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Figure 1: Sketch of a 9-layer CoDA-Net, which computes its output a9 for an input a0 as a linear transform via a matrix W0→9(a0),
such that the output can be linearly decomposed into input contributions (see right). W0→9 is computed successively via multiple layers

of Dynamic Alignment Units (DAUs), which produce matrices Wl that align with their respective inputs al−1. As a result, the combined

matrix W0→9 aligns well with taks-relevant patterns. Positive (negative) contributions for the class ‘goldfinch’ are shown in red (blue).

Abstract

We introduce a new family of neural network mod-

els called Convolutional Dynamic Alignment Networks1

(CoDA-Nets), which are performant classifiers with a high

degree of inherent interpretability. Their core build-

ing blocks are Dynamic Alignment Units (DAUs), which

linearly transform their input with weight vectors that

dynamically align with task-relevant patterns. As a result,

CoDA-Nets model the classification prediction through a

series of input-dependent linear transformations, allowing

for linear decomposition of the output into individual in-

put contributions. Given the alignment of the DAUs, the

resulting contribution maps align with discriminative input

patterns. These model-inherent decompositions are of high

visual quality and outperform existing attribution methods

under quantitative metrics. Further, CoDA-Nets constitute

performant classifiers, achieving on par results to ResNet

and VGG models on e.g. CIFAR-10 and TinyImagenet.

1. Introduction

Neural networks are powerful models that excel at a wide

range of tasks. However, they are notoriously difficult to

interpret and extracting explanations for their predictions

is an open research problem. Linear models, in contrast,

are generally considered interpretable, because the con-

tribution (‘the weighted input’) of every dimension to the

output is explicitly given. Interestingly, many modern

neural networks implicitly model the output as a linear

transformation of the input; a ReLU-based [21] neural

network, e.g., is piece-wise linear and the output thus a

1Code will be available at github.com/moboehle/CoDA-Nets.

linear transformation of the input, cf. [20]. However, due

to the highly non-linear manner in which these linear trans-

formations are ‘chosen’, the corresponding contributions

per input dimension do not seem to represent the learnt

model parameters well, cf. [1], and a lot of research is being

conducted to find better explanations for the decisions of

such neural networks, cf. [28, 30, 40, 25, 27, 33, 31, 4].

In this work, we introduce a novel network architecture, the

Convolutional Dynamic Alignment Networks (CoDA-

Nets), for which the model-inherent contribution maps

are faithful projections of the internal computations and

thus good ‘explanations’ of the model prediction. There

are two main components to the interpretability of the

CoDA-Nets. First, the CoDA-Nets are dynamic linear,

i.e., they compute their outputs through a series of input-

dependent linear transforms, which are based on our novel

Dynamic Alignment Units (DAUs). As in linear models,

the output can thus be decomposed into individual input

contributions, see Fig. 1. Second, the DAUs are structurally

biased to compute weight vectors that align with relevant

patterns in their inputs. In combination, the CoDA-Nets

thus inherently produce contribution maps that are ‘opti-

mised for interpretability’: since each linear transformation

matrix and thus their combination is optimised to align

with discriminative features, the contribution maps reflect

the most discriminative features as used by the model.

With this work, we present a new direction for building

inherently more interpretable neural network architectures

with high modelling capacity. In detail, we would like to

highlight the following contributions:
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(1) We introduce the Dynamic Alignment Units (DAUs),

which improve the interpretability of neural networks and

have two key properties: they are dynamic linear and align

their weights with discriminative input patterns.

(2) Further, we show that networks of DAUs inherit these

two properties. In particular, we introduce Convolutional

Dynamic Alignment Networks (CoDA-Nets), which are

built out of multiple layers of DAUs. As a result, the model-

inherent contribution maps of CoDA-Nets highlight dis-

criminative patterns in the input.

(3) We further show that the alignment of the DAUs can be

promoted by applying a ‘temperature scaling’ to the final

output of the CoDA-Nets.

(4) We show that the resulting contribution maps perform

well under commonly employed quantitative criteria for at-

tribution methods. Moreover, under qualitative inspection,

we note that they exhibit a high degree of detail.

(5) Beyond interpretability, CoDA-Nets are performant

classifiers and yield competitive classification accuracies on

the CIFAR-10 and TinyImagenet datasets.

2. Related work

Interpretability. In order to make machine learning mod-

els more interpretable, a variety of techniques has been de-

veloped. On the one hand, research has been undertaken

to develop model-agnostic explanation methods for which

the model behaviour under different inputs is analysed; this

includes among others [19, 22, 23]. While their generality

and the applicability to any model are advantageous, these

methods typically require evaluating the respective model

several times and are therefore costly approximations of

model behaviour. On the other hand, many techniques that

explicitly take advantage of the internal computations have

been proposed for explaining the model predictions, includ-

ing, for example, [28, 30, 40, 25, 27, 33, 31, 4].

In contrast to techniques that aim to explain models post-

hoc, some recent work has focused on designing new types

of network architectures, which are inherently more inter-

pretable. Examples of this are the prototype-based neural

networks [7], the BagNet [6] and the self-explaining neural

networks (SENNs) [3]. Similarly to our proposed architec-

tures, the SENNs and the BagNets derive their explanations

from a linear decomposition of the output into contributions

from the input (features). This dynamic linearity, i.e., the

property that the output is computed via some form of an

input-dependent linear mapping, is additionally shared by

the entire model family of piece-wise linear networks (e.g.,

ReLU-based networks). In fact, the contribution maps of

the CoDA-Nets are conceptually similar to evaluating the

‘Input×Gradient’ (IxG), cf. [1], on piece-wise linear mod-

els, which also yields a linear decomposition in form of a

contribution map. However, in contrast to the piece-wise

linear functions, we combine this dynamic linearity with a

structural bias towards an alignment between the contribu-

tion maps and the discriminative patterns in the input. This

results in explanations of much higher quality, whereas IxG

on piece-wise linear models has been found to yield unsat-

isfactory explanations of model behaviour [1].

Architectural similarities. In our CoDA-Nets, the convo-

lutional kernels are dependent on the specific patch that they

are applied on; i.e., a CoDA-Layer might apply different fil-

ters at every position in the input. As such, these layers can

be regarded as an instance of dynamic local filtering lay-

ers as introduced in [15]. Further, our dynamic alignment

units (DAUs) share some high-level similarities to attention

networks, cf. [35], in the sense that each DAU has a lim-

ited budget to distribute over its dynamic weight vectors

(bounded norm), which is then used to compute a weighted

sum. However, whereas in attention networks the weighted

sum is typically computed over vectors, which might even

differ from the input to the attention module, a DAU outputs

a scalar which is a weighted sum of all scalar entries in the

input. Moreover, we note that at their optimum (maximal

average output over a set of inputs), the DAUs solve a con-

strained low-rank matrix approximation problem [9]. While

low-rank approximations have been used for increasing pa-

rameter efficiency in neural networks, cf. [36], this concept

has to the best of our knowledge not been used in order to

endow neural networks with a structural bias towards find-

ing low-rank approximations of the input for increased in-

terpretability in classification tasks. Lastly, the CoDA-Nets

are related to capsule networks. However, whereas in clas-

sical capsule networks the activation vectors of the capsules

directly serve as input to the next layer, in CoDA-Nets the

corresponding vectors are used as convolutional filters. We

include a detailed comparison in the supplement.

3. Dynamic Alignment Networks

In this section, we present our novel type of network archi-

tecture: the Convolutional Dynamic Alignment Networks

(CoDA-Nets). For this, we first introduce Dynamic Align-

ment Units (DAUs) as the basic building blocks of CoDA-

Nets and discuss two of their key properties in sec. 3.1.

Concretely, we show that these units linearly transform their

inputs with dynamic (input-dependent) weight vectors and,

additionally, that they are biased to align these weights with

the input during optimisation. We then discuss how DAUs

can be used for classification (sec. 3.2) and how we build

performant networks out of multiple layers of convolutional

DAUs (sec. 3.3). Importantly, the resulting linear decompo-

sitions of the network outputs are optimised to align with

discriminative patterns in the input, making them highly

suitable for interpreting the network predictions.

In particular, we structure this section around the following

three important properties (P1-P3) of the DAUs:
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Figure 2: For different inputs x, we visualise the linear weights

and contributions (for the single layer, see eq. (4), for the CoDA-

Net eq. (8)) for the ground truth label l and the strongest non-label

output z. As can be seen, the weights align well with the input

images. The first three rows are based on a single DAU layer, the

last three on a 5 layer CoDA-Net. The first two samples (rows) per

model are correctly classified and the last one is misclassified.

P1: Dynamic linearity. The DAU output o is computed

as a dynamic (input-dependent) linear transformation of the

input x, such that o = w(x)Tx =
∑

j wj(x)xj . Hence, o
can be decomposed into contributions from individual input

dimensions, which are given by wj(x)xj for dimension j.

P2: Alignment maximisation. Maximising the average

output of a single DAU over a set of inputs xi maximises the

alignment between inputs xi and the weight vectors w(xi).
As the modelling capacity of w(x) is restricted, w(x) will

encode the most frequent patterns in the set of inputs xi.

P3: Inheritance. When combining multiple DAU layers to

form a Dynamic Alignment Network (DA-Net), the proper-

ties P1 and P2 are inherited. In particular, DA-Nets are dy-

namic linear (P1) and maximising the last layer’s output in-

duces an output maximisation in the constituent DAUs (P2).

These properties increase the interpretability of a DA-Net,

such as a CoDA-Net (sec. 3.3) for the following reasons.

First, the output of a DA-Net can be decomposed into con-

tributions from the individual input dimensions, similar to

linear models (cf. Fig. 1, P1 and P3). Second, we note

that optimising a neural network for classification applies a

maximisation to the outputs of the last layer for every sam-

ple. This maximisation aligns the dynamic weight vectors

w(x) of the constituent DAUs of the DA-Net with their re-

spective inputs (cf. Fig. 2, P2 and P3).

Importantly, the weight vectors will align with the discrim-

inative patterns in their inputs when optimised for classi-

fication as we show in sec. 3.2. As a result, the model-

inherent contribution maps of CoDA-Nets are optimised to

align well with discriminative input patterns in the input

image and the interpretability of our models thus forms part

of the global optimisation procedure.

3.1. Dynamic Alignment Units

We define the Dynamic Alignment Units (DAUs) by

DAU(x) = g(ABx+ b)Tx = w(x)T x . (1)

Here, x ∈ R
d is an input vector, A ∈ R

d×r and B ∈ R
r×d

are trainable transformation matrices, b ∈ R
d a trainable

bias vector, and g(u) = α(||u||)u is a non-linear function

that scales the norm of its input. In contrast to using a sin-

gle matrix M ∈ R
d×d, using AB allows us to control the

maximum rank r of the transformation and to reduce the

number of parameters; we will hence refer to r as the rank

of a DAU. As can be seen by the right-hand side of eq. (1),

the DAU linearly transforms the input x (P1). At the same

time, given the quadratic form (xTBTATx) and the rescal-

ing function α(||u||), the output of the DAU is a non-linear

function of its input. In this work, we focus our analysis on

two choices for g(u) in particular2, namely rescaling to unit

norm (L2) and the squashing function (SQ, see [24]):

L2(u) =
u

||u||2
and SQ(u) = L2(u)×

||u||22
1 + ||u||22

(2)

Under these rescaling functions, the norm of the weight vec-

tor is upper-bounded: ||w(x)|| ≤ 1. Therefore, the output

of the DAUs is upper-bounded by the norm of the input:

DAU(x) = ||w(x)|| ||x|| cos(∠(x,w(x))) ≤ ||x|| (3)

As a corollary, for a given input xi, the DAUs can only

achieve this upper bound if xi is an eigenvector (EV) of

the linear transform ABx + b. Otherwise, the cosine in

eq. (3) will not be maximal3. As can be seen in eq. (3),

maximising the average output of a DAU over a set of in-

puts {xi| i = 1, ..., n} maximises the alignment between

w(x) and x (P2). In particular, it optimises the parameters

of the DAU such that the most frequent input patterns are

encoded as EVs in the linear transform ABx + b, simi-

lar to an r-dimensional PCA decomposition (r the rank of

AB). In fact, as discussed in the supplement, the optimum

of the DAU maximisation solves a low-rank matrix approxi-

mation [9] problem similar to singular value decomposition.

As an illustration of this property, in Fig. 3 we show the 3

EVs4 of matrix AB (with rank r = 3, bias b = 0) after

optimising a DAU over a set of n noisy samples of 3 spe-

cific MNIST [18] images; for this, we used n = 3072 and

zero-mean Gaussian noise. As expected, the EVs of AB

encode the original, noise-free images, since this on aver-

age maximises the alignment (eq. (3)) between the weight

vectors w(xi) and the input samples xi over the dataset.

2In preliminary experiments we observed comparable behaviour over a

range of different normalisation functions such as, e.g., L1 normalisation.
3Note that w(x) is proportional to ABx + b. The cosine in eq. (3),

in turn, is maximal if and only if w(xi) is proportional to xi and thus, by

transitivity, if xi is proportional to ABxi + b. This means that xi has to

be an EV of ABx+ b to achieve maximal output.
4Given r = 3, the EVs maximally span a 3-dimensional subspace.
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Figure 3: Eigenvectors (EVs) of AB after maximising the output

of a rank-3 DAU over a set of noisy samples of 3 MNIST digits.

Effectively, the DAUs encode the most frequent components in

their EVs, similar to a principal component analysis (PCA).

3.2. DAUs for classification

DAUs can be used directly for classification by

applying k DAUs in parallel to obtain an output

ŷ(x) = [DAU1(x), ...,DAUk(x)]. Note that this is a

linear transformation ŷ(x)=W(x)x, with each row

in W∈Rk×d corresponding to the weight vector wT
j

of a specific DAU j. In particular, consider a dataset

D = {(xi,yi)|xi ∈ R
d,yi ∈ R

k} of k classes with

‘one-hot’ encoded labels yi for the inputs xi. To optimise

the DAUs as classifiers on D, we can apply a sigmoid

non-linearity to each DAU output and optimise the loss

function L =
∑

i BCE(σ(ŷi),yi), where BCE denotes the

binary cross-entropy and σ applies the sigmoid function to

each entry in ŷi. Note that for a given sample, BCE either

maximises (DAU for correct class) or minimises (DAU

for incorrect classes) the output of each DAU. Hence, this

classification loss will still maximise the (signed) cosine

between the weight vectors w(xi) and xi.

To illustrate this property, in Fig. 2 (top) we show the

weights w(xi) for several samples of the digit ‘3’ after

optimising the DAUs for classification on a noisy MNIST

dataset; the first two are correctly classified, the last one is

misclassified as a ‘5’. As can be seen, the weights align with

the respective input (the weights for different samples are

different). However, different parts of the input are either

positively or negatively correlated with a class, which is re-

flected in the weights: for example, the extended stroke on

top of the ‘3’ in the misclassified sample is assigned nega-

tive weight and, since the background noise is uncorrelated

with the class labels, it is not represented in the weights.

In a classification setting, the DAUs thus encode the most

frequent discriminative patterns in the linear transform

ABx + b such that the dynamic weights w(x) align well

with these patterns. Additionally, since the output for class

j is a linear transformation of the input (P1), we can com-

pute the contribution vector sj containing the per-pixel con-

tributions to this output by the element-wise product (⊙)

sj(xi) = wj(xi)⊙ xi , (4)

see Figs. 1 and 2. Such linear decompositions constitute the

model-inherent ‘explanations’ which we evaluate in sec. 4.

3.3. Convolutional Dynamic Alignment Networks

The modelling capacity of a single layer of DAUs is

limited, similar to a single linear classifier. However,

DAUs can be used as the basic building block for deep

convolutional neural networks, which yields powerful

classifiers. Importantly, in this section we show that such a

Convolutional Dynamic Alignment Network (CoDA-Net)

inherits the properties (P3) of the DAUs by maintaining

both the dynamic linearity (P1) as well as the alignment

maximisation (P2). For a convolutional dynamic alignment

layer, each filter is modelled by a DAU, similar to dynamic

local filtering layers [15]. Note that the output of such a

layer is also a dynamic linear transformation of the input

to that layer, since a convolution is equivalent to a linear

layer with certain constraints on the weights, cf. [26].

We include the implementation details in the supplement.

Finally, at the end of this section, we highlight an important

difference between output maximisation and optimising

for classification with the BCE loss. In this context we

discuss the effect of temperature scaling and present the

loss function we optimise in our experiments.

Dynamic linearity (P1). In order to see that the linear-

ity is maintained, we note that the successive application

of multiple layers of DAUs also results in a dynamic linear

mapping. Let Wl denote the linear transformation matrix

produced by a layer of DAUs and let al−1 be the input vec-

tor to that layer; as mentioned before, each row in the matrix

Wl corresponds to the weight vector of a single DAU5. As

such, the output of this layer is given by

al = Wl(al−1)al−1 . (5)

In a network of DAUs, the successive linear transformations

can thus be collapsed. In particular, for any pair of activa-

tion vectors al1 and al2 with l1 < l2, the vector al2 can be

expressed as a linear transformation of al1 :

al2 = Wl1→l2 (al1)al1 (6)

with Wl1→l2 (al1) =
∏l2

k=l1+1
Wk (ak−1) . (7)

For example, the matrix W0→L(a0 = x) = W(x) models

the linear transformation from the input to the output space,

see Fig. 1. Since this linearity holds between any two layers,

the j-th entry of any activation vector al in the network can

be decomposed into input contributions via:

slj(xi) = [W0→l(xi)]
T

j ⊙ xi , (8)

with [W]j the j-th row in the matrix.

5Note that this also holds for convolutional DAU layers. Specifically,

each row in the matrix Wl corresponds to a single DAU applied to exactly

one spatial location in the input and the input with spatial dimensions is

vectorised to yield al−1. For further details, we kindly refer the reader

to [26] and the implementation details in the supplement of this work.
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Input T = 0.1 T = 1.0 T = 4.0 T = 64.0

Increasingly higher logit temperature T

Figure 4: By lowering the upper bound (cf. eq. (3)), the corre-

lation maximisation in the DAUs can be emphasised. We show

contribution maps for a model trained with different temperatures.

Alignment maximisation (P2). Note that the output of

a CoDA-Net is bounded independent of the network pa-

rameters: since each DAU operation can—independent of

its parameters—at most reproduce the norm of its input

(eq. (3)), the linear concatenation of these operations nec-

essarily also has an upper bound which does not depend

on the parameters. Therefore, in order to achieve maximal

outputs on average (e.g., the class logit over the subset of

images of that class), all DAUs in the network need to pro-

duce weights w(al) that align well with the class features.

In other words, the weights will align with discriminative

patterns in the input. For example, in Fig. 2 (bottom), we

visualise the ‘global matrices’ W0→L and the correspond-

ing contributions (eq. (8)) for a L = 5 layer CoDA-Net. As

before, the weights align with discriminative patterns in the

input and do not encode the uninformative noise.

Temperature scaling and loss function. So far we have

assumed that minimising the BCE loss for a given sample

is equivalent to applying a maximisation or minimisation

loss to the individual outputs of a CoDA-Net. While this

is in principle correct, BCE introduces an additional, non-

negligible effect: saturation. Specifically, it is possible for

a CoDA-Net to achieve a low BCE loss without the need to

produce well-aligned weight vectors. As soon as the clas-

sification accuracy is high and the outputs of the networks

are large, the gradient—and therefore the alignment pres-

sure—will vanish. This effect can, however, easily be miti-

gated: as discussed in the previous paragraph, the output of

a CoDA-Net is upper-bounded independent of the network

parameters, since each individual DAU in the network is

upper-bounded. By scaling the network output with a tem-

perature parameter T such that ŷ(x) = T−1W0→L(x)x,

we can explicitly decrease this upper bound and thereby

increase the alignment pressure in the DAUs by avoiding

the early saturation due to BCE. In particular, the lower

the upper bound is, the stronger the induced DAU output

maximisation should be, since the network needs to accu-

mulate more signal to obtain large class logits (and thus a

negligible gradient). This is indeed what we observe both

qualitatively, cf. Fig. 4, and quantitatively, cf. Fig. 6 (right

column). Alternatively, the representation of the network’s

computation as a linear mapping allows to directly regu-

larise what properties these linear mappings should fulfill.

For example, we show in the supplement that by regularis-

ing the absolute values of the matrix W0→L, we can induce

sparsity in the signal alignments, which can lead to sharper

heatmaps. The overall loss for an input xi and the target

vector yi is thus computed as

L(xi,yi) = BCE(σ(T−1W0→L(xi)xi + b0) , yi) (9)

+ λ〈|W0→L(xi)|〉 . (10)

Here, λ is the strength of the regularisation, σ applies the

sigmoid activation to each vector entry, b0 is a fixed bias

term, and 〈|W0→L(xi)|〉 refers to the mean over the abso-

lute values of all entries in the matrix W0→L(xi).

3.4. Implementation details

Shared matrix B. In our experiments, we opted to share

the matrix B ∈ R
r×d between all DAUs in a given layer.

This increases parameter efficiency by having the DAUs

share a common r-dimensional subspace and still fixes the

maximal rank of each DAU to the chosen value of r.

Input encoding. In sec. 3.1, we showed that the norm-

weighted cosine similarity between the dynamic weights

and the layer inputs is optimised and the output of a DAU is

at most the norm of its input. This favours pixels with large

RGB values, since these have a larger norm and can thus

produce larger outputs in the maximisation task. To miti-

gate this bias, we add the negative image as three additional

color channels and thus encode each pixel in the input as

[r, g, b, 1− r, 1− g, 1− b], with r, g, b ∈ [0, 1].

4. Results

In sec. 4.1, we describe the experimental setup, assess

the classification performance of the CoDA-Nets and dis-

cuss their efficiency. Further, in sec. 4.2 we evaluate

the model-inherent contribution maps derived from W0→L

(cf. eq. (8)) and compare them both qualitatively (Fig. 5) as

well as quantitatively (Fig. 6) to other attribution methods.

4.1. Setup and model performance

Datasets. We evaluate and compare the accuracies of the

CoDA-Nets to other work on the CIFAR-10 [16] and the

TinyImagenet [10] datasets. We use the same datasets for

the quantitative evaluations of the model-inherent contri-

bution maps. Additionally, we qualitatively show high-

resolution examples from a CoDA-Net trained on the first

100 classes of the Imagenet dataset.

Models. We evaluate models of four different sizes denoted

by (S/M/L/XL)-CoDA on CIFAR-10 (S and M), Imagenet-

100 (L), and TinyImagenet (XL); these models have 8M (S),

28M (M), 48M (L), and 62M (XL) parameters respectively;

see the supplement for an evaluation of the impact of model

size on accuracy. All models feature 9 convolutional DAU

layers and a final sum-pooling layer, and mainly vary in the
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Input peacock Input drake Input cockatoo Input great grey owl Input brambling Input bee eater

Input toucan Input robin Input goldfinch Input jay Input water ouzel Input axolotl

Input coucal Input hummingbird Input sea snake Input banded gecko Input spotted salamander Input African chameleon

Figure 5: Model-inherent contribution maps for the most confident predictions for 18 different classes, sorted by confidence (high to low).

We show positive (negative) contributions (eq. (8)) per spatial location for the ground truth class logit in red (blue).

Model C10 Model T-IM

SENNs [3] 78.5% ResNet-34 [32] 52.0%

VGG-19 [11] 91.5% VGG 16 [17] 52.2%

DE-CapsNet [14] 93.0% VGG 16 + aug [17] 56.4%

ResNet-56 [12] 93.6% IRRCNN [2] 52.2%

WRN-28-2 [12] 94.9% ResNet-110 [34] 56.6%

WRN-28-2 + aug [8] 95.8% WRN-40-20 [13] 63.8%

S-CoDA-SQ (λ) 93.8% XL-CoDA-SQ (T ) 54.4%

S-CoDA-L2 (λ) 92.6% XL-CoDA-SQ + aug (T ) 58.4%

S-CoDA-SQ (T ) 93.2%

S-CoDA-L2 (T ) 93.0%

M-CoDA-SQ + aug (λ) 96.5%

Table 1: CIFAR-10 (C10) and TinyImagenet (T-IM) classifica-

tion accuracies. Results taken from specified references. The pre-

fix of the CoDAs indicates model size, the suffix the non-linearity

used (eq. (2)). With (λ) and (T ) we denote if models were trained

with regularisation or increased temperature T , see eq. (9).

number of features, the rank r of the DAUs, and the con-

volutional strides for reducing the spatial dimensions. No

additional methods such as residual connections, dropout,

or batch normalisation are used. This 9-layer architecture

was initially optimised for the CIFAR-10 dataset and sub-

sequently adapted to the TinyImagenet and Imagenet-100

datasets. Further, we investigate the effect that the temper-

ature T , the regularisation λ, and the non-linearities (L2,

SQ, see eq. (2)) have on the CoDA-Nets. Given the com-

putational cost of the regularisation (two additional passes

to extract and regularise W0→L), we evaluate the regu-

larisation on models trained on CIFAR-10. Lastly, mod-

els marked with T (λ) in Table 1 were trained with λ=0
(T=64, equiv. to ‘average pooling’). Details on architec-

tures and training procedure are included in the supplement.

Classification performance. In Table 1 we compare the

performances of our CoDA-Nets to several other published

results. Note that the referenced numbers are meant to be

used as a gauge for assessing the CoDA-Net performance

and do not exhaustively represent the state of the art. In

particular, we would like to highlight that the CoDA-Net

performance is on par to models of the VGG [29] and

ResNet [12] model families on both datasets. Moreover,

under the same data augmentation (RandAugment [8]), it

achieves similar results as the WideResNet-28-2 [37] on

CIFAR-10. Additionally, we list the reported results of

the SENNs [3] and the DE-CapsNet [14] architectures for

CIFAR-10. Similar to our CoDA-Nets, the SENNs were

designed to improve network interpretability and are also

based on the idea of explicitly modelling the output as a

dynamic linear transformation of the input. On the other

hand, the CoDA-Nets share similarities to capsule net-

works, which we discuss in the supplement; to the best

of our knowledge, the DE-CapsNet currently achieves the

state of the art in the field of capsule networks on CIFAR-

10. Overall, we observed that the CoDA-Nets deliver

competitive performances that are fairly robust to the non-

linearity (L2, SQ), the temperature (T ), and the regularisa-

tion strength (λ). We note that on average SQ performed

better than L2, which we ascribe to the fact that SQ avoids

up-scaling vectors with low norm (||v|| < 1, see eq. (2)).

Efficiency considerations. The CoDa-Nets achieve good

accuracies on the presented datasets, exhibit training be-

haviour that is robust over a wide range of hyperparameters,

and are as fast as a typical ResNet at inference time. How-

ever, under the current formulation and without highly op-

timised GPU implementations for the DAUs, training times

are significantly longer for the CoDA-Nets. While we are

currently working on an improved and optimised version of

CoDA-Nets, we were not yet able to generate results for the

full ImageNet dataset. On the 100 classes subset, however,

the evaluated L-CoDA-SQ network achieved competitive

performance (76.5% accuracy, for details see supplement)

and offers highly detailed explanations for its predictions,

as we show in Figs. 5 and 8.

4.2. Interpretability of CoDANets

In the following, we evaluate the model-inherent contribu-

tion maps and compare them to other commonly used me-

thods for importance attribution. The evaluations are based

on the XL-CoDA-SQ (T=6400) for TinyImagenet and the

S-CoDA-SQ (T=1000) for CIFAR-10, see Table 1 for the
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Figure 6: Top row: Results for the localisation metric, see eq. (11). Bottom row: Pixel removal metric. In particular, we plot the

mean target class probability after removing the x% of the least important pixels. We show the results of a CoDA-Net trained on Tiny-

Imagenet (left column), as well as on CIFAR-10 (center column). Additionally, we show the effect of the temperature parameter on the

interpretability of the CoDA-Nets (right column): as expected, a higher temperature leads to higher interpretability (sec. 3.4).

respective accuracies. Further, we evaluate the effect of

training the same CIFAR-10 architecture with different tem-

peratures T ; as discussed in sec. 3.3, we expect the inter-

pretability to increase along with T , since for larger T a

stronger alignment is required in order for the models to

obtain large class logits. Evaluations of models trained with

L1-regularisation of the matrices M0→L (eq. (9)) and of

models with the L2 non-linearity (eq. (2)) are included in

the supplement. The respective results are similar to those

presented here. Before turning to the results, however, in

the following we will first present the attribution methods

used for comparison and discuss the evaluation metrics em-

ployed for quantifying their interpretability.

Attribution methods. We compare the model-inherent

contribution maps (cf. eq. (8)) to other common approaches

for importance attribution. In particular, we evaluate against

several perturbation based methods such as RISE [22],

LIME [23], and several occlusion attributions [38] (Occ-K,

with K the size of the occlusion patch). Additionally, we

evaluate against common gradient-based methods. These

include the gradient of the class logits with respect to the

input image [5] (Grad), ‘Input×Gradient’ (IxG, cf. [1]),

GradCam [25] (GCam), Integrated Gradients [33] (IntG),

and DeepLIFT [27]. As a baseline, we also evaluated these

methods on a pre-trained ResNet-56 [12] on CIFAR-10, for

which we show the results in the supplement.

Evaluation metrics. Our quantitative evaluation of the at-

tribution maps is based on the following two methods: we

(1) evaluate a localisation metric by adapting the pointing

game [39] to the CIFAR-10 and TinyImagenet datasets, and

(2) analyse the model behaviour under the pixel removal

strategy employed in [31]. For (1), we evaluate the attribu-

tion methods on a grid of n×n with n = 3 images sampled

from the corresponding datasets; in every grid of images,

each class may occur at most once. For a visualisation with

n = 2, see Fig. 7. For each occurring class, we can mea-

Input multi-image Plane evidence Cat evidence Truck evidence Horse evidence

Figure 7: A multi-image on the CIFAR-10 dataset. The CoDA-

Net contribution maps highlight the individual class-images well.

Input Ours LIME GCam Occ13 RISE

Input Ours LIME GCam Occ13 RISE

Input Ours LIME GCam Occ13 RISE

Figure 8: Comparison to the strongest post-hoc methods. While

the regions of importance roughly coincide, the inherent contribu-

tion maps of the CoDA-Nets offer the most detail. Note that to im-

prove the RISE visualisation, we chose its default colormap [22];

the most (least) important values are still shown in red (blue).

sure how much positive importance an attribution method

assigns to the respective class image. Let Ic be the image

for class c, then the score sc for this class is calculated as

sc =
1

Z

∑
pc∈Ic

pc with Z =
∑

k

∑
pc∈Ik

pc , (11)

with pc the positive attribution for class c assigned to the

spatial location p. This metric has the same clear oracle

score sc = 1 for all attribution methods (all positive attri-

butions located in the correct grid image) and a clear score

for completely random attributions sc = 1/n2 (the positive

attributions are uniformly distributed over the different grid

images). Since this metric depends on the classification ac-
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curacy of the models, we sample the first 500 (CIFAR-10)

or 250 (TinyImagenet) images according to their class score

for the ground-truth class6; note that since all attributions

are evaluated for the same model on the same set of images,

this does not favour any particular attribution method.

For (2), we show how the model’s class score behaves un-

der the removal of an increasing amount of least important

pixels, where the importance is obtained via the respective

attribution method. Since the first pixels to be removed are

typically assigned negative or relatively little importance,

we expect the model to initially increase its confidence (re-

moving pixels with negative impact) or maintain a similar

level of confidence (removing pixels with low impact) if

the evaluated attribution method produces an accurate rank-

ing of the pixel importance values. Conversely, if we were

to remove the most important pixels first, we would ex-

pect the model confidence to quickly decrease. However,

as noted by [31], removing the most important pixels first

introduces artifacts in the most important regions of the im-

age and is therefore potentially more unstable than remov-

ing the least important pixels first. Nevertheless, the model-

inherent contribution maps perform well in this setting, too,

as we show in the supplement. Lastly, in the supplement we

qualitatively show that they pass the ‘sanity check’ of [1].

Quantitative results. In Fig. 6, we compare the contribu-

tion maps of the CoDA-Nets to other attributions under the

evaluation metrics discussed above. It can be seen that the

CoDA-Nets (1) perform well under the localisation metric

given by eq. (11) and outperform all the other attribution

methods evaluated on the same model, both for TinyIma-

genet (top row, left) and CIFAR-10 (top row, center); note

that we excluded RISE and LIME on CIFAR-10, since the

default parameters do not seem to transfer well to this low-

resolution dataset. Moreover, (2) the CoDA-Nets perform

well in the pixel-removal setting: the least salient locations

according to the model-inherent contributions indeed seem

to be among the least relevant for the given class score on

both datasets, see Fig. 6 (bottom row, left and center). Fur-

ther, in Fig. 6 (right column), we show the effect of temper-

ature scaling on the interpretability of CoDA-Nets trained

on CIFAR-10. The results indicate that the alignment max-

imisation is indeed crucial for interpretability and consti-

tutes an important difference of the CoDA-Nets to other dy-

namic linear networks such as piece-wise linear networks

(ReLU-based networks). In particular, by structurally re-

quiring a strong alignment for confident classifications, the

interpretability of the CoDA-Nets forms part of the opti-

misation objective. Increasing the temperature increases

the alignment and thereby the interpretability of the CoDA-

Nets. While we observe a downward trend in classifica-

6We can only expect an attribution to specifically highlight a class im-

age if this image can be correctly classified on its own. If all grid images

have similarly low attributions, the localisation score will be random.

tion accuracy when increasing T , the best model at T = 10
only slightly improved the accuracy compared to T = 1000
(93.2% → 93.6%); for more details, see supplement.

In summary, the results show that by combining dynamic

linearity with a structural bias towards an alignment with

discriminative patterns, we obtain models which inherently

provide an interpretable linear decomposition of their pre-

dictions. Further, given that we better understand the re-

lationship between the intermediate computations and the

optimisation of the final output in the CoDA-Nets, we can

emphasise model interpretability in a principled way by in-

creasing the ‘alignment pressure’ via temperature scaling.

Qualitative results. In Fig. 5, we visualise spatial contribu-

tion maps of the L-CoDA-SQ model (trained on Imagenet-

100) for some of its most confident predictions. Note that

these contribution maps are linear decompositions of the

output and the sum over these maps yields the respective

class logit. In Fig. 8, we additionally present a visual com-

parison to the best-performing post-hoc attribution meth-

ods; note that RISE cannot be displayed well under the same

color coding and we thus use its default visualisation. We

observe that the different methods are not inconsistent with

each other and roughly highlight similar regions. However,

the inherent contribution maps are of much higher detail and

compared to the perturbation-based methods do not require

multiple model evaluations. Much more importantly, how-

ever, all the other methods are attempts at approximating

the model behaviour post-hoc, while the CoDA-Net contri-

bution maps in Fig. 5 are derived from the model-inherent

linear mapping that is used to compute the model output.

5. Discussion and conclusion

In this work, we presented a new family of neural networks,

the CoDA-Nets, and show that they are performant clas-

sifiers with a high degree of interpretability. For this, we

first introduced the Dynamic Alignment Units, which model

their output as a dynamic linear transformation of their in-

put and have a structural bias towards alignment maximi-

sation. Using the DAUs to model filters in a convolutional

network, we obtain the Convolutional Dynamic Alignment

Networks (CoDA-Nets). The successive linear mappings by

means of the DAUs within the network make it possible to

linearly decompose the output into contributions from indi-

vidual input dimensions. In order to assess the quality of

these contribution maps, see eq. (8), we compare against

other attribution methods. We find that the CoDA-Net con-

tribution maps consistently perform well under commonly

used quantitative metrics. Beyond their interpretability, the

CoDA-Nets constitute performant classifiers: their accuracy

on CIFAR-10 and the TinyImagenet dataset are on par to the

commonly employed VGG and ResNet models.
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