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Abstract

Generating and representing human behavior are of ma-
jor importance for various computer vision applications.
Commonly, human video synthesis represents behavior as
sequences of postures while directly predicting their likely
progressions or merely changing the appearance of the de-
picted persons, thus not being able to exercise control over
their actual behavior during the synthesis process. In con-
trast, controlled behavior synthesis and transfer across indi-
viduals requires a deep understanding of body dynamics and
calls for a representation of behavior that is independent
of appearance and also of specific postures. In this work,
we present a model for human behavior synthesis which
learns a dedicated representation of human dynamics inde-
pendent of postures. Using this representation, we are able
to change the behavior of a person depicted in an arbitrary
posture, or to even directly transfer behavior observed in
a given video sequence. To this end, we propose a condi-
tional variational framework which explicitly disentangles
posture from behavior. We demonstrate the effectiveness of
our approach on this novel task, evaluating capturing, trans-
ferring, and sampling fine-grained, diverse behavior, both
quantitatively and qualitatively. Project page is available at
https://cutt.ly/5l7rXEp

1. Introduction

Understanding human appearance, posture and behav-

ior are key problems of computer vision with numerous

applications in autonomous driving [39, 41, 23], surveil-

lance [12, 50, 60], medical treatment [6, 54] and be-

yond. While there has been major progress on represen-

tation [59, 48] and - with the advent of deep generative mod-

els [34, 24] - synthesis [7, 30] and manipulation [20, 13, 17]

of posture and appearance, the understanding of representa-

tion and synthesis of behavior is an open problem.

Human motor behavior is defined by the distinct dynam-

ics of our limbs and the entire body. Take for example a

person raising their arm. This is fully determined by the

upward movement of the arm. Since the remaining body

*Indicates equal contribution.

posture is mostly unaffected, the behavior can be directly

performed independently of a particular initial body config-

uration such as a sitting or standing posture (cf. Fig. 1).

Moreover, rather complex behavior like running involves an

interplay between certain body limbs, e.g. arms swinging

synchronously with the movement of legs, and, thus, is natu-

rally limited to certain postures to start with. To nevertheless

enact such behavior from arbitrary starting poses, first a tran-

sition to fitting initial body configurations may be required -

for instance, a sitting person needs to stand up before being

able to walk. Finally, specific body features like size or build

do not affect the ability to perform a walking behavior.

While behavior is eventually instantiated as a sequence of

individual postures that can be observed in a video, this

would be a suboptimal representation: We want the overall

behavior to be the same, e.g. raising arm or walking, re-

gardless of the initial posture it starts with. Although we are

looking at different realizations it should still be represented

as being the same behavior. Consequently, understanding,

controlling, and synthesizing behavior calls for separate dis-

entangled representations of the characteristic behavior and

of individual (in particular the initial) posture. In contrast,

present work on human motion synthesis typically represents

behavior directly by means of the observed sequence of pos-

tures [3, 40, 63, 57]. Thus, as no explicit understanding and

representation of behavior is developed, synthesizing human

behavior has been limited to only changing person appear-

ance [57, 9, 56] or forecasting the most likely continuation

of the depicted posture sequence [3, 40, 63, 11]. However,

controlling such sequences, e.g. to re-enact a novel behavior

by an observed person, asks for a posture independent repre-

sentation which captures only the behavior dynamics to be

transferred. Moreover, instantiating the re-enacted behavior

requires combining these dynamics with the, potentially sig-

nificantly different, posture of the target person.

In this paper we propose a conditional variational generative

model for controlled human behavior synthesis which only

requires a collection of sequences without any class labels

provided. Our models learns to understand the characteristic

motor dynamics of behavior, which enables us to transfer

behavior between videos. We learn a dedicated representa-
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Figure 1. Our Approach for Behavior Transfer. Given a source sequence of human dynamics our model infers a behavior encoding which is

independent of posture. We can re-enact the behavior by combining it with an unrelated target posture and thus control the synthesis process.

The resulting sequence is combined with an appearance to synthesize a video sequence.

tion extracting these dynamics from pose sequences while

factorizing out posture information. To this end, we propose

an explicit disentanglement framework for behavior and pos-

ture based on an alternating optimization procedure while

simultaneously controlling the information flow through our

model. In particular, the explicit disentanglement allows

our model to re-enact extracted behavior from arbitrary tar-

get postures and, if needed, to infer required corresponding

transitions itself. Our experiments demonstrate qualitatively

and quantitatively that our model meaningfully transfers be-

havior between sequences and is also able to sample novel

and diverse behavior. Quantitative comparison against cur-

rent approaches for human motion synthesis confirms the

competitive performance of our approach.

2. Related Work

Static person rendering. Much work has been proposed

to alter certain characteristics of humans depicted in static

images like age, gender or body features [31, 33, 35, 52]

or synthesizing individual persons in different, unseen

poses [20, 19, 38, 13]. The latter task typically requires

for explicit disentanglement between certain factors of in-

terest, often depending on paired image data [19, 38, 26].

While these approaches work well factors in static images,

our work aims at transferring human behavior and, thus,

requires disentanglement of a temporal factor, which is is

significantly more complex.

Human video synthesis. Human video synthesis has been

addressed in multiple ways. Some approaches synthesize

videos directly in the pixel space [53, 2]. Due to the vast

complexity of this problem, most approaches are based on

mid-level representation of human shape, such as segmen-

tation masks [57, 22] or pose estimates [56, 9, 62, 18, 37].

Chan et al. [9] generate video sequences of dancing per-

sons by first learning correspondences between frames and

postures before adding appearance information. A simi-

lar sequence-to-sequence translation task is performed in

[57, 56, 36]. These works represent behavior directly on

instantiated pose sequences, thus lacking the ability to exer-

cise control. Our model understands and explicitly learns a

behavior representation which can be used to transfer char-

acteristic behavior dynamics between persons. Another line

of research is future human motion prediction based on an

initially observed posture sequence [14, 29, 21, 55]. Yuan et

al. [64, 63] extend the future motion prediction task using

multiple transformations on the latent space to increase the

diversity of predicted motions. Chiu et al. [11] propose a

hierarchical multi-scale RNN to learn dependencies between

individual postures. Martinez et al. [40] use residual RNN

architectures to directly model motion velocities. Milbich et

al. [43] synthesize behavior by arranging frames from dif-

ferent video sequences based on nearest neighbour retrieval

in a dedicated activity space. In contrast to our approach,

these methods can not control the predicted behavior but

only extrapolate the observed posture sequence.

Controlled behavior synthesis. Controlling the behavior

to be generated requires a considerable higher degree of un-

derstanding than unconditioned prediction or sequence trans-

lation. Recent works control mostly only in form of a small,

fixed set of predefined actions [22, 25]. Yang et al. [62]

condition the synthesis process on action labels. In contrast,

we require only a collection of unpaired video sequences and
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Figure 2. Overview over model training (a) and inference (b). Each distribution is realized by a deep neural network. During training, the

first posture of x serves as conditioning xt (yellow). Note, that consequently xt is also part of the encoder input since we do not have

multiple training sequences x starting from the same posture xt available. In inference, i.e. after disentangling posture and behavior, we

transfer source behavior (green) to an arbitrary target posture (yellow) or synthesize novel behavior from the prior distribution which is

matched to qφ(zβ |x, xt) by a learned invertible transformation Tξ (red).

condition the synthesis process on a dedicated representation

of behavior independent of posture. DLow [63] splits pos-

ture into different sets of keypoints to vary the diversity of

predicted future movements for predefined body parts while

keeping the others close to the groundtruth future sequence

and, thus, cannot exercise detailed control. MT-VAE [61]

uses latent space arithmetics to enable transformations be-

tween different motions. However, transfer of more complex

behavior is limited since only linear arithmetics are consid-

ered which makes a strong assumption on the latent space

that typically cannot be met. In contrast, we learn a dedicated

representation of behavior disentangled from posture. Hence

our model naturally allows for recombination of behavior

and posture.

Action recognition Action recognition [8, 58] aims at clas-

sifying a predefined set of actions from a given video, poten-

tially based on intermediate representations such as 3D key-

points. Although our learned behavior representation is also

based on keypoints, we aim at capturing behavior dynamics

for detailed synthesis of full behavior. In contrast, action

recognition learns discriminative representations which only

focus on separating between action classes [51].

3. Approach

Our goal is to control and synthesize videos of human

behavior. Since powerful pose estimators [59, 48] are readily

available, pose sequences x = [x0, ..., xn], xi ∈ R
K×3 are

directly used as a basis to represent the behavior observed

in video [57, 56, 9], e.g. for changing the depicted per-

son’s appearance or predicting likely sequence continuations.

While this representation is sufficient to perform the afore-

mentioned tasks, changing the posture sequence to re-enact

a different behavior asks for a deeper understanding. Thus,

behavior transfer requires separate representations modelling

the characteristic motor dynamics of behavior and individual

postures. We now present a generative model which extracts

and represents human behavior β from a source sequence

x independent of the instantiated postures. Given an ob-

served target posture xt, e.g. in another video, we can then

synthesize a re-enacted posture sequence and subsequently

translate it to the video domain.

Extracting behavior β from x into a representation zβ ∈ R
D

and subsequently re-combining it with a target pose xt to in-

stantiate the behavior can be naturally formulated by means

of latent variable models such as encoder-decoder frame-

works. Such frameworks have been successfully applied for

predicting future postures based on x, i.e. directly extrapo-

lating the observed posture sequence [63, 55]. However, as

we seek to control the behavior to be generated, we require

the latent representation zβ to be disentangled from posture

information.

3.1. Synthesis using conditional generative models

Generative models are powerful frameworks which are

particularly suited for synthesis tasks. As we not only

aim to learn a representation for behavior, but also need

to extract it from our input sequences x, variational au-

toencoders (VAE) [34] are a natural choice. Such mod-

els approximate the true data distribution p(x, zβ) which

is assumed to follow the generative process p(x, zβ) =
p(x|zβ)p(zβ). To optimize the intractable marginal

log-likelihood Ep(x)[log pθ(x)] of the model distribu-

tion pθ(x, zβ), a variational posterior qφ(zβ |x) is intro-

duced allowing to maximize a lower bound L(pθ, qφ) ≤
Ep(x)[log p(x)] [34]. Now, since we want to transfer behav-

ior and condition it on arbitrary target postures, we condition

the generative process [49] additionally on xt, which modi-

fies the lower variational bound and its optimization to

max
θ,φ

L(pθ, qφ) := Eqφ(zβ |x,xt) [log pθ(x|zβ , xt)]

−DKL(qφ(zβ |x, xt)||p(zβ))
(1)
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where p(zβ) is the prior on the latent representation zβ which

is typically modelled as a standard Gaussian distribution

N (0, I). The first term of (1) can be considered to optimize

the synthesis quality of the generator pθ(x|zβ , xt) while the

second part regularizes the encoder qφ(zβ |x, xt) to match

the Gaussian prior.

Although our generator pθ has access to both zβ and the

conditioning posture xt, optimizing (1) will in general not

encourage our model to learn a factorization of posture in-

formation and the behavior representation zβ . Moreover, we

have no ground-truth provided for different behaviors start-

ing from the same target posture xt. Thus, we are only able

to train our model by choosing xt to be the first posture of x,

which aggravates the need for an explicit disentanglement

during the optimization process.

3.2. Disentangling posture from behavior

While explicit disentanglement between factors of varia-

tion has been studied in the domain of static images [42, 26,

38], disentangling complex temporal information, however,

is significantly still lacking. Existing works for static images

typically resort to supervision by exploiting pairs of data

samples sharing one factor while differing in the remaining

factors [42, 26], which allows for a natural disentanglement

signal. Without having similar supervision available, we

need to explicitly disentangle the posture information in x

from our latent behavior representation zβ . To this end, we

would ideally want to minimize the predictability of the in-

dividual postures in x given zβ . However, performing this

operation directly on basis of our generator pθ does not pre-

vent the erasure of body dynamics as well. Instead, we can

frame this task using an auxiliary generative model.

Let p̂ψ(x|zβ) be a second generative model aiming at gener-

ating x from our behavior representation zβ only, i.e. opti-

mizing the log-likelihood,

max
ψ

Eqφ(zβ |x,xt) [log p̂ψ(x|zβ)] . (2)

Solving this task requires p̂ψ(x|zβ) to represent posture

information which it has to be able to extract from zβ . Ex-

ploiting this, we can formulate our disentanglement task as

an alternating optimization between our behavior model, i.e.

pθ, qφ, optimizing L(pθ, qφ) and p̂ψ(x|zβ) optimizing (2),

both depending on the posterior qφ(zβ |x, xt).
1 To limit the

predictability of p̂ψ(x|zβ), we extend (1) resulting in

max
θ,φ

L(pθ, qφ)− Eqφ(zβ |x,xt) [log p̂ψ(x|zβ)] . (3)

This objective does not explicitly optimize parameters ψ,

thus the predictability of p̂(ψ) can only be diminished by

removing information about x from zβ . Further, note that pθ

1However, note that (2) is not optimized over parameters φ and conse-

quently does not affect qφ(zβ |x, xt).

has access to the conditional xt providing posture informa-

tion and consequently only requires qφ to provide missing

dynamics to generate x. The overall procedure can be consid-

ered as an adversarial task, alternating between optimizing

(2) and (3) in each training iteration. As a result, factoring

out posture information from zβ is indeed the most viable

solution. Moreover, since posture information is excluded

from our representation zβ , pθ(x|zβ , xt) is required to infer

a meaningful continuation of xt depicting behavior β.

Due to the additional constraint in (3), the already existing

pressure to reduce the overall encoded information in zβ
imposed by DKL(qφ(zβ |x, xt)||p(zβ)) is further amplified.

This also increases the risk of posterior collapses when using

recurrent decoders [5], thus strongly affecting the generative

process. Next, we discuss how to alleviate this problem by

relaxing the information bottleneck.

3.3. Relaxing the information bottleneck for im
proved synthesis

The quality of synthesis depends on the expressiveness

of pθ(x|zβ , xt) which stands in contrast to the regulariza-

tion of the variational posterior qφ(zβ |x, xt) in vanilla varia-

tional autoencoding settings [10, 65]. This becomes evident

as the regularization DKL(qφ(zβ |x, xt)||p(zβ)) minimizes

an upper bound on the mutual information Iqφ(x; zβ) [47],

thus reducing the information captured in zβ . Consequently,

a typical solution is to explicitly maximize the mutual

information [65, 46]. However, computing reliable esti-

mates of Iqφ(x; zβ) is difficult for complex data [19, 4].

Instead, we resort to a relaxation of the regularization

in the original variational problem by only optimizing

DKL(qφ(zβ |x, xt)||p(zβ)) to maintain a certain information

budget IKL, i.e. optimizing

max
θ,φ

Eqφ(zβ |x,xt) [log pθ(x|zβ , xt)]

s.t. DKL(qφ(zβ |x, xt)||p(zβ)) ≤ IKL .
(4)

Similar to Peng et al. [45] who constrain discriminator net-

works, we can optimize (4) using dual gradient decent. Over-

all, we arrive at our final objective L(pθ, qφ) by inserting

the relaxation constraint into (3) and introducing a scalar

coefficient γC and the Lagrange multiplier γKL (which is

still optimized via dual gradient decent), i.e.

L(pθ, qφ) =Eqφ(zβ |x,xt) [log pθ(x|zβ , xt)]

− γKL (DKL(qφ(zβ |x, xt)||p(zβ))− IKL)

− γC Eqφ(zβ |x,xt) [log p̂ψ(x|zβ)] .
(5)

Note, that without our explicit disentanglement, relaxing

DKL(qφ(zβ |x, xt)||p(zβ)) would further encourage the

entanglement of posture and behavior dynamics in zβ .

Relaxing the regularization DKL(qφ(zβ |x, xt)||p(zβ))
comes at the cost of a reduced overlap between the
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Figure 3. Behavior Transfer on Human3.6m. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to unrelated,

significantly different target postures xt. If required, the target posture is first adjusted by a transition phase before re-enacting the inferred

behavior (e.g. top-right example, third row: walking starting from a bent down posture). Note that both transferred postures and images are

generated by our models.

variational posterior qφ and prior p(zβ) impairing the

sampling ability of our model. Next, we correct this

missmatch by means of a subsequently learned normalizing

flow transformation [33, 15].

3.4. Bridging the gap between prior and posterior

We want to use our model not only to transfer behav-

ior between videos, but also to synthesize novel behavior

based on sampling zβ from the prior distribution. Thus,

strong deviations of the posterior qφ(zβ |x, xt) from p(zβ)
may reduce the syntheses results due to out-of-distribution

samples. To alleviate this issue, we train a normalizing

flow model [44, 33] after our variational behavior model is

optimized. Normalizing flows yield an explicit, invertible

transformation from qφ to p(zβ), thus bridging any potential

gap between them. To this end, these models learn flexible

probability distributions pu(u) over continuous random vari-

ables, such as our behavior representation zβ . In particular,

normalizing flows establish a bijective mapping zβ
Tξ

←→ u

using the transformation Tξ = hξ1 ◦ hξ2 ◦ · · · ◦ hξm , a se-

quence of m invertible functions hξj parametrized by ξj by

maximizing the likelihood

Eqφ(zβ |x,xt)

[

log pu(Tξ(zβ))− log | det JTξ
(zβ)|

]

. (6)

Here, det JTξ
is the Jacobian determinant of the invertible

transformation. Choosing pu(u) to follow the same distri-

bution as p(zβ) establishes our desired bijective mapping

between qφ(zβ |x, xt) and p(zβ). Sampling novel behavior

representations zβ is then performed by zβ = T −1
ξ (u), u ∼

pu(u).

4. Experiments

We now investigate the capabilities of the prop osed

method to disentangle pose of a sequence from the under-

lying behavior. The resulting model is evaluated for the

tasks of behavior transfer to different start poses and diverse

sampling from the behavior representation. Evaluation is

performed on the Human3.6m dataset [28], a large-scale mo-

tion capture dataset which contains 3.6 million video frames

of 11 subjects, each of which performs 17 actions. Follow-

ing previous work [64, 63] we use a 17-joint skeleton of

3D joint locations for training on 5 (S1,S5,S6,S7,S8) and
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Method
T=1 T=10 T=20 T=30 T=40 T=50 acc. dβ

RE TDE RE TDE RE TDE RE TDE RE TDE RE TDE gt: 0.45 µ± σ

cAE 0.72 8.30 0.28 1.94 0.26 0.34 0.28 0.23 0.30 0.23 0.33 0.23 0.45 0.92±0.34

cVAE 5.29 9.07 5.28 8.95 5.05 8.81 4.82 8.87 4.55 8.86 4.46 8.80 0.13 0.00 ± 0.00

MT-VAE [61] 1.36 8.90 1.40 8.95 1.39 8.66 1.38 8.45 1.34 8.27 1.37 8.12 0.20 4.44 ± 2.05

Ours (γC = 0, IKL = 50) 1.71 9.01 1.46 7.92 1.22 6.95 1.17 6.15 1.18 5.58 1.30 5.33 0.35 2.82 ± 0.79

Ours (γC = 0, IKL = 100) 1.24 8.99 0.89 7.09 0.81 5.55 0.78 4.33 0.73 3.48 0.80 3.13 0.39 3.47 ± 0.93

Ours (γC = 0, IKL = 200) 1.01 8.92 0.67 5.93 0.61 3.74 0.59 2.29 0.58 1.48 0.60 1.30 0.40 4.06 ±1.18

Ours (IKL = 50) 1.96 9.06 1.83 8.74 1.74 8.54 1.67 8.33 1.53 8.12 1.59 7.94 0.38 1.55 ± 0.61

Ours (IKL = 100) 2.01 9.08 1.96 8.78 1.88 8.57 1.76 8.37 1.77 8.15 1.76 8.0 0.38 1.60 ±0.78

Ours (IKL = 200) 1.62 9.06 1.47 8.97 1.56 8.90 1.47 8.77 1.47 8.58 1.38 8.36 0.39 1.58 ±0.71

Table 1. Evaluation of Behavior Transfer. We compare different models on the task of behavior transfer using different metrics. The

regression error ’RE’ denotes the mean squared error (MSE) when predicting the source behavior sequence xβ from the learned behavior

representation zβ using a regression network trained on this task. ’TDE’ refers to the total displacement error measured as the MSE

between xβ and the re-enactment xR. ’acc’ denotes action classifier accuracy when using the respective behavior representations zβ as input.

’gt:0.45’ denotes the accuracy of an action classifier directly trained in ground-truth keypoint sequences, thus representing an upper bound

on performance. For the latent space distance dβ between the encodings of the source behavior xβ and the re-enactment xR we report mean

and standard deviation. Each metric is evaluated at timesteps T ∈ {1, 10, 20, 30, 40, 50}. Since we have no ground-truth data available for

behavior transfer we cannot directly measure transfer performance. Instead, in Sec. 4.2 we show how the interplay of these metrics allow to

evaluate transfer performance.

testing on two subjects (S9,S11). We refer the reader to the

supplementary or project page2 for video material.

4.1. Architecture and implementation details

For the task of human behavior transfer, we use sequences

of 50 frames as input for our network. The encoder-decoder

networks representing qφ(zβ |x, xt) and pθ(x|zβ , xt) are

both implemented as a single-layer LSTM [27] with a hidden

dimensionality of 1024. Mean and variance of qφ(zβ |x, xt)
are realized as linear layers based on the final hidden state

of the encoder. For our decoder pθ(x|zβ , xt) we initialize

the hidden state with the behavior representation zβ . The

target posture xt is the input state of the decoder at the first

time step. Subsequently the decoder uses its own predictions

from the previous time step as input. For generating the

individual postures, we follow [40] and use a single linear

layer on top of the LSTM output combined with residual

skip connection to the input. The generative model p̂ψ is im-

plemented as a three-layer MLP to predict postures x given

zβ . We model pθ(x|zβ , xt) and pψ(x|zβ) as Gaussian, thus

the expectations in Eq. 5 translate to mean squared errors.

We train the network for 50 epochs and set γC = 0.1 and

IKL = 100 as discussed in the quantitative evaluation.

Normalizing flow model Tξ. Our normalizing flow model

Tξ is implemented as a stacked sequence of 15 invertible

neural networks based on an input dimensionality of D =
1024. Each consists of 3 blocks of subsequently applied

actnorm [33], affine coupling layers [16] and shuffling layers.

The affine coupling layers consist of 2 fully connected layers

with dimensionality D = 1024. We trained the normalizing

flow model on a single Titan Xp for 5 epochs with batchsize

2https://cutt.ly/5l7rXEp

64 and ADAM [32] optimizer with learning rate 6.5× 10−6.

Further information regarding our normalizing flow model

is provided in the supplemental.

Model for posture-appearance transfer. In order to be

able to synthesize realistic RGB videos of human behavior,

we translate our generated postures to RGB images. To this

end, we utilize our proposed framework for the task of shape

and appearance disentanglement [13]. We train a model

to obtain an appearance representation from static images,

which is independent of the corresponding posture informa-

tion. Thus, we can use our method to transfer behavior from

a source sequence to a given target posture and generate an

animated video sequence by frame-wise synthesizing RGB

images. More details on our posture and appearance model

and further results can be found in the supplemental.

4.2. Behavior reenactment

We now evaluate our proposed model qualitatively and

quantitatively for the task of behavior transfer and its abilities

to sample and synthesize novel behavior.

Qualitative evaluation. Figure 3 shows examples of trans-

ferred behavior. We show the posture sequence xβ exhibiting

a source behavior β (top row) and its transfer to different,

unrelated postures xt. The re-enactments depict both the

re-enacted posture sequence and the rendered RGB video

frames based on the model for posture and appearance trans-

fer. Since our model captures behavior independent of pos-

ture, it successfully transfers only the characteristic body

dynamics of β and infers potentially needed transitions itself.

As a result, the target posture xt is naturally animated to

perform behavior β independent of diverse target postures,
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Method
N=10 N=50

ASD FSD ASD FSD

cVAE [64] 0.25 0.36 0.16 0.22

DSF [64] 0.38 0.62 0.31 0.42

Ours 0.63 0.88 0.45 0.58

Table 2. Evaluation of Sampling Capabilities. (a) Quantitative

evaluation of diversity with ASD and FSD [64], numbers are taken

from [64].

such as standing or sitting. For instance, in the example at

the left top, each person accurately raises both hands to its

head. Note that, in the last example on the top left, the per-

son does not change its posture since the hands are already

up. Moreover, the kneeling person on the bottom left only

lowers its torso as its knees are already placed on the ground

and cannot be bent further. More visual examples can be

found in the supplemental. Video examples are provided on

our project page2.

Quantitative evaluation. We now evaluate how well our

model transfers behavior β extracted from a source sequence

xβ to an initial, unrelated target posture xt taken from ran-

dom, different sequences. Meaningful re-enactment of β

should only transfer characteristic body dynamics to a target

posture xt. We compare our model to different baseline

models, i.e. conditional autoencoder (cAE), vanilla condi-

tional variational autoencoder (cVAE) and our model with

and without our proposed posture disentanglement. Each

model uses the same architectures except for deviations due

to individual training objectives: The cAE is trained without

disentanglement and without variational bottleneck. The

cVAE is trained on the training objective Eq. (1). More-

over, we compare the MT-VAE [61] which uses latent space

arithemtics to transform between different actions.

A model failing this task would typically generate (i) se-

quences which rather exactly copy full postures of the source

sequence xβ in contrast to transferring only its characteristic

dynamics to xt; or (ii) generating behavior different to β

such as some likely future behavior of xt. To identify (i),

we measure the transfer displacement error (TDE), i.e. the

displacement error between postures of the re-enactment xR
and source xβ at time-steps T . For (ii), since we have no

ground-truth available for behavior transfer, we measure the

average euclidean distance dβ in the representation space zβ
between encodings of xβ and xR. Combined, a well trans-

ferring model should yield re-enacted sequences xR which

is dissimilar to xβ , thus not merely copying postures (i.e.

large TDE). Given this, both sequences should be similar in

representation space (i.e. small dβ) to indicate their simi-

larity in behavior. Moreover, the representations need to be

informative to exclude degenerated solutions. For the latter

we examine their benefit for action classification on H3.6M

Method Type of synthesis

self transfer prior flow

MT-VAE [61] 0.49 0.17 - -

Ours (γC = 0) 0.49 0.14 0.09 0.12

Ours 0.49 0.23 0.13 0.23

Table 3. Realism of behavior generations. Evaluation of sampling

quality using a discriminator classifying between ground-truth se-

quences and behavior generations of different origins: ’self’ de-

notes video reconstructions, ’transfer’ denotes generations depict-

ing actual behavior transfer, i.e. using a randomly sampled starting

posture and a extracted behavior qφ(zβ |x, xt), ’prior’ denotes syn-

thesizing behavior sampled from the prior representation p(zβ) and

’flow’ refers to synthesizing behavior sampled using the invertible

mapping Tξ.

(acc.). For each experiment we provide detailed protocols

and implementation details in the supplemental.

Tab. 1 evaluates these experiments. We observe that cAE

exhibits a strong decline in TDE values as T increases, re-

sulting in TDE values close to 0. Thus, this model accurately

copies the posture sequence xβ , instead of inferring behavior

β and potentially needed transitions itself (cf. suppl. video

material). Consequently, its behavior representation only

captures posture information, rather than body dynamics. In

contrast, the cVAE model consistently reaches high TDE

scores, thus generating posture sequences which are very

different from xβ . However, the distance dβ shows that the

model suffers from posterior collapse, hence zβ is neglected

and only likely continuations following xt are predicted (see

also supplemental). Relaxing the information bottleneck

of cVAE (i.e. our model without disentanglement, Eq.(4))

alleviates the posterior collapse and zβ becomes informative.

Looking at different settings for IKL, we see that TDE values

slowly decrease with T and ranges between cAE and cVAE,

while exhibiting large values of dβ . We attribute this to a

distorted latent representation being learned. In contrast, our

full model with explicit disentanglement of behavior and pos-

ture exhibits large TDE values matching those of the cVAE

while at the same time mapping xβ and xR close in zβ . Thus,

since postures are very different, closeness in zβ arises from

similarity in body dynamics, highlighting actual behavior

transfer. The accuracy of the action classifier (acc.) confirms

that the captured dynamics are informative, almost matching

the classifier result when training on ground truth sequences.

Moreover, the classifier performance for MT-VAE reveals

that their latent space is significantly less informative than

our behavior representation, which indicates limited motion

transfer capabilities. Indeed, a large mean distance dβ of

4.44 shows a strong difference in representation between

source and re-enacted behavior, most likely due to the linear

arithemitcs assumption not being hold.

To provide an additional, explicit measure for disentan-
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Pose-Knows HP-GAN GMVAE DSF DLOW Ours

APD 6.72 7.24 6.77 9.33 11.74 12.24

Table 4. Evaluation of Sampling Diversity. Our model outperforms

other approaches on human motion synthesis in terms of APD [63].

Numbers are taken from [63].

glement of behavior and posture, we adapt an evaluation

procedure inspired by works on identifying latent factors of

variation [42]. To this end, we train a regression network to

predict posture coordinates of xβ from its encoding zβ at

different time-steps and report the average regression errors

(RE) in Tab. 1. Naturally, the cAE model results in very low

errors due to copying, while the cVAE exhibits large REs

due to the posterior collapse. Comparing our model with and

without disentanglement demonstrates consistently higher

prediction errors, indicating that only few posture informa-

tion is encoded in zβ . Moreover, our analysis shows that our

model is robust to the choice of IKL. In the remainder of the

experiments we choose IKL = 100.

4.3. Sampling and synthesis of novel behavior

We now evaluate our model on the task of synthesizing

novel behavior by sampling behavior representations zβ from

the prior distribution p(zβ). Following other approaches for

human motion synthesis [63, 64, 1] we evaluate the aspect

of sampling quality [1] and diversity [63, 64]. To address the

first we train a binary classifier to distinguish between 25k

ground-truth and 25k generated sequences. The accuracy of

the classifier determines the realism of the evaluated samples

and is reported in Tab. 3. The implementation details for

the classifier can be found in the supplemental. Posture se-

quences synthesized using the explicit invertible mapping Tξ
between prior and posterior qφ(zβ |x, xt) are more realistic

than directly using prior samples. This is explained by the

corrected mismatch between posterior and prior distribution

and clearly demonstrated by the visual comparisons in the

End Posture of Samples

Figure 4. Qualitative visualization of diversity by showing the end

poses from our sampled behaviors.

videos contained in the accompanying video material. More-

over, we observe that our explicit disentanglement of posture

and behavior significant improves the quality of samples.

In particular, we also outperform MT-VAE [61] by relative

35% in behavior re-enactment (’transfer’).

For evaluating diversity we follow the evaluation protocol of

[63, 64] by using the following metrics: (i) Average Pairwise

Distance (APD): Average euclidean distance between all

pairwise combinations of generated sequences; (ii) Average

Self Distance (ASD): Average euclidean distance between a

generated sequence and its closest neighbor sequence among

generations; and (iii) Final Self Distance (FSD): Euclidean

distance between the last posture of a generated sequence

and its closest neighbor’s final posture. Note, while APD is

measuring the overall variance of the generated sequences,

ASD and FSD assess the uniqueness of samples. Tab. 2 com-

pares ASD and FSD scores of our model with the cVAE and

the diversity sampler function (DSF) from [64] for sample-

set sizes of K ∈ {10, 50} while Tab. 4 we provide APD

comparisons with various motion synthesis approaches. For

each metric we outperform existing approaches by a signif-

icant margin, in particular such approaches [64, 63] which

explicitly aim at sampling diversity. Finally, we visually

demonstrate the diversity of our samples in Fig 4 by showing

the final postures of sampled behaviors.

5. Discussion

We presented a conditional generative model for con-

trolled synthesis and transfer of human behavior. To this

end, we learn a dedicated representation for human behavior

disentangled from posture. By extracting the characteristic

body dynamics from a video depicting a certain behavior, our

model is able to animate persons observed in significantly

different postures. A particular challenge arises from animat-

ing postures which allow for no direct transfer of behavior

dynamics, but require an intermediate transition. Correct

inference of such transition is essentially a generalization

problem asking for synthesis outside the training distribution.

While our model successfully infers such transitions to a cer-

tain degree, it fails in cases of complex transitions needed,

such as enacting a walking behavior by a person which is

lying on the ground. This shows that our introduced problem

requires a deep understanding of behavior, thus posing a

new challenge for research on human motion synthesis in

general.
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