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Abstract

We show that the way inference is performed in

few-shot segmentation tasks has a substantial effect on

performances—an aspect often overlooked in the literature

in favor of the meta-learning paradigm. We introduce a

transductive inference for a given query image, leveraging

the statistics of its unlabeled pixels, by optimizing a new

loss containing three complementary terms: i) the cross-

entropy on the labeled support pixels; ii) the Shannon en-

tropy of the posteriors on the unlabeled query-image pix-

els; and iii) a global KL-divergence regularizer based on

the proportion of the predicted foreground. As our infer-

ence uses a simple linear classifier of the extracted fea-

tures, its computational load is comparable to inductive in-

ference and can be used on top of any base training. Forego-

ing episodic training and using only standard cross-entropy

training on the base classes, our inference yields compet-

itive performances on standard benchmarks in the 1-shot

scenarios. As the number of available shots increases, the

gap in performances widens: on PASCAL-5i, our method

brings about 5% and 6% improvements over the state-of-

the-art, in the 5- and 10-shot scenarios, respectively. Fur-

thermore, we introduce a new setting that includes domain

shifts, where the base and novel classes are drawn from dif-

ferent datasets. Our method achieves the best performances

in this more realistic setting. Our code is freely avail-

able online: https://github.com/mboudiaf/

RePRI-for-Few-Shot-Segmentation.

1. Introduction

Few-shot learning, which aims at classifying instances

from unseen classes given only a handful of training ex-

∗Corresponding author: malik.boudiaf.1@etsmtl.net

amples, has witnessed a rapid progress in the recent years.

To quickly adapt to novel classes, there has been a sub-

stantial focus on the meta-learning (or learning-to-learn)

paradigm [27, 31, 35]. Meta-learning approaches popular-

ized the need of structuring the training data into episodes,

thereby simulating the tasks that will be presented at in-

ference. Nevertheless, despite the achieved improvements,

several recent image classification works [2, 4, 6, 12, 32, 44]

observed that meta-learning might have limited generaliza-

tion capacity beyond the standard 1- or 5-shot classification

benchmarks. For instance, in more realistic settings with

domain shifts, simple classification baselines may outper-

form much more complex meta-learning methods [4, 12].

Deep-learning based semantic segmentation has been

generally nurtured from the methodological advances in

image classification. Few-shot segmentation, which has

gained popularity recently [10, 17, 19, 23, 25, 33, 36, 37, 38,

39, 41, 42], is no exception. In this setting, a deep segmenta-

tion model is first pre-trained on base classes. Then, model

generalization is assessed over few-shot tasks and novel

classes unseen during base training. Each task includes

an unlabeled test image, referred to as the query, along

with a few labeled images (the support set). The recent

literature in few-shot segmentation follows the learning-to-

learn paradigm, and substantial research efforts focused on

the design of specialized architectures and episodic-training

schemes for base training. However, i) episodic training it-

self implicitly assumes that testing tasks have a structure

(e.g., the number of support shots) similar to the tasks used

at the meta-training stage; and ii) base and novel classes are

often assumed to be sampled from the same dataset.

In practice, those assumptions may limit the applicability

of the existing few-shot segmentation methods in realistic

scenarios [3, 4]. In fact, our experiments proved consistent

with findings in few-shot classification when going beyond

the standard settings and benchmarks. Particularly, we ob-
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served among state-of-the-art methods a saturation in per-

formances [3] when increasing the number of labeled sam-

ples (See Table 3). Also, in line with very recent obser-

vations in image classification [4], existing meta-learning

methods prove less competitive in cross-domains scenarios

(See Table 4). This casts doubts as to the viability of the cur-

rent few-shot segmentation benchmarks and datasets; and

motivates re-considering the relevance of the meta-learning

paradigm, which has become the de facto choice in the few-

shot segmentation litterature.

Contributions

In this work, we forego meta-learning, and re-consider

a simple cross-entropy supervision during training on the

base classes for feature extraction. Additionally, we pro-

pose a transductive inference that better leverages the

support-set supervision than the existing methods. Our con-

tributions can be summarized as follows:

• We present a new transductive inference–RePRI (Re-

gion Proportion Regularized Inference)–for a given

few-shot segmentation task. RePRI optimizes a loss

integrating three complementary terms: i) a standard

cross-entropy on the labeled pixels of the support im-

ages; ii) the entropy of the posteriors on the query pix-

els of the test image; and iii) a global KL divergence

regularizer based on the proportion of the predicted

foreground pixels within the test image. RePRI can

be used on top of any trained feature extractor, and

uses exactly the same information as standard induc-

tive methods for a given few-shot segmentation task.

• Although we use a basic cross-entropy training on

the base classes, without complex meta-learning

schemes, RePRI yields highly competitive perfor-

mances on the standard few-shot segmentation bench-

marks, PASCAL-5i and COCO-20i, with gains around

5% and 6% over the state-of-the-art in the 5- and 10-

shot scenarios, respectively.

• We introduce a more realistic setting where, in addi-

tion to the usual shift on classes between training and

testing data distributions, a shift on the images’ feature

distribution is also introduced. Our method achieves

the best performances in this scenario.

• We demonstrate that a precise region-proportion infor-

mation on the query object improves substantially the

results, with an average gain of 13% on both datasets.

While assuming the availability of such information is

not realistic, we show that inexact estimates can still

lead to drastic improvements, opening a very promis-

ing direction for future research.

2. Related Work

Few-Shot Learning for classification Meta-learning has

become the de facto solution to learn novel tasks from a few

labeled samples. Even though the idea is not new [28], it has

been revived recently by several popular works in few-shot

classification [9, 26, 27, 31, 35]. These works can be cat-

egorized into gradient- or metric-learning-based methods.

Gradient approaches resort to stochastic gradient descent

(SGD) to learn the commonalities among different tasks

[26, 9]. Metric-learning approaches [35, 31] adopt deep

networks as feature-embedding functions, and compare the

distances between the embeddings. Furthermore, in a recent

line of works, the transductive setting has been investigated

for few-shot classification [6, 2, 14, 16, 20, 24, 31, 44],

and yielded performance improvements over inductive in-

ference. These results are in line with established facts in

classical transductive inference [34, 15, 5], well-known to

outperform its inductive counterpart on small training sets.

To a large extent, these transductive classification works fol-

low well-known concepts in semi-supervised learning, such

as graph-based label propagation [20], entropy minimiza-

tion [6] or Laplacian regularization [44]. While the entropy

is a part of our transductive loss, we show that it is not suf-

ficient for segmentation tasks, typically yielding trivial so-

lutions.

Few-shot segmentation Segmentation can be viewed as

a classification at the pixel level, and recent efforts mostly

went into the design of specialized architectures. Typically,

the existing methods use a two-branch comparison frame-

work, inspired from the very popular prototypical networks

for few-shot classification [31]. Particularly, the support

images are employed to generate class prototypes, which

are later used to segment the query images via a prototype-

query comparison module. Early frameworks followed a

dual-branch architecture, with two independent branches

[29, 7, 25], one generating the prototypes from the sup-

port images and the other segmenting the query images with

the learned prototypes. More recently, the dual-branch set-

ting has been unified into a single-branch, employing the

same embedding function for both the support and query

sets [42, 30, 37, 38, 21]. These approaches mainly aim at

exploiting better guidance for the segmentation of query

images [42, 23, 36, 40], by learning better class-specific

representations [37, 19, 21, 38, 30] or iteratively refining

these [41]. Graph CNNs have also been employed to estab-

lish more robust correspondences between the support and

query images, enhancing the learned prototypes [36]. Alter-

native solutions to learn better class representations include:

imprinting the weights for novel classes [30], decomposing

the holistic class representation into a set of part-aware pro-

totypes [21] or mixing several prototypes, each correspond-

ing to diverse image regions [38].
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Figure 1: Probability maps for several 1-shot tasks. For each task, the two first columns show the ground truth of support and

query. Initial column represents the probability map with the initial classifier θ(0), and the last three columns show the final

soft predicted segmentation after finetuning with each of the three losses. Best viewed in colors.

3. Formulation

3.1. Few­shot Setting

Formally, we define a base dataset Dbase with base

semantic classes Ybase, employed for training. Specifi-

cally, Dbase = {(xn, yn)}
N
n=1, Ω ⊂ R

2 an image space,

xn : Ω → R
3 an input image, and yn : Ω → {0, 1}|Ybase| its

corresponding pixelwise one-hot annotation. At inference,

we test our model through a series of K-shots tasks. Each

K-shots task consists of a support set S = {(xk, yk)}
K
k=1,

i.e. K fully annotated images, and one unlabelled query

image xQ, all from the same novel class. This class is ran-

domly sampled from a set of novel classes Ynovel such that

Ybase ∩ Ynovel = ∅. The goal is to leverage the supervision

provided by the support set in order to properly segment the

object of interest in the query image.

3.2. Base training

Inductive bias in episodic training There exist different

ways of leveraging the base set Dbase. Meta-learning, or

learning to learn, is the dominant paradigm in the few-shot

literature. It emulates the test-time scenario during training

by structuring Dbase into a series of training tasks. Then,

the model is trained on these tasks to learn how to best

leverage the supervision from the support set in order to en-

hance its query segmentation. Recently, Cao et al. [3] for-

mally proved that the number of shots Ktrain used in train-

ing episodes in the case of prototypical networks represents

a learning bias, and that the testing performance saturates

quickly when Ktest differs from Ktrain. Empirically, we

observed the same trend for current few-shot segmentation

methods, with minor improvements from 1-shot to 5-shot

performances (Table 1).

Standard training In practice, the format of the test tasks

may be unknown beforehand. Therefore, we want to take as

little assumptions as possible on this. This motivates us to

employ a feature extractor fφ trained with standard cross-

entropy supervision on the whole Dbase set instead, without

resorting to episodic training.

3.3. Inference

Objective In what follows, we use � as a placeholder to

denote either a support subscript k ∈ {1, ...,K} or the

query subscript Q. At inference, we consider the 1-way

segmentation problem: y
�
: Ω → {0, 1}2 is the function

representing the dense background/foreground (B/F) mask

in image x
�
. For both support and query images, we extract

features z
�
:= fφ(x�

) and z
�
: Ψ → R

C , where C is the

channel dimension in the feature space Ψ, with lower pixel

resolution |Ψ| < |Ω|.
Using features z

�
, our goal is to learn the parameters θ

of a classifier that properly discriminates foreground from

background pixels. Precisely, our classifier p
�
: Ψ → [0, 1]2

assigns a (B/F) probability vector to each pixel j ∈ Ψ in the
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extracted feature space.

For each test task, we find the parameters θ of the clas-

sifier by optimizing the following transductive objective:

min
θ

CE + λH H+ λKL DKL, (1)

where λH, λKL ∈ R are non-negative hyper-parameters bal-

ancing the effects of the different terms.

We now describe in details each of the terms in Eq. (1):

CE = −
1

K|Ψ|

K∑

k=1

∑

j∈Ψ

ỹk(j)
⊤ log(pk(j))

is the cross-entropy between the downsampled labels ỹk
from support images and our classifier’s soft predictions.

Simply minimizing this term will often lead to degenerate

solutions, especially in the 1-shot setting, as observed in

Figure 1—the classifier θ typically overfits the support set

S , translating into small activated regions on the query im-

age.

H = −
1

|Ψ|

∑

j∈Ψ

pQ(j)
⊤ log (pQ(j))

is the Shannon entropy of the predictions on the query-

image pixels. The role of this entropy term is to make

the model’s predictions more confident on the query image.

The use of H originates from the semi-supervised litera-

ture [11, 22, 1]. Intuitively, it pushes the decision boundary

drawn by the linear classifier towards low-density regions

of the extracted query feature space. While this term plays

a crucial role in conserving object regions that were initially

predicted with only medium confidence, its sole addition to

CE does not solve the problem of degenerate solutions, and

may even worsen it in some cases.

DKL = p̂ ⊤
Q log

(
p̂Q
π

)
,

with p̂Q = 1
|Ψ|

∑
j∈Ψ pQ(j), is a Kullback-Leibler (KL)

Divergence term that encourages the B/F proportion pre-

dicted by the model to match a parameter π ∈ [0, 1]2. No-

tice that the division inside the log applies element-wise.

The joint estimation of parameter π in our context is fur-

ther discussed in a following paragraph. Here, we argue

that this term plays a key role in our loss. First, in the case

where parameter π does not match the exact B/F proportion

of the query image, this term still helps avoiding the de-

generate solutions stemming from CE and H minimization.

Second, should an accurate estimate of the B/F proportion

in the query image be available, it could easily be embed-

ded through this term, resulting in a substantial performance

boost, as discussed in Section 4.

Choice of the classifier As we optimize θ for each task

at inference, we want our method to add as little com-

putational load as possible. In this regard, we employ a

simple linear classifier with learnable parameters θ
(t) =

{w(t), b(t)}, with t the current step of the optimization pro-

cedure, w(t) ∈ R
C the foreground prototype and b(t) ∈ R

the corresponding bias. Thus, the probabilities p
(t)
k and p

(t)
Q

at iteration t, for pixel j ∈ Ψ can be obtained as follow:

p
(t)
�

(j) :=

(
1− s

(t)
�

(j)

s
(t)
�

(j)

)
, (2)

where s
(t)
�

(j) = sigmoid
(
τ
[
cos
(
z
�
(j), w(t)

)
− b(t)

])
,

τ ∈ R is a temperature hyper-parameter and cos the

cosine similarity. The same classifier is used to esti-

mate the support set probabilities pk and the query pre-

dicted probabilities pQ. At initialization, we set prototype

w(0) to be the average of the foreground support features,

i.e. w(0) = 1
K|Ψ|

∑K

k=1

∑
j∈Ψ ỹk(j)1zk(j), with ỹk(j)1

the foreground component of the one-hot label of image

xk at pixel j. Initial bias b(0) is set as the mean of the

foreground’s soft predictions on the query image: b(0) =
1
|Ψ|

∑
j∈Ψ pQ(j)1. Then, w(t) and b(t) are optimized with

gradient descent. The computational footprint of this per-

task optimization is discussed in Section 4.

Joint estimation of B/F proportion π Without additional

information, we leverage the model’s label-marginal distri-

bution over the query image p̂
(t)
Q in order to learn π jointly

with classifier parameters. Note that minimizing Eq. (1)

with respect to π yields π(t) = p̂
(t)
Q . Empirically, we found

that, after initialization, updating π only once during opti-

mization, at a later iteration, tπ was enough:

π(t) =




p̂
(0)
Q 0 ≤ t ≤ tπ

p̂
(tπ)
Q t > tπ.

(3)

Intuitively, the entropy term H helps gradually refine ini-

tially blurry soft predictions (third column in Fig. 1), which

turns p̂
(t)
Q into an improving estimate of the true B/F propor-

tion. A quantitative study of this phenomenon is provided

in Section 4.3. Therefore, our inference can be seen as a

joint optimization over θ and π, with DKL serving as a self-

regularization that prevents the model’s marginal distribu-

tion p̂
(t)
Q from diverging.

Oracle case with a known π As an upper bound, we also

investigate the oracle case, where we have access to the true

B/F proportion in xQ:

π∗ =
1

|Ψ|

∑

j∈Ψ

ỹQ(j). (4)
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4. Experiments

Datasets We resort to two public few-shot segmentation

benchmarks, PASCAL-5i and COCO-20i, to evaluate our

method. PASCAL-5i is built from PASCALVOC 2012 [8],

and contains 20 object categories split into 4 folds. For

each fold, 15 classes are used for training and the remain-

ing 5 categories for testing. COCO-20i is built from MS-

COCO [18] and is more challenging, as it contains more

samples, more classes and more instances per image. Sim-

ilar to PASCAL-5i, COCO-20i dataset is divided into 4-

folds with 60 base classes and 20 test classes in each fold.

Training We build our model based on PSPNet [43] with

Resnet-50 and Resnet-101 [13] as backbones. We train the

feature extractor with standard cross-entropy over the base

classes during 100 epochs on PASCAL-5i, and 20 epochs

on COCO-20i, with batch size set to 12. We use SGD as

optimizer with the initial learning rate set to 2.5e−3 and

we use cosine decay. Momentum is set to 0.9, and weight

decay to 1e−4. Label smoothing is used with smoothing

parameter ǫ = 0.1. We did not use multi-scaling, nor deep

supervision, unlike the original PSPNet paper [43]. As for

data augmentations, we only use random mirror flipping.

Inference At inference, following previous works [21,

37], all images are resized to a fixed 417 × 417 resolu-

tion. For each task, the classifier θ is built on top of the

features from the penultimate layer of the trained network.

For our model with ResNet-50 as backbone, this results in a

53 × 53× 512 feature map. SGD optimizer is used to train

θ, with a learning rate of 0.025. For each task, a total of 50

iterations are performed. The parameter tπ is set to 10. For

the main method, the weights λH and λKL are both initially

set to 1/K, such that the CE term plays a more important

role as the number of shots K grows. For t ≥ tπ , λKL is in-

creased by 1 to further encourage the predicted proportion

close to π(tπ). Finally, the temperature τ is set to 20.

Evaluation We employ the widely adopted mean Inter-

section over Union (mIoU). Specifically, for each class,

the classwise-IoU is computed as the sum over all sam-

ples within the class of the intersection over the sum of all

unions. Then, the mIoU is computed as the average over

all classes of the classwise-IoU. Following previous works

[21], 5 runs of 1000 tasks each are computed for each fold,

and the average mIoU over runs is reported.

4.1. Benchmark results

Main method First, we investigate the performance of

the proposed method in the popular 1-shot and 5-shot set-

tings on both PASCAL-5i and COCO-20i, whose results

are reported in Table 1 and 2. Overall, we found that our

method compares competitively with state-of-the-art ap-

proaches in the 1-shot setting, and significantly outperforms

recent methods in the 5-shot scenario. Additional qualita-

tive results on PASCAL-5i are shown in the supplemental

material.

Beyond 5-shots In the popular learning-to-learn para-

digm, the number of shots leveraged during the meta-

training stage has a direct impact on the performance at in-

ference [3]. Particularly, to achieve the best performance,

meta-learning based methods typically require the num-

bers of shots used during meta-training to match those em-

ployed during meta-testing. To demonstrate that the pro-

posed method is more robust against differences on the

number of labeled support samples between the base and

test sets, we further investigate the 10-shot scenario. Par-

ticularly, we trained the methods in [33, 38] by using one

labeled sample per class, i.e., 1-shot task, and test the mod-

els on a 10-shots task. Interestingly, we show that the gap

between our method and current state-of-the-art becomes

larger as the number of support images increases (Table

3), with significant gains of 6% and 4% on PASCAL-5i

and COCO-20i, respectively. These results suggest that our

transductive inference leverages more effectively the infor-

mation conveyed in the labeled support set of a given task.

Oracle results We now investigate the ideal scenario

where an oracle provides the exact foreground/background

proportion in the query image, such that π(t) = π∗, ∀t. Re-

ported results in this scenario, referred to as Oracle (Table

1 and 2) show impressive improvements over both our cur-

rent method and all previous works, with a consistent gain

across datasets and tasks. Particularly, these values range

from 11% and 14 % on both PASCAL-5i and COCO-20i

and in both 1-shot and 5-shot settings. We believe that these

findings convey two important messages. First, it proves

that there exists a simple linear classifier that can largely

outperform state-of-the-art meta-learning models, while be-

ing built on top of a feature extractor trained with a stan-

dard cross-entropy loss. Second, these results indicate that

having a precise size of the query object of interest acts as

a strong regularizer. This suggests that more efforts could

be directed towards properly constraining the optimization

process of w and b, and opens a door to promising avenues.

4.2. Domain shift

We introduce a more realistic, cross-domain setting

(COCO-20i to PASCAL-VOC). We argue that such setting

is a step towards a more realistic evaluation of these meth-

ods, as it can assess the impact on performances caused by

a domain shift between the data training distribution and

the testing one. We believe that this scenario can be eas-

ily found in practice, as even slight alterations in the data

collection process might result in a distributional shift. We
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Table 1: Results of 1-way 1-shot and 1-way 5-shot segmentation on PASCAL-5i using the mean-IoU. Best results in bold.

1 shot 5 shot

Method Backbone Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

OSLSM [29] (BMVC’18)

VGG-16

33.6 55.3 40.9 33.5 40.8 35.9 58.1 42.7 39.1 43.9

co-FCN [25] (ICLRW’18) 36.7 50.6 44.9 32.4 41.1 37.5 50.0 44.1 33.9 41.4

AMP [30] (ICCV’19) 41.9 50.2 46.7 34.7 43.4 41.8 55.5 50.3 39.9 46.9

PANet [37] (ICCV’19) 42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7

FWB [23] (ICCV’19) 47.0 59.6 52.6 48.3 51.9 50.9 62.9 56.5 50.1 55.1

SG-One [42] (TCYB’20) 40.2 58.4 48.4 38.4 46.3 41.9 58.6 48.6 39.4 47.1

CRNet [19] (CVPR’20) - - - - 55.2 - - - - 58.5

FSS-1000 [17] (CVPR’20) - - - - - 37.4 60.9 46.6 42.2 56.8

RPMM [21] (ECCV’20) 47.1 65.8 50.6 48.5 53.0 50.0 66.5 51.9 47.6 54.0

CANet [41] (CVPR’19)

ResNet50

52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1

PGNet [40] (ICCV’19) 56.0 66.9 50.6 50.4 56.0 57.7 68.7 52.9 54.6 58.5

CRNet [19] (CVPR’20) - - - - 55.7 - - - - 58.8

SimPropNet [10] (IJCAI’20) 54.9 67.3 54.5 52.0 57.2 57.2 68.5 58.4 56.1 60.0

LTM [39] (MMMM’20) 52.8 69.6 53.2 52.3 57.0 57.9 69.9 56.9 57.5 60.6

RPMM [38] (ECCV’20) 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3

PPNet [21] (ECCV’20)* 47.8 58.8 53.8 45.6 51.5 58.4 67.8 64.9 56.7 62.0

PFENet [33] (TPAMI’20) 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9

RePRI (ours) 60.2 67.0 61.7 47.5 59.1 64.5 70.8 71.7 60.3 66.8

Oracle-RePRI ResNet50 72.4 78.0 77.1 65.8 73.3 75.1 80.8 81.4 74.4 77.9

FWB [23] (ICCV’19)

ResNet101

51.3 64.5 56.7 52.2 56.2 54.9 67.4 62.2 55.3 59.9

DAN [36] (ECCV’20) 54.7 68.6 57.8 51.6 58.2 57.9 69.0 60.1 54.9 60.5

PFENet [33] (TPAMI’20) 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4

RePRI (ours) 59.6 68.6 62.2 47.2 59.4 66.2 71.4 67.0 57.7 65.6

Oracle-RePRI ResNet101 73.9 79.7 76.1 65.1 73.7 76.8 81.7 79.5 74.5 78.1

* We report the results where no additional unlabeled data is employed.

Table 2: Results of 1-way 1-shot and 1-way 5-shot segmentation on COCO-20i using mean-IoU metric. Best results in bold.

1 shot 5 shot

Method Backbone Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PPNet* [21] (ECCV’20)

ResNet50

34.5 25.4 24.3 18.6 25.7 48.3 30.9 35.7 30.2 36.2

RPMM [38] (ECCV’20) 29.5 36.8 29.0 27.0 30.6 33.8 42.0 33.0 33.3 35.5

PFENet [33] (TPAMI’20) 36.5 38.6 34.5 33.8 35.8 36.5 43.3 37.8 38.4 39.0

RePRI (ours) 31.2 38.1 33.3 33.0 34.0 38.5 46.2 40.0 43.6 42.1

Oracle-RePRI ResNet50 49.3 51.4 38.2 41.6 45.1 51.5 60.8 54.7 55.2 55.5

* We report the results where no additional unlabeled data is employed.

Table 3: Aggregated results for 1-way 1-, 5- and 10-shot

tasks with Resnet50 as backbone and averaged over 4 folds.

Per fold results are available in the supplementary material.

PASCAL-5i COCO-20i

Method 1-S 5-S 10-S 1-S 5-S 10-S

RPMM [38] 56.3 57.3 57.6 30.6 35.5 33.1

PFENet [33] 60.8 61.9 62.1 35.8 39.0 39.7

RePRI (ours) 59.1 66.8 68.2 34.0 42.1 44.4

Oracle-RePRI 73.3 77.9 78.6 45.1 55.5 58.7

reproduce the scenario where a large labeled dataset is avail-

able (e.g., COCO-20i), but the evaluation is performed on

a target dataset with a different feature distribution (e.g.,

PASCAL-VOC). As per the original work [18], signifi-

cant differences exist between the two original datasets.

For instance, images in MS-COCO have on average 7.7

instances of objects coming from 3.5 distinct categories,

while PASCAL-VOC only has an average of 3 instances

from 2 distinct categories.

Evaluation We reuse models trained on each fold of

COCO-20i and generate tasks using images from all the

classes in PASCAL-VOC that were not used during train-
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Table 4: Aggregated domain-shift results, averaged over 4

folds, on COCO-20i to PASCAL-VOC. Best results in bold.

Per-fold results are available in the supplementary material.

COCO → PASCAL

Method Backbone 1 shot 5 shot

RPMM [38]

ResNet50

49.6 53.8

PFENet [33] 61.1 63.4

RePRI (ours) 63.2 67.7

Oracle-RePRI Resnet-50 76.2 79.7

ing. For instance, fold-0 of this setting means the model

was trained on fold-0 of COCO-20i and tested on the whole

PASCAL-VOC dataset, after removing the classes seen in

training. A complete summary of all the folds is available

in the Supplemental material.

Results We reproduced and compared to the two best

performing methods [33, 21] using their respective official

GitHub repositories. Table 4 summarizes the results for the

1-shot and 5-shot cross-domain experiments. We observe

that in the presence of domain-shift, our method outper-

forms existing methods in both 1-shot and 5-shot scenarios,

with again the improvement jumping from 2% in 1-shot to

4% in 5-shot.

4.3. Ablation studies

Impact of each term in the main objective While Fig. 1

provides qualitative insights on how each term in Eq. (1) af-

fects the final prediction, this section provides a quantitative

evaluation of their impact, evaluated on PASCAL-5i (Ta-

ble 5). Quantitative results confirm the qualitative insights

observed in Fig. 1, as both CE and CE + H losses drasti-

cally degrade the performance compared to the proportion-

regularized loss, i.e., CE + H + DKL. For example, in the

1-shot scenario, simply minimizing the CE results in more

than 20% of difference compared to the proposed model.

In this case, the prototype w tends to overfit the support

sample and only activates regions of the query object that

strongly correlate with the support object. Such behav-

ior hampers the performance when the support and query

objects exhibit slights changes in shape or histogram col-

ors, for example, which may be very common in practice.

Adding the entropy term H to CE partially alleviates this

problem, as it tends to reinforce the model in being confi-

dent on positive pixels initially classified with mid or low

confidence. Nevertheless, despite improving the naive CE

based model, the gap with the proposed model remains con-

siderably large, with 10% difference. One may notice that

the differences between CE and CE + H + DKL decrease

in the 5-shot setting, since overfitting 5 support samples si-

multaneously becomes more difficult. The results from this

ablation experiment reinforce our initial hypothesis that the

proposed KL term based on the size parameter π acts as a

strong regularizer.

Influence of the parameter tπ In Fig. 2, we plot the av-

eraged mIoU (over 4 folds) as a function of tπ varying over

the full range tπ ∈ [1, 50]. For 5-shot, the performances are

stable and remain largely above SOTA for all tπ . As for the

1-shot case, the range [5, 15] yields roughly similar results.

While selection of optimal tπ would lead to performance

gains in each setting, in the paper, we used a single value of

tπ = 10 for all the settings.
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Figure 2: Average mIoU (over 4 folds) as a function of tπ
on PASCAL-5i (left) and COCO-20i (right) .

Influence of parameter π misestimation Precisely

knowing the foreground/background (B/F) proportion of the

query object is unrealistic. To quantify the deviation from

the exact B/F proportion π∗, we introduce the relative error

on the foreground size:

δ(t) =
π
(t)
1

π∗
1

− 1, (5)

where π∗
1 represents the exact foreground proportion in the

query image, extracted from its corresponding ground truth,

and π
(t)
1 our estimate at iteration t, which is derived from the

soft predicted segmentation. As observed from Fig. 1, the

initial prototype often results in a blurred probability map,

from which only a very coarse estimate of the query propor-

tion can be inferred and used as π(0). The distribution of δ
over 5000 tasks is presented in Fig. 3a. It clearly shows that

the initial prediction typically provides an overestimate of

the actual query foreground size, while finetuning the clas-

sifier θ for 10 iterations with our main loss (Eq. 1) already

provides a strictly more accurate estimate, as conveyed by

the right box plot in Fig. 3a, with an average δ around 0.7.

Now, a natural question remains: how good does the

estimate need to be in order to approach the oracle re-

sults? To answer this, we carry out a series of controlled
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Table 5: Ablation study on the effect of each term in our loss in Eq. (1), evaluated on PASCAL-5i.

1 shot 5 shot

Loss Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

CE 39.7 49.3 37.3 27.5 38.5 56.5 66.4 60.1 49.0 58.0

CE +H 45.7 61.7 48.2 36.4 48.0 56.8 68.5 61.3 47.0 58.4

CE +H+DKL 60.2 67.0 61.7 47.5 59.1 64.5 70.8 71.7 60.3 66.8
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15

20

(a) Relative error δ distribution of

our current method, at initializa-

tion δ(0) and after 10 gradient it-

erations δ(10).
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(b) Mean-IoU versus enforced rel-

ative foreground size error δ in the

parameter π(0).

Figure 3: Experiments on π misestimation. Both figures

are computed using 5 runs of 1000 1-shot tasks, each on the

fold-0 of PASCAL5i.

Table 6: Number of tasks performed per second, and the

corresponding mIoU performances on PASCAL-5i.

1-shot 5-shot

Method FPS mIoU FPS mIoU

RPMMS [38] 18.2 51.5 9.4 57.3

PFENet [33] 15.9 60.8 5.1 61.9

RePRI (ours) 12.8 59.1 4.4 66.8

experiments where, instead of computing π(t) with Eq.

(3), we use a δ-perturbed oracle at initialization, such that

π
(t)
1 = π∗

1(1+δ). Each point in Fig. 3b represents the mIoU

obtained over 5000 tasks for a given perturbation δ. Fig.

3b reveals that exact B/F proportion is not required to sig-

nificantly close the gap with the oracle. Specifically, fore-

ground size estimates ranging from -10% to +30% with re-

spect to the oracle proportion are sufficient to achieve 70%+

of mIoU, which represents an improvement of 10% over the

current state-of-the art. This suggests that more refined size

estimation methods may significantly increase the perfor-

mance of the proposed method.

Computational efficiency We now inspect the computa-

tional cost of the proposed model, and compare to recent ex-

isting methods. Unlike prior work, we solve an optimization

problem at inference, which naturally slows down the infer-

ence process. However, in our case, only a single prototype

vector w ∈ R
C , where we recall C is the feature channel

dimension, and a bias b ∈ R need to be optimized for each

task. Furthermore, in our setting C = 512, and therefore

the problem can still be solved relatively efficiently, leading

to reasonable inference times. In Table 6, we summarize

the FPS rate at inference for our method, as well as for two

competing approaches that only require a forward pass. We

can observe that, unsurprisingly, our method reports lower

FPS rates, without becoming unacceptably slower. The re-

ported values indicate that the differences in inference times

are small compared to, for example, the approach in [33].

Particularly, in the 1-shot scenario, our method processes

tasks 3 FPS slower than [33], whereas this gap narrows

down to 0.7 FPS in the 5-shot setting.

5. Conclusion

Without resorting to the popular meta-learning

paradigm, our proposed RePRI achieves new state-of-the-

art results on standard 5-shot segmentation benchmarks,

while being close to best performing approaches in the

1-shot setting. RePRI is modular and can, therefore, be

used in conjunction with any feature extractor regardless

how the base training was performed. Supported by the

findings in this work, we believe that the relevance of the

episodic training should be re-considered in the context of

few-shot segmentation, and we provide a strong baseline

to stimulate future research on this topic. Our results

indicate that current state-of-the-art methods may have

difficulty with more challenging settings, when dealing

with domain shift or conducting inference on tasks whose

structures are different from those seen in training—

scenarios that have been overlooked in the literature. These

findings align with recent observations in few shot clas-

sification [4, 3]. Furthermore, embedding more accurate

foreground-background proportion estimates appears to

be a very promising way of constraining the inference,

as demonstrated with the significantly improved results

obtained by the oracle. Our implementation is publicly

available online: https://github.com/mboudiaf/

RePRI-for-Few-Shot-Segmentation.
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