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Figure 1: From an input RGB-D scan (left), we propose to detect objects in the scan and predict their complete part

decompositions as semantic part completion; that is, we predict the part masks for the complete object, inferring the part

geometry of any missing or unobserved regions in the scan. To achieve this, we predict the part structure of each detected

object to drive a geometric prior-driven prediction of the complete part masks.

Abstract

Recent advances in 3D semantic scene understanding

have shown impressive progress in 3D instance segmenta-

tion, enabling object-level reasoning about 3D scenes; how-

ever, a finer-grained understanding is required to enable

interactions with objects and their functional understanding.

Thus, we propose the task of part-based scene understand-

ing of real-world 3D environments: from an RGB-D scan

of a scene, we detect objects, and for each object predict

its decomposition into geometric part masks, which com-

posed together form the complete geometry of the observed

object. We leverage an intermediary part graph represen-

tation to enable robust completion as well as building of

part priors, which we use to construct the final part mask

predictions. Our experiments demonstrate that guiding part

understanding through part graph to part prior-based pre-

dictions significantly outperforms alternative approaches to

the task of semantic part completion.

1. Introduction

Recently, we have seen remarkable advances in 3D se-

mantic scene understanding, driven by efforts in large-scale

data collection and annotation of 3D reconstructions of RGB-

D scanned environments [5, 2], coupled with exploration of

3D deep learning approaches across 3D representations such

as sparse or dense volumetric grids [55, 39, 5, 15, 4], point

clouds [38, 40], meshes [13, 23], and multi-view [7, 50].

This has led to significant progress in both 3D semantic

segmentation as well as 3D semantic instance segmentation

[16, 15, 4, 25]. These have enabled a basis for 3D percep-

tion at the level of objects, which is essential for semantic

understanding, but lacks finer-grained understanding often

critical for enabling interactions with objects and reasoning

about functionality (e.g., the seat part of a chair is for sitting

on, a knob or handle enables opening doors or drawers).

At the same time, notable progress has been made in

part segmentation for shapes [33, 32, 18]. However, these

methods have been developed on synthetic datasets such

as ShapeNet [3], of objects in isolation; this scenario is
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much less complex than the objects observed in real-world

environments. Thus, we aim to bring these two directions

together and propose the task of semantic part completion,

predicting the part decomposition of objects in real-world

3D environments, where observations are often cluttered and

geometrically incomplete (e.g., due to occlusions, sensor

limitations, etc). That is, from an RGB-D scan of a scene,

we detect objects characterized by 3D bounding boxes and

class labels, and for each object, we predict its complete

part decomposition into binary part masks, with each part

mask reflecting the part geometry of the complete object,

including unobserved missing regions, to achieve a holistic

understanding of the objects in an observed scene.

To achieve this part-based understanding of a scene, we

propose to predict the full part graph for each detected object,

and based on the predicted part graph, the geometric masks

for each complete part. Predicting the part graph structure

enables capturing the complete semantic structure of the

object in a low-dimensional representation, allowing reliable

prediction of missing and unobserved parts (e.g., for a four-

legged table with one leg unobserved, the missing leg is easy

to predict based on commonly observed table part patterns).

Furthermore, this enables us to build and exploit strong part

geometry priors for each predicted part in the part graph. We

can then predict the part masks by finding similar part priors

and refining them to produce final part mask predictions.

This enables a robust decomposition of an RGB-D scan of a

scene into its component objects and their constituent parts,

including regions of objects that have been unobserved. We

believe that this takes an important step towards enabling

local interactions with objects and functionality analysis in

real-world 3D scenes.

We formulate the task of semantic part completion for 3D

scene understanding, informing comprehensive part-based

object understanding of real-world scans. To address this part

understanding, we propose an approach to decompose a 3D

scan of a scene into its complete object parts, outperforming

state-of-the-art alternative approaches for the task:

• We propose to predict part graph information for ob-

jects in real-world scan scenes as an intermediary rep-

resentation that enables robust, part-based completion

of objects.

• We leverage the predicted part graphs to guide prior-

based prediction for effective inference of geometric

part mask decomposition for the objects of a scanned

scene.

2. Related Work

3D Object Detection and Instance Segmentation. Fol-

lowing the success of convolutional neural networks for

object detection and instance segmentation in 2D im-

ages [12, 42, 41, 19], we are now seeing notable advances in

3D object localization and segmentation. Earlier approaches

leveraging 3D convolutional neural networks developed

methods operating on dense voxel grids using 3D region

proposal techniques for detection and segmentation [47, 20].

Sparse volumetric backbones have also been leveraged to

enable effective feature extraction on high-resolution in-

puts for improved 3D detection and segmentation perfor-

mance [10, 16]. Recently, VoteNet [37] introduced a Hough

Voting-inspired scheme for 3D object detection on point

clouds. This was extended by MLCVNet [56] to incorporate

multi-scale contextual information for improved detection

performance. These approaches have now shown impressive

performance for instance-level scene understanding; we aim

to build upon this and propose to infer finer-grained part

decomposition for each object in a 3D scan.

3D Scan Completion. Repairing and completing holes or

broken meshes has been well-studied for 3D shapes. Tra-

ditional methods have mainly focused on repairing small

holes by fitting geometric primitives, continuous energy min-

imization, or leveraging surface reconstruction for interpo-

lation of missing regions [34, 59, 49, 27, 28]. Structural or

symmetry priors have also been leveraged for shape comple-

tion [52, 31, 36, 46, 49]. Recently, generative deep learning

approaches have been developed, with significant progress

in 3D shape reconstruction and completion [55, 9, 17, 35].

In addition to operating on the limited spatial context of

shapes, generative deep learning approaches have also been

developed for completion of 3D scenes. Song et al. [48]

developed a voxel-based approach to predict geometric occu-

pancy of a single depth frame, leveraging a large-scale syn-

thetic 3D dataset of scenes. Dai et al. [8] proposed an autore-

gressive approach for scan completion, enabling very large

scale completion. SG-NN [6] presented a self-supervised

approach towards 3D scan completion, enabling training

only on real scan data. These approaches operate on geomet-

ric completion but without knowledge of individual object

instances, which is fundamental to many perception-based

tasks. RevealNet [21] introduced an approach to detect ob-

jects in a 3D scan and infer each object’s complete geometry,

joining together geometric reconstruction with object-based

understanding. We similarly aim to infer each object’s com-

plete geometry from a partial scan observation, but infer a

part decomposition of the object structure, enabling both

finer-grained understanding as well as more effective object

completion through its part structure.

Part Segmentation of 3D Shapes. Understanding the

structure of a 3D shape by identifying shape parts has

been long-studied in shape analysis. Various approaches

have been developed for finding a consistent segmentation

across a set of shapes without supervision of part labels

[14, 24, 45, 22]. Recently, deep learning based approaches
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Figure 2: Overview of our approach. From an input scan, we detect objects as their 3D bounding boxes, and for each object (a

chair and a trash can visualized top and bottom, respectively), we predict their semantic part structure, which is then used to

guide a geometric prior-based part mask prediction. This results in a part decomposition of the scene where each object is

decomposed into its complete part geometry, including any missing or unobserved regions.

have been developed to find part segmentation of shapes

in a data-driven fashion [26, 58, 18]. To better capture

more complex structures in the part layout of shapes, sev-

eral methods propose to parse object parts as hierarchies

[54, 53, 57, 33, 32]. Such hierarchically structured repre-

sentations have also been adopted for 3D scene synthesis,

leveraging a scene graph [11, 60, 30], where object instances

rather than parts form the node primitives. We also adopt

a relational inference of parts, but aim to operate on noisy,

incomplete real-world scans of scenes with multiple objects,

and so propose to combine our hierarchical part decomposi-

tion with strong geometric part priors.

3. Method

3.1. Overview

We address the problem of simultaneous part segmenta-

tion and completion of objects of real-world RGB-D scans,

which are often noisy and incomplete. An overview of our

approach is illustrated on Fig. 2. Given an input 3D scan S,

we aim to predict a set of parts for each object in the scan,

with each part representing the complete geometry of the

part, including any missing or unobserved regions. From

S, we first detect a set of object instances O = {oi} in the

scene, as 3D bounding box locations and class category pre-

dictions. For each detected object in O, we then convert it

into a 323 occupancy grid representation, to inform our part

segmentation and completion.

We then predict the part segmentation and completion for

each detected object oi ∈ O, resulting in a set of volumetric

binary part masks. First, for a detected object oi, we predict

its semantic part structure Ti, with elements representing

part class types, and the adjacency relations between the

parts. This enables encoding the high-level, semantic part

structure of the shape, which both facilitates completion of

the shape structure, as missing parts are easy to identify in

their semantic part structure, as well as guides the prediction

of the geometry of each part. In particular, this allows us to

leverage geometric part priors built for each part category.

We construct the part priors based on clustering of train part

masks for each part category, and learn to predict similar

priors for each leaf in our predicted Ti, followed by a refine-

ment of these priors to predict the final part mask geometry.

This produces a semantic part decomposition of objects in a

3D scan while simultaneously inferring their complete part

geometry.

3.2. Object Detection

From an input 3D scan, we first detect objects in the scene.

We leverage a state-of-the-art 3D object detection approach,

MLCVNet [56], as our object detection backbone. The in-

put scan sampled to a point cloud, and object proposals are

produced by voting [37], leveraging global contextual infor-

mation at various scales. As output, we obtain 3D bounding

box locations for each detected object. We then resample

the input scan geometry within each detected box into 323

occupancy grids oi ∈ O to inform our part decomposition.

For a detected object oi from the scan, represented as

a 323 occupancy grid of the scan geometry within its pre-

dicted bounding box, we encode the occupancy grid with

four 3D convolutional blocks (consisting of convolution,

group normalization and ReLU activation) and extract a fea-
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ture encoding zi of dimension 128, which is used to inform

the part decomposition.

Object Orientation Prediction Since our object detec-

tion backbone predicts axis-aligned bounding boxes for each

object, we additionally predict the orientation ri of each

object oi from its feature zi using an MLP. We assume that

the up (gravity) vector is known in the scene, and thus pre-

dict the angle around the up vector by classifying the angle

in nα = 8 bins of discretized angles ({0◦, 45◦, . . . , 315◦})

with a cross entropy loss. The predicted object orientation

helps to guide our prior-based part decomposition as de-

scribed in Section 3.4.

3.3. Semantic Part Decomposition

For a detected object oi from the scan, represented as a

323 occupancy grid of the scan geometry within its predicted

bounding box, we aim to capture its high-level part structure

from its cluttered and partial observation. We predict the

semantic part structure Ti of the object; this facilitates com-

pletion of the object by predicting its high-level structure, as

well as enables our prior-guided part geometry prediction.

We first encode the occupancy grid of oi with four 3D con-

volutional blocks (consisting of convolution, group normal-

ization and ReLU activation), and extract a feature encoding

zi of dimension 128. We then decode zi into a semantic part

prediction, constructing a part set Ti with each element repre-

sented by its predicted part category and a 128-dimensional

feature encoding. Inspired by StructureNet [32], we leverage

a message-passing graph neural network for our semantic

part prediction which enables relational inference between

semantic parts. From zi, we predict part elements using an

MLP to predict nparts = 10 latent vectors {z′k} that corre-

spond to potential parts of o. We additionally predict a tuple

tk = (ek, sk) for every part z′k, where ek is the probability

of part existence, sk is the one-hot representation of the part

category label. For each pair (z′i, z
′

j) of parts, we predict if

they are adjacent or not, enforcing structural features to be

learned by the message-passing network. We employ a cross

entropy loss for the part category label, and binary cross

entropy losses for part existence and adjacency relationships.

This produces a high-level part summary of oi, where nodes

{z′k} represent part semantic information of the complete

structure of oi, even if oi has been partially observed. Note

that this semantic part decomposition can be extended hi-

erarchically to predict a full part tree, though we consider

the first level children for our semantic part structure. We

leverage this part semantic information to guide our final

part decomposition as geometric part masks.

3.4. Prior­guided Geometric Part Decomposition

We then predict the final part decomposition by generat-

ing part masks for each element in the predicted semantic

Figure 3: Several geometric part priors for part types be-

longing to the ‘chair’ and ‘bed’ class categories. Each part

prior represents a cluster of train parts, visualized at three

different isolevels.

part arrangement Ti, where each mask represents the com-

plete geometry associated with the part, including regions

that were unobserved in the initial scan observation. Rather

than directly reconstructing the part geometry of each pre-

dicted part, we observe that object parts often maintain very

similar geometry structures, which we leverage to obtain

our final part decomposition. That is, we construct geomet-

ric part priors to aid in generating our complete part mask

predictions, and learn to find similar geometric part priors

which we then refine for a final prediction.

We construct our geometric part priors by k-means clus-

tering of the binary part masks in the train set, inspired by the

ShapeMask [29] construction of priors for novel 2D object

segmentation. For each part type, we find K = 10 centroids

of the part masks, and perform the clustering on the part

masks in 323 grids of the canonical object space. This pro-

duces a set of part priors {P1, . . . , PM} with M = nclassesK.

Various resulting part priors are visualized in Figure 3. Since

objects in the real-world scan inputs may not be oriented in

the canonical orientation of the object, we use the predicted

orientation ri to transform the priors to {P r
1
, . . . , P r

M}.

Thus, to predict the part geometry associated for an el-

ement in the predicted semantic part set Ti with feature

encoding z′k and predicted part type t, we use a one-layer

MLP which takes as input z′k and predicts a set of weights

wm used to construct an initial part reconstruction as:

P coarse
k =

Mt∑

m=1

wmP r
m,

where w = softmax(φ(z′k)), and φ is a linear layer. We

employ a proxy loss on this initial part reconstruction, using

a mean squared error with a target part mask.

Such prior-guided part decomposition helps to reconstruct

global structures in part masks such as symmetry and ge-

ometry in missing regions in the input observation. We

7487



Chamfer Distance (↓) IoU (↑)

Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

SG-NN + MLCVNet + PointNet++ 0.078 0.111 0.111 0.062 0.084 0.197 0.107 0.097 2.3 3.7 0.5 2.7 4.8 0.5 2.5 2.2

SG-NN + MLCVNet + UNet 0.050 0.118 0.080 0.053 0.083 0.108 0.082 0.073 17.5 6.4 7.6 12.4 13.3 13.9 11.9 13.3

SG-NN + MLCVNet + PointGroup 0.074 0.102 0.100 0.063 0.091 0.140 0.095 0.093 5.1 1.5 1.0 4.5 4.5 0.9 2.9 2.9

MLCVNet + StructureNet 0.029 0.095 0.065 0.037 0.076 0.106 0.068 0.057 13.8 0.5 3.8 9.0 3.9 9.3 6.8 8.9

Ours 0.033 0.089 0.069 0.033 0.054 0.096 0.062 0.053 22.1 7.7 13.0 18.1 17.3 22.0 16.7 18.3

Table 1: Evaluation on semantic part completion on Scan2CAD [1]. We compare with state-of-the-art approaches for scan

completion [6], followed by object detection [56], and then part segmentation [25, 32, 38]. By leveraging part structures to

guide our prior-based approach, we obtain more accurate part decompositions.

then refine the predicted P coarse
k using four 3D convolutional

blocks (consisting of convolution, batch normalization and

ReLU activation) taking as input the concatenation of the

geometry of oi and P coarse
k to produce P refine

k ; we then obtain

the final part mask prediction,

Pk = P coarse
k + P refine

k .

Empirically, we found that predicting the refinement as resid-

uals to modify the initial P coarse
k to perform better than a

direct refinement (c.f. Section 4). We then employ a binary

cross entropy loss on Pk with a target part mask. This en-

courages an improved local fit to the observed geometry that

may not have been captured in the global structure of the

geometric priors.

3.5. Training Details

Data generation. In order to train our approach, we lever-

age the Scan2CAD dataset [1] in combination with Part-

Net [33]. Scan2CAD contains annotations of CAD mod-

els from ShapeNet [3] aligned to the 3D scans of Scan-

Net [5], and we use the part annotations of PartNet for these

ShapeNet CAD models to obtain our ground truth part de-

compositions of the 3D scans. We leverage the ground truth

CAD alignments to compute our geometric part priors in

the canonically-oriented space of the objects, and use our

rotation prediction during training and inference to orient

them to the scan observations. In all our experiments we use

original ScanNet geometry with typical number of points

as 200k per scene, for MLCVNet method 40k points are

randomly sampled from each scene to train object detection.

Training. We train our part decomposition with an Adam

optimizer, using a batch size of 24, learning rate of 0.001,

and weight decay of 0.01. The learning rate is decayed every

8 epochs by a factor of 0.8. We first pre-train for 20 epochs

using ground truth 3D bounding boxes, and then fine-tune

for 10 epochs with geometry from MLCVNet detections.

MLCVNet is trained using the original proposed parameters:

using an Adam optimizer with batch size 8, learning rate

0.01, for 250 epochs.

4. Results

We evaluate our proposed approach in comparison to alter-

native approaches for semantic part completion on real-world

RGB-D scans. We use scans from the ScanNet dataset [5],

containing 1513 reconstructed RGB-D scans, and evaluate

with their train/val/test split of 1045/156/312 scenes, respec-

tively. To train and evaluate the complete part decomposition

for each object, we use the Scan2CAD [1] annotations of

CAD model alignments from ShapeNet [3] to the ScanNet

scans, coupled with the PartNet [33] annotations for the part

decomposition of the ShapeNet CAD models. We train and

evaluate on 6 object class categories representing the major-

ity of parts (45 part types in total that we train and evaluate

on) for these annotations. For a detailed specification of the

part types used, we refer to the appendix.

To evaluate our part decompositions of the objects in a

scan, we use a Chamfer Distance metric to capture struc-

tural consistency as well as an intersection over union (IoU)

metric to capture more local consistency. For IoU, we evalu-

ate 323 voxelizations of each predicted part in object space,

compared to the Scan2CAD ground truth part. For Cham-

fer Distance, we use the predicted voxel centers as points,

normalized to the unit box of the object. For both Chamfer

Distance and IoU, we compute the metrics for each part type

and average over all part types corresponding to an object

class category. The class average is computed by averaging

all resulting category numbers, and instance average com-

puted by averaging the metrics of all part instances regardless

of their object category. Note that to evaluate part segmenta-

tion without completion, we consider only predictions which

overlap with the original scan geometry.

Comparison to alternative approaches. In Table 1, we

compare to several state-of-the-art approaches for part seg-

mentation and scan completion, coupled together to pro-

vide a complete part decomposition of the objects in a scan.

As an alternative approach for this task, we consider scan

completion followed by object detection and part instance

segmentation. We employ the state-of-the-art scan comple-

tion approach SG-NN [6] to generate a prediction for the

complete geometry of a partial scan observation, and then

apply the object detections of with MLCVNet [56] (the same
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Chamfer Distance (↓) IoU (↑)

Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

MLCVNet + PointNet++ 0.101 0.066 0.087 0.053 0.090 0.099 0.083 0.091 14.0 17.0 5.8 18.2 24.8 5.3 14.2 13.2

MLCVNet + UNet 0.052 0.082 0.062 0.034 0.093 0.068 0.065 0.060 24.1 13.4 9.3 31.8 14.3 14.6 17.9 18.9

MLCVNet + PointGroup 0.054 0.057 0.077 0.045 0.072 0.086 0.065 0.061 28.4 14.9 9.6 27.5 18.8 11.9 18.5 19.6

MLCVNet + StructureNet 0.039 0.084 0.062 0.034 0.075 0.083 0.063 0.056 32.6 2.1 9.4 23.1 16.1 15.4 16.5 15.4

Ours 0.037 0.071 0.060 0.031 0.069 0.058 0.054 0.048 36.9 15.3 11.1 29.3 27.4 21.5 23.6 27.8

Table 2: Evaluation of part segmentation on Scan2CAD [1]. We evaluate part segmentation of visible geometry only, in

comparison with state-of-the-art part segmentation [25, 32, 38].

Figure 4: Qualitative evaluation on semantic part completion in comparison with state of the art for part decomposition, includ-

ing scan completion followed by part segmentation. Our approach produces more consistent, accurate part decompositions.

as those from the original scan, to eliminate any effect of

possibly varying detections), obtain a final complete part

decomposition by the state-of-the-art instance segmentation

of PointGroup [25]. We also compare to StructureNet [32]
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Chamfer Distance (↓) IoU (↑)

Method chair table cab. bkshlf bed bin avg chair table cab. bkshlf bed bin avg

MLCVNet + StructureNet 0.0032 0.0106 0.0074 0.0046 0.0194 0.0025 0.0079 29.5 21.9 22.4 24.1 23.5 32.4 25.6

RevealNet 0.0035 0.0070 0.0043 0.0020 0.0076 0.0078 0.0053 35.1 26.2 46.1 38.3 19.6 24.7 31.7

MLCVNet + UNet 0.0038 0.0103 0.0011 0.0050 0.0119 0.0028 0.0059 39.7 30.0 62.6 28.2 17.4 37.7 35.9

Ours 0.0038 0.0075 0.0022 0.0053 0.0061 0.0045 0.0049 38.6 30.7 57.4 33.6 37.6 37.8 39.3

Table 3: Instance completion on Scan2CAD [1]. We evaluate object completion as a union of predicted part decompositions,

and compare with state-of-the-art instance completion [21] and the union of StructureNet [32] parts as instances.

on MLCVNet detections, following their approach of using a

pretraining a decoder for complete part decompositions and

then learning an encoder to map this space. We additionally

consider a UNet [44] composed of 3D volumetric convolu-

tions as a baseline for the final part segmentation; this UNet

baseline helps to indicate the performance of a similar ap-

proach without the use of geometric priors or semantic part

relations before predicting the final part masks. We train

these alternative approaches on our part decomposition data

for ScanNet. These approaches do not consider explicit part

structure reasoning, whereas our prediction of semantic parts

and their relations helps to guide or prior-based decomposi-

tion for a more effective complete part decomposition.

In Figure 4, we show a qualitative comparison: without

part structure reasoning, the PointGroup approach can of-

ten mix up geometrically similar parts such as the left and

right chair arms, and the UNet baseline suffers in generating

complete part structures. StructureNet provides part struc-

ture reasoning, but their approach to train an encoder into

a pretrained decoder can tend to predict only the dominant

part decompositions for a class category (e.g., an office-type

chair instead of an armchair in the third row of Figure 4).

Our part structure guided priors enable more effective and

accurate part decompositions of the objects in the scenes.

Part segmentation on 3D scans. In addition to our task

of semantic part completion, we evaluate our approach in

comparison to state of the art on part segmentation in Ta-

ble 2. To evaluate part segmentation, we consider only the

part predictions that intersect with the original scan geom-

etry, and compare to PointGroup [25], StructureNet [32],

and a UNet baseline, using the object detection of by ML-

CVNet [56]. For part segmentation, we see that our part

structure reasoning coupled with geometric priors also pro-

duces more consistent part segmentations of the objects in

a scan, particularly in IoU as our approach results in more

locally consistent part structures.

Object completion on 3D scans. In Table 3, we addition-

ally evaluate our approach on object instance completion

by taking the union of our part mask predictions as a com-

plete object mask prediction. We compare to RevealNet [21],

which established this task, as well as a state-of-the-art object

detection using MLCVNet [56] followed by a UNet for com-

pletion or by StructureNet [32]. Our part reasoning enables

more effective instance completion by explicitly leveraging

shared structural knowledge of objects.

Ablations. In Table 4, we analyze the effect of our design

decisions for semantic part prediction and prior-guided part

mask prediction. We evaluate our approach without message-

passing in our semantic part prediction (w/o Part Msg Pass),

without using priors and directly decoding with convolutions

to a part mask prediction (w/o Priors), without refinement of

priors (No Prior Refine), and prior refinement with absolute

predictions instead of our relative offsets that are added to

the raw prior prediction (Prior Refine (Abs)). Our prior-

guided predictions, with refinement learned as a residual

offset, helps to produce more accurate results.

We additionally consider the effect of varying voxel res-

olutions in Table 5. All resolutions produce meaningful

results, although a (twice) higher resolution can result in

somewhat noisier results, and a (half) lower resolution tends

to lack detail; we thus use 323 objects.

Limitations. While our approach for semantic part com-

pletion shows promise towards a finer-grained, semantically

part-based understanding of 3D environments, we believe

Chamfer Distance (↓) IoU (↑)

Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

w/o Part Msg Pass 0.037 0.094 0.069 0.039 0.077 0.096 0.069 0.057 20.0 6.6 9.8 14.2 14.4 20.6 14.3 16.3

w/o Priors 0.036 0.093 0.067 0.044 0.058 0.101 0.067 0.056 21.8 7.3 11.0 13.8 16.4 21.9 15.4 17.7

No Prior Refine 0.034 0.093 0.069 0.034 0.057 0.096 0.064 0.055 22.5 7.6 12.2 17.9 16.6 22.0 16.4 18.2

Prior Refine (Abs) 0.036 0.089 0.065 0.034 0.067 0.105 0.066 0.055 21.4 7.5 11.5 17.4 16.5 20.7 15.8 17.6

Ours 0.033 0.089 0.069 0.033 0.054 0.096 0.062 0.053 22.1 7.7 13.0 18.1 17.3 22.0 16.7 18.3

Table 4: Ablation study for our design decisions, evaluated for semantic part completion on Scan2CAD [1].
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Figure 5: Qualitative results on real-world ScanNet [5] scenes using Scan2CAD [1] and PartNet [33] targets. Our approach

effectively predicts each object’s complete geometry as a decomposition into semantic parts.

Chamfer Distance (↓) IoU (↑)

Method chair table cab. bkshlf bed bin class avg inst avg chair table cab. bkshlf bed bin class avg inst avg

Res. 16 0.034 0.088 0.072 0.054 0.061 0.109 0.070 0.055 28.4 10.5 13.5 20.9 18.5 21.2 18.8 22.8

Res. 32 0.033 0.089 0.069 0.033 0.054 0.096 0.062 0.053 22.1 7.7 13.0 18.1 17.3 22.0 16.7 18.3

Res. 64 0.045 0.098 0.058 0.044 0.067 0.100 0.069 0.060 18.8 5.6 9.9 10.5 14.7 19.3 13.1 15.4

Table 5: Evaluation of various object resolutions during training for semantic part completion on Scan2CAD [1].

there are many avenues for further development. For in-

stance, a dense volumetric representation of parts may suf-

fice for functionality analysis of furniture-type objects, but

can struggle to generate very high resolution parts for small

objects; we believe sparse [15, 4] or hierarchical [43, 51]

approaches would complement our prior-based approach.

Furthermore, objects are currently considered independently

for each part decomposition, where relational inference be-

tween objects in a scene would help to explain noisy or

unobserved part regions (e.g., multiple chairs or tables in a

scene are often repeated instances of the same geometry).

5. Conclusion

In this paper, we have presented a new approach for the

semantic part completion task of predicting a geometrically

complete part decomposition for each object in a 3D scan.

For each detected object in a scene, we exploit relational

part structure prediction to guide a geometric part prior pre-

diction, which is then refined to a final part decomposition,

where each part is represented by its semantic part type and

the geometry corresponding to the part, including any miss-

ing or unobserved regions in the scan. We show that our

structural and prior-guided reasoning about object parts no-

tably outperforms alternative approaches on this task. We

believe that our approach makes an important step towards

part-based understanding of 3D environments, and opens

up new possibilities for part-level functionality analysis, au-

tonomous agent interactions with an environment, and more.
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