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Abstract

What would be the effect of locally poking a static

scene? We present an approach that learns naturally-

looking global articulations caused by a local manipulation

at a pixel level. Training requires only videos of moving ob-

jects but no information of the underlying manipulation of

the physical scene. Our generative model learns to infer

natural object dynamics as a response to user interaction

and learns about the interrelations between different object

body regions. Given a static image of an object and a local

poking of a pixel, the approach then predicts how the ob-

ject would deform over time. In contrast to existing work

on video prediction, we do not synthesize arbitrary realistic

videos but enable local interactive control of the deforma-

tion. Our model is not restricted to particular object cate-

gories and can transfer dynamics onto novel unseen object

instances. Extensive experiments on diverse objects demon-

strate the effectiveness of our approach compared to com-

mon video prediction frameworks. Project page is available

at https://bit.ly/3cxfA2L.

1. Introduction

From infancy on we learn about the world by manipulat-

ing our immediate environment and subsequently observing

the resulting diverse reactions to our interaction. Particu-

larly in early years, poking, pulling, and pushing the objects

around us is our main source for learning about their inte-

gral parts, their interplay, articulation and dynamics. Con-

sider children playing with a plant. They eventually com-

prehend how subtle touches only affect individual leaves,

while increasingly forceful interactions may affect larger

and larger constituents, thus finally learning about the en-

tirety of the dynamics related to various kinds of interac-

tions. Moreover, they learn to generalize these dynamics

across similar objects, thus becoming able to predict the re-

action of a novel object to their manipulation.

Training artificial visual systems to gain a similar under-

standing of the distinct characteristics of object articulation

and its distinct dynamics is a major line of computer vision

Figure 1. Our approach for interactive image-to-video synthesis

learns to understand the relations between the distinct body parts

of articulated objects from unlabeled video data, thus enabling

synthesis of videos showing natural object dynamics as responses

to local interactions.

research. In the realm of still images the interplay between

object shape and appearance has been extensively studied,

even allowing for controlled, global [43, 41, 21, 16, 15] and

local [39, 73] manipulation. Existing work on object dy-

namics, however, so far is addressed by either extrapola-

tions of observed object motion [67, 27, 11, 33, 67, 45, 5,

61] or only coarse control of predefined attributes such as

explicit action labels [71] and imitation of previously ob-

served holistic motion [1, 14]. Directly controlling and,

even further, interacting with objects on a local level how-

ever, so far, is a novel enterprise. Teaching visual systems

to understand the complex dynamics of objects both aris-

ing by explicit manipulations of individual parts and to pre-

dict and analyze the behavior [12, 3, 4] of the remainder of

the object is an exceptionally challenging task. Similarly to

a child in the example above, such systems need to know

about the natural interrelations of different parts of an ob-

ject [72]. Moreover, they have to learn how these parts are

related by their dynamics to plausibly synthesize temporal
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object articulation as a response to our interactions.

In this paper, we present a generative model for inter-

active image-to-video synthesis which learns such a fine-

grained understanding of object dynamics and, thus, is able

to synthesize video sequences that exhibit natural responses

to local user interactions with images on pixel-level. Using

intuitions from physics [56], we derive a hierarchical recur-

rent model dedicated to model complex, fine-grained object

dynamics. Without making assumptions on objects we learn

to interact with and no ground-truth interactions provided,

we learn our model from video sequences only.

We evaluate our model on four video datasets compris-

ing the highly-articulated object categories of humans and

plants. Our experiments demonstrate the capabilities of our

proposed approach to allow for fine-grained user interac-

tion. Further, we prove the plausibility of our generated ob-

ject dynamics by comparison to state-of-the-art video pre-

diction methods in terms of visual and temporal quality.

Figure 1 provides an overview over the capabilities of our

model.

2. Related Work

Video Synthesis. Video Synthesis involves a wide range

of tasks including video-to-video translation [65], image an-

imation [68, 53, 54], frame interpolation [46, 70, 37, 2, 47],

unconditional video generation [63, 57, 9, 44] and video

prediction. Given a set of context frames, video predic-

tion methods aim to predict realistic future frames either

deterministically [67, 62, 60, 69] or stochastically [17, 11,

62, 33, 67, 51, 45, 5, 61, 32]. A substantial number of

methods ground on image warping techniques [64, 38, 19],

leading to high-quality short term predictions, while strug-

gling with longer sequence lengths. To avoid such issues,

many works use autoregressive models. Due to consis-

tently increasing compute capabilities, recent methods aim

to achieve this task via directly maximizing likelihood in the

pixel space, using large scale architectures such as normal-

izing flows [31, 32] or pixel-level transformers [59, 66]. As

such methods introduce excessive computational costs and

are slow during inference, most existing methods rely on

RNN-based methods, acting autoregressively in the pixel-

space [42, 33, 40, 11, 62, 5] or on intermediate representa-

tion such as optical flow [35, 34, 49]. However, since they

have no means for direct interactions with a depicted object,

but instead rely on observing past frames, these methods

model dynamics in a holistic manner. By modelling dynam-

ics entirely in the latent space, more recent approaches take

a step towards a deeper understanding of dynamics [45, 18]

and can be used to factorize content from dynamics [18],

which are nonetheless modelled holistically. In contrast,

our model has to infer plausible motion based on local in-

teractions and, thus, understands dynamics in a more fine-

grained way.

Controllable Synthesis of Object Dynamics. Since it re-

quires to understand the interplay between their distinct

parts, controlling the dynamics of articulated objects is a

highly challenging task. Davis et al. [10] resort to mod-

elling rigid objects as spring-mass systems and animate still

image frames by evaluating the resulting motion equations.

However, due to these restricting assumptions, their method

is only applicable for small deviations around a rest state,

thus unable model complex dynamics.

To reduce complexity, existing learning based ap-

proaches often focus on modelling human dynamics us-

ing low-dimensional, parametric representations such as

keypoints [1, 71], thus preventing universal applicability.

Moreover, as these approaches are either based on explicit

action labels or require motion sequences as input, they can-

not be applied to controlling single body parts. When in-

tending to similarly obtain control over object dynamics in

the pixel domain, previous methods use ground truth anno-

tations such as holistic motion trajectories [17, 33] for sim-

ple object classes without articulation [13]. Hao et al. [23]

step towards locally controlling the video generation pro-

cess by predicting a single next images based on a given

input frame and sets of sparse flow vectors. Their proposed

approach, however, requires multiple flow vectors for each

individual frame of a sequence to be predicted, thus pre-

venting localized, fine-grained control. Avoiding such flaws

and indeed allowing for localized control, our approach in-

troduces a latent dynamics model, which is able to model

complex, articulated motion based on an interaction at a sin-

gle pixel.

3. Interactive Image-to-Video Synthesis

Given an image frame x0 ∈ R
H×W×3, our goal is to

interact with the depicted objects therein, i.e. we want to

initiate a poke p ∈ R
2 which represents a shift of a single

location l ∈ N
2 within x0 to its new target location. More-

over, such pokes should also influence the remainder of the

image in a natural, physically plausible way.

Inferring the implications of local interactions upon the

entire object requires a detailed understanding of its artic-

ulation, and, thus, of the interrelation between its various

parts. Consequently, we require a structured and concise

representation of the image x0 and a given interaction. To

this end, we introduce two encoding functions: an object

encoder Eσ mapping images x onto a latent object state

σ = Eσ(x), e.g. describing current object pose and ap-

pearance, and the encoder Eφ translating the target location

defined by p and l to a latent interaction φ = Eφ(p, l) now

affecting the initially observed object state σ0 = Eσ(x0).
Eventually, we want to synthesize a video sequence

depicting the response arising from our interaction with

the image x0, represented by means of σ0 and φ. Com-

monly, such conditional video generation tasks are formu-
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Figure 2. Left: Our framework for interactive image-to-video synthesis during training. Right: Our proposed hierarchical latent model F

for synthesizing dynamics, consisting of a hierarchy of individual RNNs Fn, each of which operates on a different spatial feature level of

the UNet defined by the pretrained encoder Eσ and the decoder G. Given the initial object state σ0 = [Eσ(x0)
1, ..., Eσ(x0)

N ], F predicts

the next state σ̂i+1 = [σ̂1
i+1, ..., σ̂

N
i+1] based on its current state σ̂i and the latent interaction φi = Eφ(p, l) at the corresponding time step.

The decoder G finally visualizes each predicted object state σ̂i in an image frame x̂i.

lated by means of learning a video generator G : (σ0, φ) →
X1:T = {x1, ..., xT } [33, 5]. Thus, G would both model

object dynamics and infer their visualization in the RGB

space. However, every object class has its distinct, po-

tentially very complex dynamics which - affecting the en-

tire object - must be inferred from a localized poke shift-

ing a single pixel. Consequently, a model for interactive

image-to-video synthesis has to understand the complex im-

plications of the poke for the remaining object parts and,

thus, requires to model these dynamics in sufficiently fine-

grained and flexible way. Therefore, we introduce a dedi-

cated object dynamics model inferring a trajectory of object

states [σ0, σ1, . . . , σT ] representing an object’s response to

φ within an object state space Ω. As a result, G only needs

to generate the individual images xi = G(σi), thus decom-

posing the overall image-to-video synthesis problem.

3.1. A Hierarchical Model for Object Dynamics

In physics, one would typically model the trajectory of

object states σ(t) as a dynamical system and, thus, describe

it as an ordinary differential equation (ODE) [56, 6]

σ̇(t) = f(σ(t), φ(t)) , σ(0) = σ0 , (1)

with f the - in our case unknown - evolution function, σ̇

its first time derivative, and φ(t) = φ , ∀t ∈ [0, T ] the

latent external interaction obtained from the poke. Recent

work proposes to describe f with fixed model assumptions,

such as as an oscillatory system [10]. While this may hold

in some cases, it greatly restricts applications to arbitrary,

highly-articulated object categories. Avoiding such strong

assumptions, the only viable solution is to learn a flexible

prediction function F representing the dynamics in Eq. (1).

Consequently, we base F on recurrent neural network mod-

els [24, 8] which can be interpreted as a discrete, first-order

approximation1 to Eq. (1) at time steps i ∈ [0, T − 1]

F(σi, φi) = σi+1 = σi + h · fa(σi, φi) , (2)

with h being the step size between two consecutive pre-

dicted states σi and σi+1 and fa an approximation to the

derivative at σi [6, 48]. However, dynamics of objects can

be arbitrarily complex and subtle such as leaves of a tree

or plant fluttering in the wind. In such cases, the underly-

ing evolution function f is expected to be similarly complex

and, thus, involving only first-order derivatives when mod-

elling Eq. (1) may not be sufficient. Instead, capturing also

such high-frequency details actually calls for higher-order

terms.

In fact, one can model an N -th order evolution function

in terms of N first order ODEs, by introducing a hierarchy

σ = [σ1, ..., σN ] , σ1 = σ of state variables, the n-th el-

ement of which is proportional to the (n − 1)-th order of

discrete time derivative of the original variable σ [22, 48].

Consequently, as first order ODEs can be well approximated

with Eq. (2), we can extend F to a hierarchy of predictors

1Order here means order of time derivative. For more information re-

garding this correspondence between ODEs and RNNs, see [20, 6, 7, 48].
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Figure 3. Visualization of the videos generated by our model for two distinct plants within our self-recorded PokingPlants-Dataset: The

first row depicts a ground truth sequence from the test set. The second row contains a simulated poke (red arrow) based on this ground truth

sequence, using the procedure described in Section 3.2. The last two rows show results of the model to pokes from human users. In the first

column, the red arrow indicates the interaction and, thus, also the resulting target location, which is indicated as a red dot in the remaining

columns. As the motions within the Poking-Plants dataset are sometimes subtle and not straightforward to detect, we also visualize the

visual flow field, which was estimated based on the synthesized videos. We encourage the reader to also view the corresponding video

results in the supplemental and on our project page https://bit.ly/3cxfA2L.

σ = F = [F1, ...,FN ] by using a sequence of N RNNs,

σn
i+1 = Fn(σ

n
i , σ

n−1

i+1
) , σn

0 = σ0 (3)

each operating on the input of its predecessor, except for the

lowest level F1, which predicts the coarsest approximation

of the object states based on φi as

σ1
i+1 = F1(σ

1
i , φi) , σ

1
0 = σ0 . (4)

A derivation of our this hierarchy is given in the Appendix

C. However, while F is able to approximate higher-order

derivatives up to order N , thus being able to model fine-

grained dynamics, we need to make sure that our decoder G
actually captures these details when generating the individ-

ual image frames xi.

Recent work on image synthesis indicates that standard

decoder architectures fed with latent encodings only on the

bottleneck-level, are prone to missing out on subtle image

details [29, 50], such as those arising from high motion fre-

quencies. Instead, providing a decoder with latent infor-

mation at each spatial scale has proven to be more power-

ful [52]. Hence, we model G to be the decoder of a hierar-

chical image-to-sequence UNet with the individual predic-

tors Fn operating on the different spatial feature levels of

G. To maintain the hierarchical structure of F , we compen-

sate for the resulting mismatch between the dimensionality

of σn−1

i and σn
i by means of upsampling functions Un. Fi-

nally, to fully exploit the power of a UNet structure, we

similarly model the encoder Eσ to yield a hierarchical ob-

ject state σ0 = [Eσ(x0)
1, ..., Eσ(x0)

N ], which is the initial

state to F . Thus, Eq. (3) becomes

σn
i+1 = Fn(σ

n
i ,Un−1(σ

n−1

i+1
)) , σn

0 = Eσ(x0)
n (5)

with σn
i being the predicted object state at feature level n ∈

[2, N ] and time step i. Hence, at each time step we obtain

a hierarchy of N latent object states σi = [σ1
i , ..., σ

N
i ] on

different spatial scales, which are the basis for synthesizing

image frames xi by G. Our full hierarchical predictor F

and its linkage to the overall architecture are shown in the

right and left parts of Figure 2.

As our proposed model jointly adds more subtle details

in the temporal and spatial domain, it accurately captures

complex dynamics arising from interactions and simultane-

ously displays them in the image space.

3.2. Learning Dynamics from Poking

To learn our proposed model for interactive image-to-

video synthesis, we would ideally have ground-truth inter-

actions provided, i.e. actual pokes and videos of their im-

mediate impact on the depicted object in x0. However, gath-

ering such training interactions is tedious and in some cases

not possible at all, particularly hindering universal applica-

bility. Consequently, we are limited to cheaply available

video sequences and need to infer the supervision for inter-

actions automatically.

While at inference a poke p represents an intentional

shift of an image pixel in x0 at location l, at training we only

require to observe responses of an object to some shifts,

as long as the inference task is well and naturally approx-

imated. To this end, we make use of dense optical flow

displacement maps [25] D ∈ R
H×W×2 between images

x0 and xT of our training videos, i.e. their initial and last

frames. Simulating training pokes in x0 then corresponds

to sampling pixel displacements p = (Dl1,l2,1, Dl1,l2,2)
from D, with the video sequence X1:T = {xi}

T
i=1 being

5174



Figure 4. Visualization of the videos generated by our model for two actors within the test set of the iPER [36] dataset: The first row depicts

the ground truth sequence. The second row contains a simulated poke (red arrow) based on this ground truth sequence, using the procedure

described in Section 3.2. The last two rows show results of the model to pokes from human users. In the first column, the red arrow indicates

the interaction and, thus, also the resulting target location, which is indicated as a red dot in the remaining columns. We encourage the

reader to also view the accompanying video results in the supplemental and on our project page https://bit.ly/3cxfA2L.

a natural response to p. Using this, we train our inter-

action conditioned generative model to minimize the mis-

match between the individual predicted image frames x̂i =
G(F(σi−1, φi−1)) and those of the video sequence as mea-

sured by the perceptual distance [28]

Lrec =

T∑

i=1

K∑

k=1

‖Φk(xi)− Φk(x̂i)‖1 , (6)

where Φk denotes the k-th layer of a pre-trained VGG [55]

feature extractor.

However, due to the direct dependence of G on σi, dur-

ing end-to-end training the state space Ω is continuously

changing. Thus, learning object dynamics by means of

our hierarchical predictor F is aggravated. To alleviate

this issue, we propose to first learn a fixed object space

state Ω by pretraining Eσ and G to reconstruct individ-

ual image frames. Training F on Ω to capture dynam-

ics depicted in {xi}
T
i=0 is then performed by predicting

states σ̂i = F(σ̂i−1, φi) approaching the individual states

σi = [Eσ(xi)
1, ..., Eσ(xi)

N ] of the target trajectory, while

simultaneously fine-tuning G to compensate for prediction

inaccuracy, using

Ltraj =

T∑

i=1

N∑

n=1

‖Eσ(xi)
n − σ̂n

i ‖2 . (7)

Finally, to improve the synthesis quality we follow previ-

ous work [9, 65] by training discriminators DS on frame

level and DT on the temporal level, resulting in loss func-

tions LDS
and LDT

. Our overall optimization objective

then reads

L = Lrec + λtraj · Ltraj + λS · LDS
+ λDT

· LDT
(8)

with hyperparameters λtraj , λS and λT . The overall proce-

dure for learning our network is summarized in Fig. 2.

4. Experiments

In this section we both qualitatively and quantitatively

analyze our model for the task of interactive image-to-video

synthesis. After providing implementation details, we illus-

trate qualitative results and analyze the learned object inter-

relations. Finally, we conduct a quantitative evaluation of

both visual quality of our generated videos and the plausi-

bility of the motion dynamics depicted within.

4.1. Implementation Details and Datasets

Foreground-Background-Separation. While our model

should learn to capture dynamics associated with objects

initiated by interaction, interaction with areas correspond-

ing to the background should be ignored. However, opti-

cal flow maps often exhibit spurious motion estimates in

background areas, which may distort our model when con-

sidered as simulated object pokes for training. To suppress

these cases we only consider flow vector exhibiting suffi-

cient motion magnitude as valid pokes, while additionally

training our model to ignore background pokes. More de-

tails are provided in Appendix E.2. Examples for responses

to background interactions can be found in the videos on

our project page https://bit.ly/3cxfA2L.

5175



Figure 5. Understanding object structure: By performing 100 random interactions at the same location l within a given image frame x0 we

obtain varying video sequences, from which we compute motion correlations for l with all remaining pixels. By mapping these correlations

to the pixel space, we visualize distinct object parts. For a detailed discussion, refer to Section 4.2.

Model Architecture and Training. The individual units

Fn of our hierarchical dynamics model are implemented as

Gated Recurrent Units (GRU) [8]. The depth N of our hier-

archy of predictors varies among datasets and videos resolu-

tions. For the experiments shown in the main paper, we train

our model to generate sequences of 10 frames and spatial

size 128× 128, if not specified otherwise. For training, we

use ADAM [30] optimizer with parameters β = (0.9, 0.99)
and a learning rate of 10−4. The batch size during training is

10. The weighting factors for our final loss function are cho-

sen as λtraj = 0.1, λDS
= 0.2 and λDT

= 1. More details

regarding architecture, hyperparameters and training can be

found in the Appendix E. Additionally, alternate training

procedures for different parameterizations of the poke and

the latent interaction φ(t) are presented in Appendix B.

Datasets We evaluate the capabilities of our model to un-

derstand object dynamics on four datasets, comprising the

highly-articulated object categories of humans and plants.

Poking-Plants (PP) is a self-recorded dataset showing 27

video sequences of 13 different types of pot plants in mo-

tion. As the plants within the dataset have large variances

in shape and texture, it is particularly challenging to learn

a single dynamics model from those data. The dataset con-

sists of overall 43k image frames, of which we use a fifth as

test and the remainder as train data.

iPER [36] is a human motion dataset containing 206

video sequences of 30 human actors of varying shape,

height gender and clothing, each of which is recorded in

2 videos showing simple and complex movements. We fol-

low the predefined train test split with a train set containing

180k frames and a test set consisting of 49k frames.

Tai-Chi-HD [54] is a video collection of 280 in-the-wild

Tai-Chi videos of spatial size 256×256 from youtube which

are subdivided into 252 train and 28 test videos, consisting

of 211k and 54k image frames. It contains large variances

Dataset PP iPER Tai-Chi H3.6m

SAVP [33] 136.81 150.39 309.62 160.32

IVRNN [5] 184.54 181.50 202.33 465.55

SRVP [18] 283.90 245.13 238.71 174.65

Ours 89.67 144.92 182.28 119.89

Table 1. Comparison with recent work from video prediction.

Across datasets, our approach obtains considerably lower FVD-

scores.

in background and also camera movements, thus serving as

an indicator for the real-world applicability of our model.

As the motion between subsequent frame is often small, we

temporally downsample the dataset by a factor of two.

Human3.6m [26] is large scale human motion dataset,

containing video sequences of 7 human actors performing

17 distinct actions. Following previous work on video pre-

diction [67, 45, 18], we centercrop and downsample the

videos to 6.25 Hz and use actors S1,S5,S6,S7 and S8 for

training and actors S9 and S11 for testing.

4.2. Qualitative Analysis

Interactive Image-to-Video-Synthesis. We now demon-

strate the capabilities of our model for the task of inter-

active image-to-video synthesis. By poking a pixel within

a source image x0, i.e. defining the shift p between the

source location l and the desired target location, we require

our model to synthesize a video sequence showing the ob-

ject part around l approaching the defined target location.

Moreover, the model should also infer plausible dynamics

for the remaining object parts. Given x0, we visualize the

video sequences generated by our model for i) simulated

pokes obtained from optical flow estimates (see Sec. 3.2)

from test videos and ii) pokes initiated by human users.

We compare them to the corresponding ground truth videos

starting with x0. For the object category of plants, we also

show optical flow maps between the source frame and the
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Dataset PP iPER [36] TaiChi [54] Human3.6m [26]

Method Ours Hao et al. [23] Ours Hao et al. [23] Ours Hao et al. [23] Ours Hao et al. [23]

FVD ↓ 174.18 361.51 220.34 235.08 167.94 341.79 129.62 259.92

LPIPS ↓ 0.10 0.16 0.07 0.11 0.12 0.12 0.08 0.10

PSNR ↑ 20.80 21.28 22.67 21.09 20.58 20.41 22.95 22.81

SSIM ↑ 0.78 0.72 0.89 0.88 0.75 0.78 0.91 0.93

Table 2. Comparison on controlled video synthesis. We compare with Hao et al. [23] which we consider the closest previous work to ours.

last frame for each generated video, to visualize the overall

motion therein.

Figure 3 shows examples for two distinct plants from

the PokingPlants dataset of very different appearance and

shape. In the left example we interact with the same

pixel location varying both poke directions and magnitudes.

Our model correctly infers corresponding object dynam-

ics. Note that the interaction location corresponds to a very

small part of the plant, initiating both subtle and complex

motions. This demonstrates the benefit of our hierarchi-

cal dynamics model. As shown by the visualized flow, the

model also infers plausible movements for object parts not

directly related to the interaction, thus indicating our model

to also understand long term relations between distinct ob-

ject regions. In the right example we observe similar results

when interacting with different locations.

As our model does not make any assumptions on the de-

picted object to manipulate, we are not restricted to partic-

ular object classes. To this end we also consider the cat-

egory of humans which is widely considered for various

video synthesis tasks. Figure 4 shows results for two un-

seen persons from the iPER test set. Again our model infers

natural object dynamics for both the interaction target loca-

tion and the entire object. This highlights that our model

is also able to understand highly structured dynamics and

natural interrelations of object parts independent of object

appearance. Analogous results for the Tai-Chi-HD and Hu-

man3.6m datasets are contained in the Appendix A.

Understanding Object Structure. We now analyze the

interrelation of object parts learned by our model, i.e. how

pixels depicting such parts correlate when interacting with

a specific, fixed interaction location.

To this end, we perform 100 random interactions for a

given, fixed source frame x0 at the fixed location l = (l1, l2)
of different magnitudes and directions. This results in vary-

ing videos {X̂k}
100
k=1

, exhibiting distinct dynamics of the

depicted object. To measure the correlation in motion of

all pixels with respect to the interaction location, we first

obtain their individual motion for each generated video

using optical flow maps between x0 and the last video

frames. Next, for each pixel we compute the L2-distance

in each video to the respective interaction poke based on

a [magnitude, angle] representation, thus obtaining a 100-

dimensional difference vector. To measure the correlation

for each pixel with l, we now compute the variance over

each difference vector to obtain correlation maps. High cor-

relation then corresponds to low variance in motion.

Figure 5 visualizes such correlations by using heatmaps

for different interaction locations l in the same source frame

x0 for both plants and humans. For humans, we obtain

high correlations for the body parts around l, indicating

our model to actually understand the human body structure.

Considering the plant, we see that poking locations on its

trunk (first two columns) intuitively results in highly simi-

lar movements of all those pixels close to the trunk. The in-

dividual leaves farther away are not that closely correlated,

as they might perform oscillations in higher frequencies su-

perposing the generally low-frequency movements of the

trunk. When poking these leaves, however, mostly directly

neighbouring pixels exhibit high correlation.

4.3. Quantitative Evaluation

To quantitatively demonstrate the ability of our approach

to synthesize plausible object motion, we compare with

the current state-of-the-art of RNN-based video predic-

tion [33, 5, 18]. For all competing methods we used the

provided pretrained models, where available, or trained the

models using official code. Moreover, to also evaluate the

controllable aspect of our approach, we compare against

Hao et al. [23], an approach for controlled video synthesis

by predicting independent single frames from sparse sets

of flow vectors, which we consider the closest previous

work to interactive image-to-video synthesis. We trained

their method on our considered datasets using their pro-

vided code.

Evaluation Metrics. For evaluation we utilize the follow-

ing metrics:

Motion Consistency. The Fréchet-Video-Distance

(FVD, lower-is-better) is the standard metric to evaluate

video predictions tasks, as it is sensitive to the visual qual-

ity, as well as plausibility and consistency of motion dy-

namics of a synthesized video. Moreover it has been shown

to correlate well with human judgement [58]. All FVD-

scores reported hereafter are obtained from video sequences

of length 10.

Prediction accuracy. Our model is trained to understand

the global impact of localized pokes on the overall object

dynamics and to infer the resulting temporal object artic-

ulation. To evaluate this ability, we report distance scores

against the ground-truth using three commonly used frame-

wise metrics, averaged over time: SSIM (higher-is-better)

and PSNR (higher-is-better) directly compare the predicted
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and ground truth frames. Since they are based on L2-

distances directly in pixel space, they are known disregard

high-frequency image details, thus preferring blurry predic-

tions. To compensate, we also report the LPIPS-score [74]

(lower-is-better), comparing images based on distance be-

tween activations of pretrained deep neural network and,

thus exhibit better correlation with human judgement.

Comparison to other methods. We evaluate our approach

against SAVP [33], IVRNN [5] and SRVP [18] which are

RNN-based state-of-the-art methods in video prediction

based on FVD scores. We train these models to predict

video sequences of length 10 given 2 context frames cor-

responding to the evaluation setting. Note, that our method

generates sequences consisting of 10 frames based on a sin-

gle frame and a poke. Following common evaluation prac-

tice in video prediction [33, 5, 18], we predict sequences are

64×64 for all models, including ours. The results are shown

in Tab. 1. Across datasets, our approach achieves signif-

icantly lower FVD-scores demonstrating the effectiveness

of our approach to both infer and visualize plausible object

dynamics. Particularly on the plants dataset our model per-

forms significantly better than the competitors due to our

proposed hierarchic model for capturing fine-grained dy-

namics.

To quantitatively evaluate our ability for controlled video

synthesis, we now compare against Hao et al. [23]. For them

to predict videos [x0, . . . , xT ] of length T , we first sample

k flow vectors between x0 and x1. We then extend these

initial vectors to discrete trajectories of length T − 1 in the

image space by tracking the initial points using consecutive

flow vectors between xi and xi+1. Video prediction is then

performed by individually warping x0 given the shift of its

pixels to the intermediate locations at step i in these trajec-

tories. Following their protocol we set k = 5. Note, that

we only require a single interactive poke of arbitrary length

for synthesize videos. Tab. 2 compares both approaches.

We see that our model performs significantly better by a

large margin, especially in FVD measuring the video qual-

ity and temporal consistency. This is explained by temporal

object dynamics not even being considered in [23], in con-

trast to our dedicated hierarchical dynamics model. Fur-

ther, their image warping-based approach typically results

in blurry image predictions. Across datasets we outperform

their method also in LPIPS scores indicating our proposed

method to produce more visually compelling results.

4.4. Ablation Studies

Finally, we conduct ablation studies to analyze the ef-

fects of the individual components of our proposed method.

To limit computational cost, we conduct all ablation exper-

iments using videos of spatial size 64 × 64. Ours RNN in-

dicates our model trained with a common GRU consisting

of three individual cells at the latent bottleneck of the UNet

Dataset PP iPER [36]

Method LPIPS ↓ PSNR ↑ FVD ↓ LPIPS ↓ PSNR ↑ FVD ↓
Ours RNN 0.08 20.92 175.42 0.07 23.02 250.64

Ours w/o Ltraj 0.07 21.53 110.00 0.05 22.82 203.26

Ours (single) 0.07 21.41 115.65 0.06 23.09 220.82

Ours full 0.06 21.81 89.67 0.05 23.11 144.92

Table 3. Ablation studies on the PokingPlants and iPER datasets

instead of our proposed hierarchy of predictors F . For fair

evaluation with the baselines we also choose N = 3 as

depth of the hierarchy. Further, we also evaluate baselines

without considering the loss term Ltraj which compen-

sates for the prediction inaccuracy of F (Ours w/o Ltraj)

and without pretraining the object encoder Eσ (Ours single-

stage). Tab. 3 summarizes the ablation results, indicating

the the benefits of each individual component across re-

ported metrics and used datasets. We observe the largest

impact when using our hierarchical predictor F , thus mod-

elling higher-order terms in our dynamics model across all

spatial feature scales. Looking at the remaining two abla-

tions, we also see improvements in FVD-scores. This con-

cludes that operating on a pretrained, consistent object state

space Ω and subsequently accounting for the prediction in-

accuracies, leads to significantly more stable learning. An

additional ablation study on the effects of varying the high-

est order N of modeled derivative by our method is pro-

vided in Appendix D.

4.5. Additional Experiments

We also conduct various alternate experiments, includ-

ing the generalization of our model to unseen types of plants

and different interpretations of the poke p, resulting in dif-

ferent capabilities of our model. These experiments are con-

tained in the Appendix B, which also contains many videos

further visualizing the corresponding results.

5. Conclusion

In this work, we propose a generative model for inter-

active image-to-video synthesis which learns to understand

the dynamics of articulated objects by capturing the inter-

play between the distinct object parts, thus allowing to syn-

thesize videos showing natural responses to localized user

interactions. The model can be flexibly learned from un-

labeled video data without limiting assumptions on object

shape. Experiments on a range of datasets prove the plausi-

bility of generated dynamics and indicate the model to pro-

duce visually compelling video sequences.

Acknowledgements

This research is funded in part by the German Fed-

eral Ministry for Economic Affairs and Energy within the

project “KI-Absicherung – Safe AI for automated driving”

and by the German Research Foundation (DFG) within

project 421703927.

5178



References

[1] Kfir Aberman, Yijia Weng, Dani Lischinski, Daniel Cohen-

Or, and Baoquan Chen. Unpaired motion style transfer from

video to animation. ACM Transactions on Graphics (TOG),

39(4):64, 2020.

[2] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang,

Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video

frame interpolation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019.
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supervised magnification of posture deviations across sub-

jects. In IEEE Conf. Comput. Vis. Pattern Recog., pages

8253–8263, 2020.

[13] Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey

Levine. Self-supervised visual planning with temporal skip

connections. In 1st Annual Conference on Robot Learning,

CoRL 2017, Mountain View, California, USA, November 13-

15, 2017, Proceedings, volume 78 of Proceedings of Ma-

chine Learning Research, pages 344–356. PMLR, 2017.

[14] Patrick Esser, Johannes Haux, Timo Milbich, and Björn Om-

mer. Towards learning a realistic rendering of human behav-

ior. In European Conference on Computer Vision - Work-

shops, 2018.

[15] Patrick Esser, Johannes Haux, and Björn Ommer. Unsuper-

vised robust disentangling of latent characteristics for image

synthesis. In Proceedings of the Intl. Conf. on Computer Vi-

sion (ICCV), 2019.

[16] Patrick Esser, E. Sutter, and B. Ommer. A variational u-

net for conditional appearance and shape generation. 2018

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8857–8866, 2018.

[17] Chelsea Finn, Ian J. Goodfellow, and Sergey Levine. Unsu-

pervised learning for physical interaction through video pre-

diction. In Daniel D. Lee, Masashi Sugiyama, Ulrike von

Luxburg, Isabelle Guyon, and Roman Garnett, editors, Ad-

vances in Neural Information Processing Systems 29: An-

nual Conference on Neural Information Processing Systems

2016, December 5-10, 2016, Barcelona, Spain, pages 64–72,

2016.

[18] Jean-Yves Franceschi, Edouard Delasalles, Mickael Chen,

Sylvain Lamprier, and P. Gallinari. Stochastic latent residual

video prediction. ArXiv, abs/2002.09219, 2020.

[19] Hang Gao, Huazhe Xu, Qi-Zhi Cai, Ruth Wang, Fisher Yu,

and Trevor Darrell. Disentangling propagation and genera-

tion for video prediction. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), Octo-

ber 2019.

[20] Eldad Haber and Lars Ruthotto. Stable architectures for deep

neural networks. Inverse Problems, dec 2017.

[21] Naama Hadad, Lior Wolf, and Moni Shahar. A two-step dis-

entanglement method. In 2018 IEEE Conference on Com-

puter Vision and Pattern Recognition, CVPR 2018, Salt Lake

City, UT, USA, June 18-22, 2018, 2018.

[22] J.K. Hale. Ordinary Differential Equations. Dover Books on

Mathematics Series. Dover Publications, 2009.

[23] Zekun Hao, Xun Huang, and Serge Belongie. Controllable

video generation with sparse trajectories. In CVPR, 2018.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural Computation, 1997.

[25] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), Jul 2017.

[26] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3.6m: Large scale datasets and predic-

tive methods for 3d human sensing in natural environments.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 36(7):1325–1339, jul 2014.

[27] B. Jin, Y. Hu, Q. Tang, J. Niu, Z. Shi, Y. Han, and X.

Li. Exploring spatial-temporal multi-frequency analysis for

high-fidelity and temporal-consistency video prediction. In

2020 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 4553–4562, 2020.

[28] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

European Conference on Computer Vision, 2016.

[29] T. Karras, S. Laine, and T. Aila. A style-based gener-

ator architecture for generative adversarial networks. In

2019 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2019.

[30] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In 3rd International Conference on

5179



Learning Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015.

[31] Durk P Kingma and Prafulla Dhariwal. Glow: Generative

flow with invertible 1x1 convolutions. In S. Bengio, H. Wal-

lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.

Garnett, editors, Advances in Neural Information Processing

Systems, 2018.

[32] Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan,

Chelsea Finn, Sergey Levine, Laurent Dinh, and Durk

Kingma. Videoflow: A conditional flow-based model for

stochastic video generation. In International Conference on

Learning Representations, 2020.

[33] Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel,

Chelsea Finn, and Sergey Levine. Stochastic adversarial

video prediction. CoRR, 2018.

[34] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin

Lu, and Ming-Hsuan Yang. Flow-grounded spatial-temporal

video prediction from still images. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), September

2018.

[35] Xiaodan Liang, Lisa Lee, Wei Dai, and Eric P. Xing. Dual

motion GAN for future-flow embedded video prediction. In

IEEE International Conference on Computer Vision, ICCV

2017, Venice, Italy, October 22-29, 2017, pages 1762–1770.

IEEE Computer Society, 2017.

[36] Wen Liu, Zhixin Piao, Jie Min, Wenhan Luo, Lin Ma, and

Shenghua Gao. Liquid warping gan: A unified framework

for human motion imitation, appearance transfer and novel

view synthesis. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision (ICCV), October

2019.

[37] Yu-Lun Liu, Yi-Tung Liao, Yen-Yu Lin, and Yung-Yu

Chuang. Deep video frame interpolation using cyclic frame

generation. In Proceedings of the 33rd Conference on Artifi-

cial Intelligence (AAAI), 2019.

[38] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala. Video

frame synthesis using deep voxel flow. In 2017 IEEE Inter-

national Conference on Computer Vision (ICCV), 2017.

[39] Dominik Lorenz, Leonard Bereska, Timo Milbich, and Björn

Ommer. Unsupervised part-based disentangling of object

shape and appearance. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2019.

[40] C. Lu, M. Hirsch, and B. Schölkopf. Flexible spatio-

temporal networks for video prediction. In Proceedings

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR) 2017, pages 2137–2145. IEEE, 2017.

[41] Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc

Van Gool, Bernt Schiele, and Mario Fritz. Disentangled per-

son image generation. In The IEEE International Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018.

[42] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep

multi-scale video prediction beyond mean square error.

2016. 4th International Conference on Learning Representa-

tions, ICLR 2016.

[43] Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya

Ramesh, Pablo Sprechmann, and Yann LeCun. Disentan-

gling factors of variation in deep representation using adver-

sarial training. In Advances in Neural Information Process-

ing Systems, 2016.

[44] Timo Milbich, Miguel Bautista, Ekaterina Sutter, and Björn

Ommer. Unsupervised video understanding by reconciliation

of posture similarities. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, 2017.

[45] Matthias Minderer, Chen Sun, Ruben Villegas, Forrester

Cole, Kevin P Murphy, and Honglak Lee. Unsupervised

learning of object structure and dynamics from videos. In

Advances in Neural Information Processing Systems, vol-

ume 32, 2019.

[46] Simon Niklaus and Feng Liu. Context-aware synthesis for

video frame interpolation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018.

[47] Simon Niklaus and Feng Liu. Softmax splatting for video

frame interpolation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2020.

[48] Murphy Yuezhen Niu, Lior Horesh, and Isaac Chuang. Re-

current neural networks in the eye of differential equations,

2019.

[49] Junting Pan, Chengyu Wang, Xu Jia, Jing Shao, Lu Sheng,

Junjie Yan, and Xiaogang Wang. Video generation from sin-

gle semantic label map. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019.

[50] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan

Zhu. Semantic image synthesis with spatially-adaptive nor-

malization. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2019.

[51] Fitsum Reda, Guilin Liu, Kevin Shih, Robert Kirby, Jon

Barker, David Tarjan, Andrew Tao, and Bryan Catanzaro.

SDC-Net: Video Prediction Using Spatially-Displaced Con-

volution: 15th European Conference, Munich, Germany,

September 8–14, 2018, Proceedings, Part VII. 2018.

[52] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. In Med-

ical Image Computing and Computer-Assisted Intervention

(MICCAI), 2015.

[53] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov,

Elisa Ricci, and Nicu Sebe. Animating arbitrary objects via

deep motion transfer. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019.
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