy is

a better option, instead of training handwriting recognition

network from scratch.

Table 6. Ablative study (Top-1 accuracy) on architectural design

using QuickDraw. (V)ectorization and (R)asterization indicate

representation learning on image and vector space, respectively.

Ablation Experiment Image Space Vector Space

(a) Absolute coordinate in the decoding (V): 71.9% –

(b) Offset coordinate in the decoding (V) 69.5% –

(c) Absolute coordinate in the encoding (R): – 67.2%

(d) Offset coordinate in the encoding (R) – 67.1%

(e) LSTM decoder (V) : 70.7% –

(f) GRU decoder (V) : 71.9% –

(g) Transformer decoder (V) : 68.6% –

(h) LSTM encoder (R) : – 66.7%

(i) GRU encoder (R) : – 66.1%

(j) Transformer encoder (R) : – 67.2%

(k) Two-way Translation (V+R) : 70.3% 66.1%

(l) Attentional Decoder (V) : 68.0% –

4.3. Ablative Study

Data Volume and Layer Dependence: Performance un-

der varying amounts of training data is shown in Figure 3

for both sketch classification and handwriting recognition.

5677

1 2 5 10 20 50 100

20

40

60

80

(a) % Training Data

T
op

-1
R

ec
og

.
A

cc
.(

%
)

Supervised

SimCLR(repro)

Ours

1 2 5 10 20 50 100

20

40

60

80

(b) % Training Data

T
op

-1
R

ec
og

.
A

cc
.(

%
)

Supervised

Sketch-BERT(repro)

Ours

1 2 5 10 20 50 100

20

40

60

80

(c) % Training Data

T
op

-1
R

ec
og

.
A

cc
.(

%
)

Supervised

CPC(repro)

Ours

1 2 5 10 20 50 100

20

40

60

80

(d) % Training Data

T
op

-1
R

ec
og

.
A

cc
.(

%
)

Supervised

CPC(repro)

Ours

All > B1 > B2 > B3 > B4 > B5

55

60

65

70

75

80

(e) # of Layers Fine-Tuned

T
o
p
-1

R
ec

o
g
.

A
cc

.(
%

)

Rotation

SimCLR

Ours

All > T1> T2> T3> T4> T5> T6> T7> T8

60

65

70

75

80

(f) # of Layers Fine-Tuned

T
o
p
-1

R
ec

o
g
.

A
cc

.(
%

)
CPC

Sketch-BERT

Ours

All > B1> B2> B3> B4> B5> L1> L2

75

80

85

90

(g) # of Layers Fine-Tuned

T
o

p
-1

R
ec

o
g

.
A

cc
.(

%
)

CPC

Ours

All > L1 > L2 > L3 > L4

75

80

85

90

(h) # of Layers Fine-Tuned

T
o

p
-1

R
ec

o
g

.
A

cc
.(

%
)

CPC

Ours

Figure 3. Performance at varying training data size for (a) sketch image classification (b) sketch vector classification on Quick-Draw, and

(c) offline handwritten image recognition (d) online handwriting recognition, respectively. In the same order, comparative performance

is shown through fine-tuning different number of layers: (e) sketch image encoder uses ResNet-50 having 5-convolutional blocks. (f)

8-layers stacked Transformer is used for sketch vector encoder. (g) ResNet-like convolutional encoder (having 5 blocks) followed by 2

layers BLSTM employs offline word image encoder (h) 4 layers stacked BLSTM is used for encoder online word images.‘> X’ represents

all layers above X are fine-tuned.

Figure 4. Qualitative results showing generated cross-modal translation. (a) Vectorization: raster sketch image to vector sketch, (b) Raster-

ization: vector sketch to raster sketch image.

We also evaluate performance as a function of number of

trained/frozen layers during fine-tuning. We can see that

Sketch2Vec performs favorably to state of the art alterna-

tives SimCLR, SketchBERT, and CPC – especially in the

low data, or few tuneable layers regimes.

Architectural Insights: We perform a thorough ablative

study to provide insights on our architecture design choices

using the sketch recognition task in Table 6. (i) In the sketch

image to sketch vector translation process, using absolute

coordinate is found to give better representative feature

for sketch images over using offset coordinate [22] values.

However, for representation learning over vector sketches,

we did not notice any significant difference in performance,

provided the absolute coordinates are normalised. (ii) We

found absolute coordinate with regression loss gives bet-

ter performance than using offset with log-likelihood loss

as used in [57]. (iii) We use deterministic cross-modal

encoder-decoder architecture since VAE-based design [57]

reduces the performance. (iv) We also compare with dif-

ferent sequential decoders in the vectorization process, e.g.

LSTM, GRU, and Transformer. Empirically, GRU is found

to work better than others. (v) For sketch classification

on vector space, we also compare with LSTM, GRU, and

Transformer encoder architecture respectively, with Trans-

former giving optimum results. (vi) Another intuitive alter-

native could be to use two-way cross-modal translation us-

ing additional source-to-source and target-to-target decoder,

however, we experience performance drop. (vii) We also

add an attentional block for sequential decoding in vector-

ization process that leads to a drop in performance by 3.9%.

We conjecture that adding attention gives a shortcut con-

nection to the convolutional feature map, and the sequential

task becomes comparatively easy, which is why the self-

supervised pre-training fails to learn global semantic repre-

sentation for classification.

Cross-category Generalisation: One major objective of

unsupervised representation learning is to learn feature rep-

resentation that can generalise to other categories as well.

Thus, we split 345 QuickDraw classes into two random

disjoint set [14] of 265 and 80 for self-supervised train-

ing and evaluation, respectively. Model trained using our

self-supervised task, is further evaluated on unseen classes

(Table 7) using a linear classifier on extracted frozen fea-

ture. We obtain a top-1 accuracy of 65.1% and 58.4% on

sketch images and vectors, respectively, compared to 71.9%
and 67.2% while using all classes in the self-supervised pre-

training. Under same setting, SimCLR is limited to 53.6%
for sketch image classification. This confirms a significant

extent of generalizable feature learning through our self-

supervised task over sketch data.

Cross-dataset Generalisation: We further use model

trained on QuickDraw dataset to extract feature over TU-

5678

Figure 5. Qualitative retrieved results on (a) raster sketch images (via vectorization task) (b) vector sketches (via rasterization task) using

pre-trained latent feature. Red denotes false positive cases.

(b)(a)

Figure 6. T-SNE Plots on features extracted by our self-supervised

method (a) vectorization (sketch images) (b) rasterization (sketch

vectors) for 10 QuickDraw classes.

Table 7. Cross-category recognition accuracy on QuickDraw.

Image Space Vector Space

Top-1 Top-5 Top-1 Top-5

MoCo [23] 53.4% 77.6% – –

SimCLR [11] 53.6% 77.6% – –

CPC [44] 46.8% 71.3% 48.1% 73.3%

Ours 65.1% 85.6% 58.4% 81.2%

Berlin dataset, followed by linear evaluation. Compared

within dataset training accuracy of 70.6% (55.6%), we ob-

tain a cross-dataset accuracy (Table 8) of 58.9% (36.9%)

on TU-Berlin sketch-images (sketch-vectors) without much

significant drop in accuracy, thus signifying the potential of

our self-supervised method for sketch data.

Table 8. Cross-dataset (QuickDraw 7→ Tu-Berlin) recognition ac-

curacy: Model pre-trained on QuickDraw is used to extract fixed

latent feature on TU-Berlin, followed by linear model evaluation.

Image Space Vector Space

Top-1 Top-5 Top-1 Top-5

MoCo [23] 47.5% 62.1% – –

SimCLR [11] 47.2% 62.0% – –

CPC [44] 41.4% 60.8% 27.7% 50.9%

Ours 58.9% 80.5% 36.9% 61.7%

Cross-Task Generalisation: Both sketch and handwrit-

ing are hand-drawn data having similarity in terms of how

they are recorded, and represented in image and vector

space. Thus, we explore whether a model trained on hand-

written data using self-supervised task can generalise over

sketches, and vice versa. The pooling stride is adjusted so

that, using sketch convolutional encoder, we can get sequen-

tial feature, and handwriting convolutional encoder can give

feature vector representation on sketch images using global

pooling. Following this protocol, we obtain (Table 9) a rea-

sonable cross-task top-1 accuracy of 37.6% and 33.7% on

sketch images and vectors on QuickDraw. Conversely, we

get no-lexicon WRA of 28.4% and 26.3% on handwritten

offline word images and online word vectors, respectively.

Table 9. Cross-task (Sketch ↔ Handwriting) generalisation results

on extracted fixed latent feature . Lexicon: (L), No-Lexicon: (NL)

Sketch (QuickDraw) Handwriting (IAM)

Image Vector Image Vector

Top-1 Top-5 Top-1 Top-5 L NL L NL

Random 14.6% 25.7% 11.8% 22.9% 9.8% 6.1% 7.1% 4.5%

CPC [44] 19.7% 37.8% 17.6% 36.9% 19.5% 12.5% 15.7% 9.7%

Ours 37.6% 58.4% 33.7% 55.8% 33.8% 28.4% 31.6% 26.3%

Further Analysis: (i) We have also compared with other

backbone CNN network, e.g. AlexNet, where we obtain

Top-1 accuracy of 63.3% compared to 71.9% on using

ResNet50. This confirms suitability of our design across

different backbone architecture. (ii) In our implementation,

we perform only basic horizontal flipping and random crop-

ping for augmentation. We also experiment with multiple

augmentation strategies mentioned in [11], but notice no

significant changes. (iii) Furthermore, following the recent

works [62, 12] that jointly exploits raster sketch-image and

temporal sketch-vector for sketch representation, we sim-

ply concatenate extracted latent feature of sketch-image and

sketch-vector, and evaluate through linear classifier. This

joint feature improves the top-1 accuracy to 72.8% com-

pared to 71.9% which uses raster image only.

5. Conclusion

We have introduced a self-supervision method based on

cross-modal rasterization/vectorization that is effective in

representation learning for sketch and handwritten data.

Uniquely our setup provides powerful representations for

both vector and raster format inputs downstream. Re-

sults on sketch recognition, sketch retrieval, and handwrit-

ing recognition show that our pre-trained representation ap-

proaches the performance of supervised deep learning in the

full data regime, and surpasses it in the low data regime.

Thus Sketch2Vec provides a powerful tool to scale and ac-

celerate deep-learning-based freehand writing analysis go-

ing forward.

5679

References

[1] Jon Almazán, Albert Gordo, Alicia Fornés, and Ernest Val-

veny. Word spotting and recognition with embedded at-

tributes. IEEE T-PAMI, 2014. 2

[2] Relja Arandjelovic and Andrew Zisserman. Look, listen and

learn. In ICCV, 2017. 3

[3] Yoshua Bengio, Yann LeCun, Craig Nohl, and Chris Burges.

Lerec: A nn/hmm hybrid for on-line handwriting recogni-

tion. Neural Computation, 1995. 2

[4] Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Aneeshan

Sain, Yongxin Yang, Tao Xiang, and Yi-Zhe Song. More

photos are all you need: Semi-supervised learning for fine-

grained sketch based image retrieval. In CVPR, 2021. 2

[5] Ayan Kumar Bhunia, Abhirup Das, Ankan Kumar Bhunia,

Perla Sai Raj Kishore, and Partha Pratim Roy. Handwriting

recognition in low-resource scripts using adversarial learn-

ing. In CVPR, 2019. 2, 4, 5

[6] Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad,

Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia

Gryaditskaya, and Yi-Zhe Song. Pixelor: A competitive

sketching ai agent. so you think you can beat me? In Sig-

graph Asia, 2020. 2

[7] Ayan Kumar Bhunia, Yongxin Yang, Timothy M

Hospedales, Tao Xiang, and Yi-Zhe Song. Sketch less

for more: On-the-fly fine-grained sketch based image

retrieval. In CVPR, 2020. 2, 4

[8] Théodore Bluche. Joint line segmentation and transcrip-

tion for end-to-end handwritten paragraph recognition. In

NeurIPS, 2016. 2

[9] Victor Carbune, Pedro Gonnet, Thomas Deselaers, Henry A

Rowley, Alexander Daryin, Marcos Calvo, Li-Lun Wang,

Daniel Keysers, Sandro Feuz, and Philippe Gervais. Fast

multi-language lstm-based online handwriting recognition.

IJDAR, 2020. 2, 5

[10] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning

of visual features. In ECCV, 2018. 1, 3, 5, 6

[11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. In ICML, 2020. 2, 3, 5, 6, 8

[12] John Collomosse, Tu Bui, and Hailin Jin. Livesketch: Query

perturbations for guided sketch-based visual search. In

CVPR, 2019. 4, 8

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional trans-

formers for language understanding. In NAACL-HLT, 2019.

4

[14] Sounak Dey, Pau Riba, Anjan Dutta, Josep Llados, and Yi-

Zhe Song. Doodle to search: Practical zero-shot sketch-

based image retrieval. In CVPR, 2019. 2, 4, 7

[15] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-

vised visual representation learning by context prediction. In

ICCV, 2015. 1, 3, 5, 6

[16] Anjan Dutta and Zeynep Akata. Semantically tied paired

cycle consistency for zero-shot sketch-based image retrieval.

In CVPR, 2019. 2

[17] Mathias Eitz, James Hays, and Marc Alexa. How do humans

sketch objects? ACM TOG, 2012. 4

[18] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-

supervised representation learning by predicting image rota-

tions. In ICLR, 2018. 1, 2, 5, 6

[19] Clément Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel J Brostow. Digging into self-supervised monocular

depth estimation. In ICCV, 2019. 1

[20] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman

Bertolami, Horst Bunke, and Jürgen Schmidhuber. A novel

connectionist system for unconstrained handwriting recogni-

tion. IEEE-TPAMI, 2008. 1, 2, 4

[21] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin

Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-

ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-

mad Gheshlaghi Azar, et al. Bootstrap your own latent: A

new approach to self-supervised learning. arXiv preprint

arXiv:2006.07733, 2020. 2, 5, 6

[22] David Ha and Douglas Eck. A neural representation of

sketch drawings. ICLR, 2017. 1, 2, 3, 4, 7

[23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In CVPR, 2020. 1, 2, 3, 5, 6, 8

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 1

[25] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali

Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord.

Data-efficient image recognition with contrastive predictive

coding. In ICML, 2019. 2, 3

[26] Jianying Hu, Michael K Brown, and William Turin. Hmm

based online handwriting recognition. IEEE-TPAMI, 1996.

2

[27] Wei-Chih Hung, Varun Jampani, Sifei Liu, Pavlo

Molchanov, Ming-Hsuan Yang, and Jan Kautz. Scops:

Self-supervised co-part segmentation. In CVPR, 2019. 1

[28] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In CVPR, 2017. 4, 5

[29] L. Jing and Y. Tian. Self-supervised visual feature learning

with deep neural networks: A survey. IEEE TPAMI, 2020. 2

[30] Daniel Keysers, Thomas Deselaers, Henry A Rowley, Li-

Lun Wang, and Victor Carbune. Multi-language online hand-

writing recognition. IEEE-TPAMI, 2016. 2

[31] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. In ICLR, 2014. 1, 2, 5, 6

[32] Muhammed Kocabas, Salih Karagoz, and Emre Akbas. Self-

supervised learning of 3d human pose using multi-view ge-

ometry. In CVPR, 2019. 1

[33] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-

visiting self-supervised visual representation learning. In

CVPR, 2019. 3, 5

[34] Bruno Korbar, Du Tran, and Lorenzo Torresani. Coopera-

tive learning of audio and video models from self-supervised

synchronization. In NeurIPS, 2018. 2, 3

[35] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

5680

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In CVPR, 2017. 2, 3

[36] Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and

Steven CH Hoi. Prototypical contrastive learning of unsu-

pervised representations. arXiv preprint arXiv:2005.04966,

2020. 3

[37] Hangyu Lin, Yanwei Fu, Yu-Gang Jiang, and Xiangyang

Xue. Sketch-bert: Learning sketch bidirectional encoder rep-

resentation from transformers by self-supervised learning of

sketch gestalt. In CVPR, 2020. 2, 4, 5, 6

[38] Fang Liu, Changqing Zou, Xiaoming Deng, Ran Zuo, Yu-

Kun Lai, Cuixia Ma, Yong-Jin Liu, and Hongan Wang.

Scenesketcher: Fine-grained image retrieval with scene

sketches. In ECCV, 2020. 2

[39] Canjie Luo, Yuanzhi Zhu, Lianwen Jin, and Yongpan Wang.

Learn to augment: Joint data augmentation and network op-

timization for text recognition. In CVPR, 2020. 2

[40] U-V Marti and Horst Bunke. The iam-database: an english

sentence database for offline handwriting recognition. IJ-

DAR, 2002. 4, 5

[41] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep

multi-scale video prediction beyond mean square error. In

ICLR, 2016. 4

[42] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuf-

fle and learn: unsupervised learning using temporal order

verification. In ECCV, 2016. 3

[43] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of

visual representations by solving jigsaw puzzles. In ECCV,

2016. 1, 3, 5, 6

[44] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018. 4, 5, 6, 8

[45] Kaiyue Pang, Ke Li, Yongxin Yang, Honggang Zhang, Tim-

othy M Hospedales, Tao Xiang, and Yi-Zhe Song. Gener-

alising fine-grained sketch-based image retrieval. In CVPR,

2019. 2

[46] Kaiyue Pang, Yongxin Yang, Timothy M Hospedales, Tao

Xiang, and Yi-Zhe Song. Solving mixed-modal jigsaw puz-

zle for fine-grained sketch-based image retrieval. In CVPR,

2020. 2, 3

[47] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. In NeurIPS Autodiff Workshop,

2017. 5

[48] Massimiliano Patacchiola and Amos Storkey. Self-

supervised relational reasoning for representation learning.

In NeurIPS, 2020. 3

[49] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor

Darrell, and Alexei A Efros. Context encoders: Feature

learning by inpainting. In CVPR, 2016. 3

[50] Arik Poznanski and Lior Wolf. Cnn-n-gram for handwriting

word recognition. In CVPR, 2016. 1, 2

[51] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 2015. 1

[52] Aneeshan Sain, Ayan Kumar Bhunia, Yongxin Yang, Tao Xi-

ang, and Yi-Zhe Song. Cross-modal hierarchical modelling

forfine-grained sketch based image retrieval. In BMVC,

2020. 1, 2

[53] Aneeshan Sain, Ayan Kumar Bhunia, Yongxin Yang, Tao Xi-

ang, and Yi-Zhe Song. Stylemeup: Towards style-agnostic

sketch-based image retrieval. In CVPR, 2021. 2

[54] Leo Sampaio Ferraz Ribeiro, Tu Bui, John Collomosse, and

Moacir Ponti. Sketchformer: Transformer-based representa-

tion for sketched structure. In CVPR, 2020. 2

[55] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James

Hays. The sketchy database: learning to retrieve badly drawn

bunnies. TOG, 2016. 1

[56] Baoguang Shi, Mingkun Yang, Xinggang Wang, Pengyuan

Lyu, Cong Yao, and Xiang Bai. Aster: An attentional scene

text recognizer with flexible rectification. IEEE T-PAMI,

2018. 4, 5, 6

[57] Jifei Song, Kaiyue Pang, Yi-Zhe Song, Tao Xiang, and Tim-

othy M Hospedales. Learning to sketch with shortcut cycle

consistency. In CVPR, 2018. 1, 2, 7

[58] Jifei Song, Qian Yu, Yi-Zhe Song, Tao Xiang, and Timo-

thy M Hospedales. Deep spatial-semantic attention for fine-

grained sketch-based image retrieval. In ICCV, 2017. 2

[59] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. arXiv preprint arXiv:1906.05849,

2019. 2, 3, 5, 6

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017. 5

[61] Tianwei Wang, Yuanzhi Zhu, Lianwen Jin, Canjie Luo, Xi-

aoxue Chen, Yaqiang Wu, Qianying Wang, and Mingxiang

Cai. Decoupled attention network for text recognition. In

AAAI, 2020. 2

[62] Peng Xu, Yongye Huang, Tongtong Yuan, Kaiyue Pang, Yi-

Zhe Song, Tao Xiang, Timothy M Hospedales, Zhanyu Ma,

and Jun Guo. Sketchmate: Deep hashing for million-scale

human sketch retrieval. In CVPR, 2018. 1, 2, 4, 8

[63] Peng Xu, Chaitanya K Joshi, and Xavier Bresson. Multi-

graph transformer for free-hand sketch recognition. arXiv

preprint arXiv:1912.11258, 2019. 2

[64] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M

Hospedales, and Chen-Change Loy. Sketch me that shoe. In

CVPR, 2016. 2

[65] Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang,

and Timothy M Hospedales. Sketch-a-net: A deep neural

network that beats humans. IJCV, 2017. 1, 4

[66] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In ECCV, 2016. 1, 2, 3

[67] Yaping Zhang, Shuai Nie, Wenju Liu, Xing Xu, Dongxiang

Zhang, and Heng Tao Shen. Sequence-to-sequence domain

adaptation network for robust text image recognition. In

CVPR, 2019. 4

5681

