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Figure 1: Neural Deformation Graphs: given range input data, represented as a signed distance field, our method predicts

globally-consistent deformation graph that is used to reconstruct the non-rigidly deforming surface of an object. The surface

of the object is represented as a set of implicit functions centered around the deformation graph nodes. Our global optimiza-

tion provides consistent surface and deformation prediction, enabling robust tracking of an observed input sequence and even

multiple disjoint captures of the same object (as we do not assume sequential input data).

Abstract

We introduce Neural Deformation Graphs for globally-

consistent deformation tracking and 3D reconstruction of

non-rigid objects. Specifically, we implicitly model a defor-

mation graph via a deep neural network. This neural de-

formation graph does not rely on any object-specific struc-

ture and, thus, can be applied to general non-rigid defor-

mation tracking. Our method globally optimizes this neural

graph on a given sequence of depth camera observations

of a non-rigidly moving object. Based on explicit viewpoint

consistency as well as inter-frame graph and surface con-

sistency constraints, the underlying network is trained in

a self-supervised fashion. We additionally optimize for the

geometry of the object with an implicit deformable multi-

MLP shape representation. Our approach does not as-

sume sequential input data, thus enabling robust tracking

of fast motions or even temporally disconnected recordings.

Our experiments demonstrate that our Neural Deformation

Graphs outperform state-of-the-art non-rigid reconstruc-

tion approaches both qualitatively and quantitatively, with

64% improved reconstruction and 54% improved deforma-

tion tracking performance. Code is publicly available.1

1aljazbozic.github.io/neural deformation graphs

1. Introduction

Capturing non-rigidly deforming surfaces is essential to-

wards reconstructing and understanding real-world environ-

ments, which are often highly dynamic. While impres-

sive advances have been made in reconstructing static 3D

scenes [8, 21], dynamic tracking and reconstruction re-

mains very challenging. A plethora of domain-specific dy-

namic tracking methods has been developed (e.g., human

bodies, faces, hands), leveraging strong domain shape and

motion priors for robust tracking [4, 28, 31, 41]. How-

ever, real-world environments encompass a vast diversity

of deformable objects – including people with clothing

or animals – making domain specific shape priors often

intractable for general deformable reconstruction; in this

work, we thus focus on general non-rigid 3D reconstruction

without shape or motion priors for general object tracking

and reconstruction.

A seminal work in non-rigid 3D reconstruction is Dy-

namicFusion [32], which was the first approach to demon-

strate real-time dense reconstruction of dynamic scenes us-

ing just a single RGB-D sensor. DynamicFusion showed

promising results towards dynamic reconstruction, but still

struggles in many real-world scenarios, which typically in-

clude strong deformations and fast frame-to-frame motion,

due to its low-level, local correspondence association step.
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In particular, the incremental construction of a deformation

graph is prone to error aggregation and can lead to track-

ing failures. Recently, data-driven methods based on deep

learning have been introduced [3, 25, 2] that learn priors

of non-rigidly deforming objects from dense flow annota-

tions. These approaches leverage a similar incremental de-

formation graph construction as DynamicFusion, but learn

to establish more robust tracking via more sophisticated

correspondence optimization based on data-driven priors.

However, despite more robust correspondences, these meth-

ods still operate on a frame-by-frame basis, thus, aggregate

tracking errors and are unable to recover if tracking fails. In

order to address these shortcomings without assuming data-

driven priors, we propose a globally-consistent neural de-

formation graph which allows for non-rigid reconstruction

from commodity sensor observations, represented as signed

distance fields (see Fig. 1). The neural deformation graph

gives access to the per frame deformation graph nodes and

stores the global graph connectivity. To robustly optimize

for consistent deformations over fast motions, we introduce

viewpoint consistency (independently for every frame) as

well as graph and surface consistency constraints (between

pairs of frames). Our viewpoint consistency loss measures

the consistency of graph node position predictions w.r.t. ro-

tation augmentation. The graph and surface consistency

losses encourage deformations to be modeled in our Neural

Deformation Graph such that local graph edge distances are

preserved between frames and the deformed surface geom-

etry of a source frame aligns well with the geometry of the

target frame. Additionally, our approach does not assume

temporally close frames, thus making it easily applicable to

low FPS settings or the combination of independently cap-

tured depth recordings.

Since there exists no general canonical pose (like a T-

pose of a human [28]) that fits all deformable objects, we

avoid modeling it explicitly. Instead, we propose to em-

ploy a set of implicit functions that are centered around

the deformation graph nodes. Specifically, we model local

signed distance functions (SDFs) using multi-layer percep-

trons (MLPs) that can be deformed to fit any frame, without

requiring an explicit canonical pose. The global shape is

evaluated by the integration of these local MLP predictions.

To summarize, our technical contributions are:

• a globally-optimized deformation graph that is able to

handle deformations present in all frames of an un-

structured dataset or a sequence of an object;

• a combination of per-frame viewpoint consistency and

frame-to-frame graph and surface consistency for ro-

bust tracking of fast deformations;

• an implicit deformable multi-MLP shape representa-

tion anchored on the scene-specific deformation graph.

2. Related Work

Our approach is leveraging a low dimensional deforma-

tion graph to model the non-rigid deformations of an object,

while the actual surface is represented by an implicit func-

tion by means of a multi-layer perceptron (MLP). We will

discuss the most related approaches in these two fields.

Non-rigid Reconstruction Non-rigid reconstruction is a

highly active research field, in particular using commodity

RGB-D sensors such as the Kinect. The seminal work Dy-

namicFusion of Newcombe et al. [32] tracks deformable

motion and reconstructs the object’s shape in an incremen-

tal fashion, i.e., frame-by-frame. While this approach relies

on local depth correspondences, follow-up methods addi-

tionally use sparse SIFT features [20], dense color track-

ing [17] or dense SDF alignment [37, 38]. These meth-

ods show impressive results, but often struggle with fast

frame-to-frame motion given their use of hand-crafted cor-

respondences. Bozic et al. [3] introduced an annotated

dataset of non-rigid motions that allows to train data-driven

non-rigid reconstruction methods with learned correspon-

dences [3, 25, 2]. While learned correspondences improve

tracking performance, the approaches are still inherently

limited by the employed frame-to-frame tracking paradigm,

i.e., tracking errors accumulate over time, and if tracking is

lost it is unable to recover. Tracking robustness can also be

improved without any learned priors by using multi-view

input data [7, 15] (setups with more than 50 cameras) and

high-speed cameras [10] (8 cameras at 200 frames per sec-

ond (FPS)). In contrast to these frame-to-frame tracking ap-

proaches, there are methods that focus on global non-rigid

optimization [11, 44, 19, 35]; however, these methods ei-

ther assume ground-truth optical flow [35], or they share

the same drawbacks of the aforementioned frame-to-frame

tracking approaches [11, 44, 19], and thus have difficulties

handling fast deformable motion.

Deformation Graphs State-of-the-art non-rigid recon-

struction methods often model deformations with a sparse

deformation graph, following the Embedded Deformation

[40] formulation. Deformation graphs offer a robust al-

ternative to dense motion estimation with optical flow or

scene flow methods, since they can estimate plausible mo-

tion even in partially occluded shape parts, when combined

with motion regularization such as ARAP [39]. Existing

non-rigid reconstruction approaches build the deformation

graph incrementally, i.e., frame-by-frame, which can lead to

unstable graph configurations in the case of tracking errors.

In our approach, we predict a globally consistent deforma-

tion graph that can represent motion in all frames of the

sequence, while being robust w.r.t. tracking errors present

in challenging frames.
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Figure 2: A Neural Deformation Graph encodes a 643 SDF grid to a graph embedding with graph node positions V, rotations

R and importance weights W. To compute an SDF value for a sample point (X,Y, Z) ∈ R
3, the point is transformed to

local coordinates around each node, and passed through locally embedded implicit functions that are represented as MLPs;

the global SDF value is computed by interpolating the local MLP predictions using the node radii r and importance weights

W. For graph regularization, a set of affinity matrices Ai ∈ R
N×N and a node-to-node distance matrix D ∈ R

N×N are

globally optimized.

Sparse motion representations are common for human

deformation modeling as well: the human skeletons used

in [28, 4] are also instances of deformation graphs. Some

works have tried to extend human skeletons to more gen-

eral objects, but with limited success. In [1], a fixed

generic skeleton is fitted to different object meshes, result-

ing in human-like re-animation of characters, but not gen-

eral enough to be able to represent all degrees of freedom of

general shapes. Fixed hierarchical deformation graphs are

used for differentiable non-rigid tracking in [43], but a pre-

computed graph template is required, with fixed connectiv-

ity on different coarseness levels. Thus, it is only applicable

to specific object types (e.g., used for hand tracking). Data-

driven skeleton prediction has been introduced in [45], but

it requires a dataset of manually designed skeletons as su-

pervision, which is hard to obtain for general objects. Our

method, instead, estimates both deformation graph nodes

and connectivity of general deformable objects in a self-

supervised manner.

Implicit Surface Representation Representing surface

geometry implicitly with a signed distance field (SDF) has

been extensively used in the non-rigid reconstruction com-

munity. An efficient algorithm for SDF grid construction

from range images has been presented in [8] and extended to

support non-rigid deformations in [32]. These methods rely

on a discretized 3D grid to store the SDF, which can cause

loss of detail, since grid resolution is limited by available

memory. A promising direction is to not use discretized

grids at all, but instead represent the SDF function continu-

ously using a multi-layer perceptron (MLP), as introduced

in [34, 36, 6]. An implicit surface representation is used

in [18] for accurate human reconstruction, where the SDF

is estimated in a canonical T-pose space. Since there ex-

ist no methods for estimation of canonical T-pose spaces

for general non-rigid shapes, we instead base our method

on the approach of Deng et al. [9]. Assuming ground-truth

dense body and skeleton tracking, they represent the hu-

man body with multiple MLPs, one for each bone and in its

own canonical space, centered around the bone, therefore

eliminating the need for a T-pose space. In our general re-

construction approach, we estimate a deformation graph via

self-supervision, and append an MLP to each deformation

node to represent the surface of the observed object.

While most implicit reconstruction approaches do not

produce consistent tracking, methods such as [13, 12, 42]

reconstruct objects in a patch-based manner and empiri-

cally observe consistency of patches across different de-

formations. We compare our method, which leverages ex-

plicit consistency constraints, to these approaches to evalu-

ate such implicit patch consistency.

3. Method

Given a sequence of signed distance fields observing a

non-rigidly deforming surface, our method estimates the

dense deformable motion in the sequence as well as recon-

structs the geometry of the observed shape. Specifically, we

apply self-supervised learning on the sequence that we want

to reconstruct. A convolutional neural network that takes a
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signed distance field (SDF) as input is trained to predict a

consistent deformation graph. We call this neural network

Neural Deformation Graph, as it implicitly stores the de-

formation graphs of each frame. Using the predicted graph

node positions and orientations, we learn implicit functions

to represent the shape of each graph node and, thus, the

entire shape of the object. The implicit functions are rep-

resented as a multi-layer perceptron (MLP). These MLPs

take a 3D point centered around the node position as in-

put and predict its signed distance value, defining the local

geometry around the node. Warping all node MLPs to ev-

ery time step and interpolating their local part reconstruc-

tion results in an accurate implicit deformable shape recon-

struction without the need for an explicit canonical pose. In

addition to the sample point locations, the MLPs are con-

ditioned on the predicted graph positions, which enables

reconstruction of pose-dependent geometry detail. Using

Marching Cubes [29], the geometry can be extracted as a

mesh at every time step, with dense correspondences esti-

mated throughout the entire sequence.

3.1. Neural Deformation Graphs

A deformation graph consists of graph nodes and graph

edges. We represent the graph nodes V of each frame of

the sequence implicitly by a neural network (Neural Defor-

mation Graph). The graph connectivity is explicitly stored

for the entire sequence as an affinity matrix E ∈ R
N×N

(N = |V|). A node v ∈ V is characterized by its 3D posi-

tion v ∈ R
3, rotation R ∈ R

3×3, importance weight w ∈ R

(describing importance of the node, explained below), ra-

dius r ∈ R (describing the spatial influence of the node),

and a local implicit shape function f . We denote the set of

node positions V = {v}, rotations R = {R}, importance

weights W = {w}, radii r = {r}, and shape functions

f = {f}, with V = (V,R,W, r, f).
To generate the signed distance fields needed for our

method, we assume four calibrated cameras. The depth

maps at each time step k are back-projected into a common

coordinate system and converted into a signed distance field

Sk of dimension 643 using static volumetric reconstruction

[22]. Note that due to occlusions this representation is par-

tial, thus only an approximate signed distance field is used

for our deformation graph prediction. Based on this in-

put, we estimate (Vk,Rk,Wk) using a Neural Deforma-

tion Graph (NDG) which is based on a 3D convolutional

neural network (see supplemental material for architecture

details):

(Vk,Rk,Wk) = NDG(Sk).

The radii r of the graph nodes as well as the graph node

affinities E are jointly optimized over the entire input se-

quence. In addition to the affinity matrix, we also store the

average edge lengths (node-to-node distances) D ∈ R
N×N ,

which are used for regularization. For every graph node, we

also optimize for a local MLP which is used to represent the

surface of the object (see Sec 3.3).

We define a fixed number of graph nodes (N = 100)

in our experiments; note that this is an upper bound on the

effective number of nodes, since the importance weights al-

low eliminating the effect of redundant nodes, making our

method applicable to shapes of different size and structure

complexity. To achieve a consistent graph node prediction

via self-supervised training, we employ the following con-

straints for each time-step k.

Graph coverage loss. A deformation graph should cover

the entire object to ensure that every deformable part can be

represented while simultaneously enforcing that free space

is not covered. To this end, we employ a loss that encour-

ages the coverage of the shape by the node centers (w.r.t.

their radii). We define the influence of a node (with posi-

tion v, radius r > 0, and importance weight w > 0) on a

point x ∈ R
3 using a weighted Gaussian function:

G(x,v, r, w) = w · exp

(

||x− v||22
r2

)

The coverage of a point x ∈ R
3 is computed by summing

the corresponding contributions of all nodes, and applying a

sigmoid to encourage a fast transition from covered (where

coverage value is 1) to free space (where coverage value

should be 0), enabling more accurate surface coverage:

C(x,Vk, r,Wk) = σ

(

s

((

∑

v,r,w

G(x,v, r, w)

)

− d

))

We empirically set d = 0.07 and s = 100.0. To compute

the coverage loss, we sample points Pun uniformly in the

shape’s bounding box and points Pns near the surface re-

gion. Points are assigned coverage value of c = 0 if they

are visible in at least one of the cameras, otherwise they are

assigned c = 1. The coverage loss then compares predicted

coverage of these point samples with the pre-computed cov-

erage using an ℓ2 loss:

Lcoverage =λun

∑

(x,c)∈Pun

||C(x,Vk, r,Wk)− c||22 +

λns

∑

(x,c)∈Pns

||C(x,Vk, r,Wk)− c||22

Node interior loss. In addition to the graph coverage loss,

we require the node positions to be predicted inside the

shape. If any node’s position v is predicted outside the

observed surface Sk, i.e., in the SDF region with posi-

tive signed distance value, we penalize it to encourage the

node’s position to be inside the surface:

Linterior =
∑

v∈Vk

max (interp(Sk,v), 0)
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Here interp(Sk,v) is the trilinear interpolation of Sk at v.

Affinity consistency loss. We also optimize for a global

affinity matrix E = {eij | i ∈ [1, N ], j ∈ [1, N ]} represent-

ing node-to-node affinities across the entire input sequence.

We compute node-to-node Euclidean distances ||vk
i −v

k
j ||2

at each frame k, and weight them by connectivity weights

eij ; this should remain consistent over the whole sequence

(relative loss, preserving edge length) and relatively small

(absolute loss, preferring close-by connections). To ensure

global distance consistency, we additionally optimize over

average node-to-node distances dij , resulting in the affinity

loss:

Laffinity =λrel

∑

i 6=j

eij

∣

∣

∣
d2ij − ||vk

i − v
k
j ||

2
2

∣

∣

∣

1
+

λabs

∑

i 6=j

eij ||v
k
i − v

k
j ||

2
2

Neighbor diversity loss. We enforce a sparse connectiv-

ity of the graph. Specifically, each node can have up to K
neighbors (K = 2 in our setting); we use a (soft) loss to

encourage these neighbors to be different. To achieve this,

we optimize over a set of matrices A1, . . . ,AK ∈ R
N×N ,

and construct E ∈ R
N×N as:

E =
1

K

K
∑

i=1

softmax(Ai)

We use softmax over the rows of matrix Ai to guarantee all

affinity elements of a node to be positive and add up to 1. To

enforce unique graph neighbors, a neighbor diversity loss

is employed, encouraging different matrices Ai to produce

different neighbors:

Lsparsity =
∑

l 6=m

||softmax(Al)⊙ softmax(Am)||2F

We use ⊙ to denote the element-wise product.

3.2. Global Deformation Optimization

We compute deformation between any pair of frames by

interpolating the nodes’ relative motions (translations and

rotations), weighted by their influences G. For a source

frame s and target frame t, the warping of point x ∈ R
3

from frame s to frame t is defined as:

Ws→t(x) =

N
∑

i=1

G(x,vs
i , ri, w

s
i )(R

t
i(R

s
i )

T(x− v
s
i ) + v

t
i)

We denoted parameters at the source frame with (·)s and

at the target frame with (·)t. We use the Embedded De-

formation formulation [40] to parameterize frame-to-frame

deformation, but instead of fixed-radius skinning we em-

ploy node influence G as the skinning weight, which en-

ables different skinning effects for every node as well as

frame-adaptive skinning, i.e., skinning can change depend-

ing on the deformation. To ensure globally consistent defor-

mation, we employ a per-frame viewpoint consistency loss

and a surface consistency loss.

Viewpoint consistency loss. Since input observations

may see very different views, we enforce a viewpoint con-

sistency loss for consistent graph node predictions across

varying views. To this end, for each frame k, the rotated

3D input Sk should produce consistent graph node posi-

tions Vk, rotations Rk and importance weights Wk. In our

experiments, we only consider view rotations around the y-

axis, since the camera setup is arranged in the x-z plane. In

each batch, we sample two random angles α and β for ev-

ery sample, and compute rotated inputs πα(Sk) and πβ(Sk)
by trilinear re-sampling of input SDF grid Sk using rotated

grid indices. Viewpoint consistency is then measured by:

Lvc = ||π−1
α NDG(πα(Sk))− π−1

β NDG(πβ(Sk))||
2
2

where the function π−1
φ corrects for the input rotation of

angle φ: π−1
φ (Vk,Rk,Wk) = (RT

φVk, R
T
φRk,Wk).

Surface consistency loss. Surface points from a source

frame s should, after deformation to a target frame t, align

well with the target frame’s SDF grid St. We sample sur-

face points Ps in the source frame and warp them to the

target frame using the predicted deformation, to trilinearly

interpolate the target grid St, encouraging surface points to

be warped to near zero (surface) SDF values:

Lsc =
∑

x∈Ps

(interp(St,Ws→t(x)))
2

This consistency loss is computed between pairs of samples

in the batch, with uniformly sampled batch samples.

3.3. Implicit Surface Reconstruction

We represent the surface of the object as an implicit

function. Specifically, each graph node i defines local ge-

ometry over the influence of that node, with an implicit

function fi, represented by an MLP. This MLP takes a

location in the local space as input and outputs an SDF

value. Any point x ∈ R
3 in the current frame k can be

transformed to the local coordinate system of node i as

W−1
k,i (x) = Penc((R

k
i )

T(x − v
k
i )). Penc : R

3 → R
F

denotes positional encoding that transforms 3D local co-

ordinates to a high-dimensional frequency domain (in our

case F = 30), as presented in [30]. Inspired by Deng et

al. [9], we condition each fi on the predicted input frame’s
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graph parameters, such that they can encode pose-specific

geometry details. We train a linear layer Πi(·) to select a

sparse pose code (of dimension D = 32) for every fi from

the graph predictions NDG(Sk). Given this input of dimen-

sion D + F , we use 8 linear layers with feature dimension

of 32, a leaky ReLU (with negative slope of 0.01) as activa-

tion function, and skip connections between the input and

the 6th linear layer.

We compute the full surface reconstruction Sk as an SDF

created from interpolating the SDF output values of each

local MLP fi, using the aforementioned skinning weights

and transformations to the current frame by the estimated

nodes’ rotations and translations:

Sk(x) =

N
∑

i=1

G(x,vk
i , ri, w

k
i )fi(W

−1
k,i (x),Πi(NDG(Sk)))

This operation is efficiently implement using group convo-

lutions. During training, we use the same point samples Pun

and Pns as for the graph coverage loss, sampled uniformly

and near the surface, but instead of the 0/1 coverage values

we use their approximate SDF values. We then optimize for

{fi} using the SDF reconstruction loss:

Lrecon =
∑

(x,sdf)∈Pun∪Pns

|Sk(x)− sdf|1

3.4. Training Details

We use the Adam solver [23] with momentum of 0.9 to

optimize the complete loss:

L = Lcoverage + λinteriorLinterior + Laffinity+

λsparsityLsparsity + λvcLvc + λscLsc + λreconLrecon

Our method is trained in two stages. We initially train the

CNN encoder with all losses except the reconstruction loss,

and afterwards train the multi-MLP network using only the

reconstruction loss, with the CNN encoder frozen.

The CNN encoder is trained for 500k iterations with a

learning rate of 5e−5 and a batch size of 16; we balance the

losses with λun = 1.0, λns = 0.1, λinterior = 1.0, λrel =
0.1, λabs = 0.1, λsparsity = 1e−8, λvc = (10.0, 1.0, 1e−4)
(for graph node’s position, weight and rotation, respec-

tively) and λsc = 1e−6. Every 50k iterations we increase

the loss weights λrel, λabs, λsparsity, λsc by a factor of 10,

up to maximum weights λmax
rel = 10000.0, λmax

abs = 1.0,

λmax
sparsity = 1e−3 and λmax

sc = 1000.0.

The multi-MLP network is trained for 500k iterations

with a learning rate of 5e−4 and a batch size of 4, only based

on the reconstruction loss with λrecon = 1.0.

4. Results

To evaluate our proposed approach, we conducted a se-

ries of experiments on real and synthetic recordings where

ground truth data is available.

Method Chamfer EPE3D

SIF [13] 1.12 8.56
LDIF [12] 2.41 10.40
OccupancyFlow [33] 53.83 16.29
Multiview DynamicFusion [32] 2.19 3.06
MV DF [32] + FlowNet3D [27] 1.93 2.55
Robust L0 Non-rigid Tracking [16] 2.31 2.50

Ours: GRAPH 0.50 8.93
Ours: GRAPH + AO 0.46 8.03
Ours: GRAPH + AO + VC 0.44 4.12

Ours: GRAPH + AO + VC + SC 0.40 1.16

Table 1: We show quantitative comparisons with state-

of-the-art approaches, evaluating geometry using chamfer

distance (×10−4), and deformation using EPE3D (×10−2).

We also include an ablation study of different components

of our method: GRAPH = coverage and interior losses,

AO = affinity optimization with affinity consistency and

sparsity, VC = viewpoint consistency, SC = surface con-

sistency.

Evaluation on Synthetic Data In order to quantitatively

and qualitatively evaluate our method, we make use of syn-

thetic human-like and character sequences from the De-

formingThings4D dataset [26]. To mimic our real data cap-

ture setup, we render 4 fixed depth views for every frame

of synthetic animation, and generate SDF grids from these

4 views. Quantitative evaluation is executed on three se-

quences, including human, character and bear motion, as

shown in Fig. 3. The geometry reconstruction is eval-

uated using L2 Chamfer distance, which computes aver-

age squared bi-directional point-to-point distance between

reconstructed and ground truth geometry for every time

step, thus evaluating accuracy and completeness of geom-

etry. For deformation evaluation, we uniformly sample 10
keyframes per sequence, and compute dense deformation

from each of these keyframes to any other frame, measuring

average L2 End-Point-Error (EPE3D) between estimated

and ground truth motion. The depth data of every sequence

is normalized such that the largest bounding box side length

is equal to 1.0. All numbers are listed w.r.t. this unit cube,

thus, being independent to the scale of the objects.

In Tab. 1 we quantitatively compare our approach to

the state-of-the-art network-based reconstruction methods

SIF [13], LDIF [12] and OccupancyFlow [33], as well as to

the non-rigid reconstruction approach DynamicFusion [32],

which we extend to the multi-view domain, and the Ro-

bust L0 Non-rigid Tracking method [16]. Among the base-

lines the best reconstruction performance (lower Chamfer

distance) is achieved by SIF [13], while the Robust L0

Non-rigid Tracking method [16] obtains better deformation
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Figure 3: We qualitatively compare our method to the baseline methods on synthetic data. Each point is given a color value

w.r.t. its location in the bounding box of the first frame. With perfect tracking and reconstruction, a specific point on the

surface will have the same color throughout the entire sequence, while errors in tracking result in changing surface colors.

Our approach outperforms state of the art in both reconstruction and deformation tracking quality.

tracking performance (lower EPE3D). Our approach out-

performs all methods on both reconstruction and deforma-

tion tracking metrics, achieving 64% better reconstruction

and 54% better deformation tracking results. The improve-

ment is also clearly visible in the qualitative comparisons

shown in Fig. 3. The methods SIF [13] and LDIF [12] pro-

duce less accurate geometry reconstruction with tracking

failures under larger deformations (e.g., flipped legs in the

human sequence). We trained Occupancy Flow [33] on our

sequences, which are noticeably longer (about 500 frames)

than the sequences the authors used (up to 50 frames), re-

sulting in worse performance. The multi-view Dynamic-

Fusion [32] baseline is a specialized framework for both

non-rigid tracking and reconstruction, with coarse-to-fine

multi-frame alignment using depth iterative closest point

(ICP) correspondences and non-rigid volumetric fusion. We

use data-driven correspondences from the off-the-shelf flow

estimator FlowNet3D [27] to further improve the method.

However, it suffers from incomplete geometry because of

the incremental graph construction and surface integration,

and can also not recover from tracking failures. In contrast,

our method is robust in the case of large deformation and

produces complete and accurate geometry reconstruction.

Evaluation on Real Data. Our real data capture setup

consists of 4 Kinect Azure sensors with hardware synchro-

nization. The cameras are calibrated with a checkerboard

using OpenCV [24] and an additional refinement procedure

based on ICP [5]. Before recording an actual sequence,

we record the background to compute the floor plane using

PCA. During capture, we filter out floor points and back-

ground points, i.e., all points outside of a cylinder with di-

ameter 1.8 m and height 2.5 m. We use the wide-field-of-

view depth capture setting with a resolution of 1024×1024
pixels, at the highest available frame-rate of 15 FPS for this

resolution. In Fig. 4, we show a comparison between the

multi-view DynamicFusion approach [32] and ours. Our

approach achieves considerably more accurate deformation

tracking (color is retrieved from the first frame) while also

producing more complete and accurate geometry recon-

struction. More qualitative results are shown in the accom-

panying video.

Ablation Study of Network Components. To evaluate

specific parts of our method, we employ an ablation study.

Specifically, we analyzed the performance of our method by

performing optimization without using certain losses: with-

out affinity related losses (affinity consistency and sparsity
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Figure 4: We show qualitative comparisons of our method with multi-view DynamicFusion [44] on real sequences captured

by four Kinect Azure sensors. Colors represent corresponding locations in the first frame of the sequence to visualize the

tracking quality and consistency.

losses), viewpoint consistency loss and surface consistency

loss. As shown in Tab. 1, using these additional losses vastly

improves the method’s performance. Especially, it results in

a much lower EPE3D error, and, thus, in globally consistent

tracking performance.

Limitations and Future Work. Using our globally con-

sistent Neural Deformation Graph, we show state-of-the-art

tracking and reconstruction quality. Currently, our quality

is limited by the input, i.e., a 643 SDF grid. Sparse 3D

convolutions [14] could be applied to cope with higher res-

olutions. Our approach focuses on the tracking and recon-

struction of the geometry, and not the texture. A texture on

top of the tracked geometry could be estimated (similar to

the color scheme that we show in the results figures) and ad-

ditional losses based on this texture could be employed. In

an over-crowded setting, with many occlusions (e.g. some

parts are never observed), or in a single-view setting, the

self-supervised formulation might be under-constrained. A

data-driven geometry prior could further improve the ro-

bustness of our approach. We believe that there is a po-

tential for several high-impact follow-up works.

5. Conclusion

We introduced Neural Deformation Graph which allows

to reconstruct and track non-rigidly deforming objects in a

globally consistent fashion. It is enabled by a neural net-

work that implicitly stores the deformation graph of the ob-

ject. The network is trained with losses on global consis-

tency, resulting in tracking and reconstruction quality that

surpasses the state of the art by more than 60% w.r.t. the

respective metrics. We believe that our global optimization

of non-rigid motion will be a stepping stone to learn data-

driven priors in the future.
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