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Abstract

Transfer learning with pre-training on large-scale

datasets has played an increasingly significant role in

computer vision and natural language processing recently.

However, as there exist numerous application scenarios

that have distinctive demands such as certain latency con-

straints and specialized data distributions, it is prohibitively

expensive to take advantage of large-scale pre-training for

per-task requirements. In this paper, we focus on the area

of object detection and present a transfer learning system

named GAIA, which could automatically and efficiently give

birth to customized solutions according to heterogeneous

downstream needs. GAIA is capable of providing power-

ful pre-trained weights, selecting models that conform to

downstream demands such as latency constraints and spec-

ified data domains, and collecting relevant data for practi-

tioners who have very few datapoints for their tasks. With

GAIA, we achieve promising results on COCO, Objects365,

Open Images, Caltech, CityPersons, and UODB which is

a collection of datasets including KITTI, VOC, WiderFace,

DOTA, Clipart, Comic, and more. Taking COCO as an ex-

ample, GAIA is able to efficiently produce models covering

a wide range of latency from 16ms to 53ms, and yields AP

from 38.2 to 46.5 without whistles and bells. To benefit ev-

ery practitioner in the community of object detection, GAIA

is released at https://github.com/GAIA-vision.

1. Introduction

Transfer learning has been one of the most powerful

techniques throughout the history of deep learning. The

paradigm of pre-training on large-scale source datasets and

finetuning on target datasets or tasks is applied over a wide

range of tasks in both computer vision (CV) and natural lan-

guage processing (NLP). The motivation behind is to endow
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(a) Comparison of models produced by GAIA, and

ResNet50 pre-trained on ImageNet and COCO to various

downstream tasks. All models share the same latency. For

MR
−2 in Caltech and CityPersons, lower is better.
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(b) Comparison of models with different latency on COCO.

Figure 1: Transfer performance of GAIA models that adapt

to various downstream needs including specified domains

and latency constraints. No whistles and bells are used.

models the general-purpose abilities and transfer the knowl-

edge to downstream tasks, in order to acquire higher perfor-

mance or faster convergence. Until recently, the influence
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of transfer learning has moved onto the next level as the

scales of data are growing exponentially. In BiT [33] and

WSL [43], pre-training on enormous data like JFT-300M

and Instagram (3.5B images) has been proved to yield ex-

traordinary improvements over the conventional ImageNet

pre-training on downstream tasks. Similar trends are going

on in NLP, as shown in BERT [17], T5 [49] and GPT-3 [6].

Although transfer learning with huge scale of pre-

training data has shown the great success, it is severely af-

flicted by its inflexibility on model architecture. As stated

in the “no free lunch” theorem [57], no single algorithm

is best suited for all possible scenarios and datasets. Dif-

ferent datasets may request for different model architec-

tures, and different application scenarios may request for

model of different scales. To take advantage of the transfer

learning, these customized models are obliged to be trained

from scratch on the whole upstream datasets, which is pro-

hibitively expensive.

This issue is even more serious in object detection, as

it is one of the most significant computer vision tasks and

covers an wide range of deployment scenarios. In practice,

detectors are always supposed to work across various de-

vices with distinctive resource constraints, which requires

detectors to have corresponding input sizes and architec-

tures. In addition, the correlation between distributions of

object scales and the adapted network architectures are very

close in object detection. Therefore, the demand for task-

specific architecture adaptation is much stronger in object

detection than other tasks such as image classification or

semantic segmentation.

In this paper, we introduce a transfer learning system in

object detection that aims to harmonize the gap between

large-scale upstream training and downstream customiza-

tion. We name this system “GAIA” as it could swiftly

give birth to a variety of specialized solutions to hetero-

geneous demands, including task-specific architectures and

well-prepared pre-trained weights. For users who have very

few datapoints for their tasks, GAIA is able to collect rele-

vant data to fuel their needs. Our objective is not to propose

a specific method, but more to present an integrated system

that brings convenience to practitioners in the community

of object detection. There are two components in GAIA:

task-agnostic unification and task-specific adaptation.

To begin with, we conduct the task-agnostic unification

on data and architectures respectively. In order to unleash

the potential of transfer learning, we collect data from mul-

tiple sources and build a huge data pool with a unified label

space. The unified label space is formulated based on the

word2vec similarity, which prevents knowledge conflicts

among duplicated categories from distinctive sources and

enables data of relevant categories to jointly boost the per-

formance of detector. Besides, covering a wide range of cat-

egories provides indicators for task-specific adaptation. To

realize the purpose of training plenty of models efficiently

on huge upstream data, we adopt the weight sharing scheme

which has been widely used in [39, 5, 48, 30, 64, 8, 65],

which enables models of different widths and depths to be

optimized together. As models may interfere with each

other during collective training, we propose an “anchor-

based progressive shrinking” to alleviate the problem.

In the task-specific adaptation procedure, GAIA needs

to find adapted model architectures according to the given

tasks. We quantitatively assess the ranking ability of differ-

ent search methods based on the Kendall Tau measure [32]

and propose an efficient and reliable method of selecting

models that surprisingly fit the downstream task, regardless

of data domains or latency constraints (Figure 1). To extend

the utility of GAIA on the ubiquitous data-scarce scenar-

ios, we develop GAIA an ability of collecting relevant data

to downstream tasks from data pool, which yields further

improvements.

The contributions of our paper are as follows:

• We demonstrate how transfer learning and weight shar-

ing learning could be well combined, to produce pow-

erful pre-trained models over a variety of architectures

simultaneously.

• We propose an efficient and reliable approach of find-

ing the adapted network architectures to specified

downstream tasks. Powered by pre-training and task-

specific architecture selection, GAIA achieves surpris-

ingly good results over 10 downstream tasks without

exclusive tuning on hyper-parameters.

• GAIA has the capability of finding relevant data based

on 2 images per category in the downstream tasks to

support finetuning. This further extends the utility of

GAIA in data-scarce settings.

2. Related Work

2.1. Object Detection

Beginning with R-CNN [24] and its predecessors like

Fast-RCNN [23] and Faster-RCNN [52], deep learning

grows prosperously in the area of object detection. A great

amount of methods are proposed to advance the area, in-

cluding Mask RCNN [28], FPN [36], DCN [15] and Cas-

cade RCNN [10]. Since it has been years that the most

researches are conducted on Pascal VOC or MS-COCO

datasets, which are viewed as “small data” by modern stan-

dards, there are researchers begin to explore on more chal-

lenging issues such as cross-domains object detection or

large-scale object detection in the wild. Wang et al. [3] de-

velop an universal object detection system that works across

a wide range of domains including traffic signs to medical

CT images. With the advent of larger datasets of object

detection such as Objects365 [53], Open Images [34], and

Robust Vision [1], there are works [46] focusing on solving
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issues in this scenarios such as long-tailed data distribution

and multi-labels problems.

2.2. Neural Architecture Search

Neural architecture search(NAS) aims at automating the

architecture of network design process under certain con-

straints. Earlier methods [68, 69, 4, 7] train thousands of

candidate networks with distinctive architectures and rely

on reinforcement learning or evolution algorithm to dis-

cover the optimal architectures. These methods mostly re-

quire unimaginably huge computation resources and seem

forbidding for most research institutions. Gradient-based

methods like DARTS [39] and Proxyless [9] come out that

greatly alleviate the problem through training and searching

candidate architectures inside a single super-net. However,

in real world that heterogeneous tasks exist, these methods

requires repetitive searching and training process for each

task according to the specified hard-ware platforms and la-

tency constraints. To address this issue, researchers further

propose methods [64, 8, 65] that are to produce models

across different inference latency all at once. As in area

of object detection, NAS methods also spring up such as

[13, 47, 22, 55].

2.3. Transfer Learning

Transfer learning has been playing a non-negligible role

throughout the history of deep learning. The paradigm

of pre-training on ImageNet [16] dataset has immensely

pushed forward the development of computer vision, cov-

ering a wide range of tasks such as object detection [24, 23,

52, 41, 37, 50],semantic segmentation [42, 11], pose estima-

tion [56] and etc. Recently, there are studies [54, 43, 60, 33]

focusing on transfer learning on larger scale of data such

as JFT-300M and Instagram (3.5B images). With the help

of weakly supervised learning [43], knowledge distilla-

tion [60] and supervised learning [33], surprisingly good

results are achieved. As in object detection, [53, 35]

also prove the effectiveness of large-scale data. In ad-

dition to transfer pre-trained models, there are methods

transferring data directly. In [25, 2], the authors show

that more in-domain data could benefit diverse NLP tasks.

In [14, 62, 26], extra similar data is selected to provide

better pre-trained models. Domain transfer by adversarial

training [31] also mitigates the lack of target data.

3. GAIA

We introduce GAIA, a transfer learning framework, and

its detailed implementation in this section. GAIA con-

sists of two major components: task-agnostic unification

and task-specific adaptation. In the task-agnostic unifica-

tion part, we collect data from multiple sources and build

a large data pool with a unified label space. Then we uti-

lize the technique of weight sharing learning for training

a supernet, which enables models of various architectures

to be optimized collectively. In the task-specific adapta-

tion part, GAIA search a most adapted architecture for the

given downstream task, initialize the network with weights

extracted from the pre-trained supernet, and finetune it on

the downstream data. We call this process “task-specific ar-

chitecture selection” (TSAS). In addition, to help with users

who have very few datapoints for their tasks, GAIA is able

to collect the most correlated data to the given tasks from

the huge data pool as relevant data. We call this ability of

GAIA as “task-specific data selection” (TSDS).

3.1. Taskagnostic Unification

3.1.1 Unified Data and Label Space

Although steady progresses have been made in distinctive

datasets, they are independent of each other and often re-

stricted to specific domains [1]. Therefore, to push for-

ward real-world usability of an object detection system

and reduce dataset bias, we merge multiple datasets into a

huge data pool with a unified label space ∪L.We start with

N datasets D = {d1, d2, · · · , dN} and their label spaces

L = {l1, l2, · · · , lN}. Each label space li consists of the

categories {ci1, ci2, · · · , ci|li|} corresponding to dataset di.

To obtain the unified label space, we first choose the largest

label space among L as the initial ∪L = {c∪1, c∪2, · · · }.

Then we map other label spaces into ∪L. We mark the p-th

category cip from dataset di as an identical category to c∪q

if their word2vec [51] similarity is higher than a threshold

of 0.8. If there is no similarity greater than 0.8 for cip, we

mark it as a novel category and append cip into ∪L. Finally,

all candidate mappings would be verified for reliability.

In the follow-up development, the unified label space

is unique but not static as GAIA has the will to cover as

many datasets as possible. When an unseen dataset needs

to be merged, we repeat the label space mapping process

as mentioned above. To fit the pre-trained network to the

updated label space, the last fc layer extends corresponding

new ways while the others remain unchanged.

Using this unified label space rather than training with

multiple heads or separate label definitions, reduces the

cost of dataset combination and mitigates the potential con-

flicts between duplicate categories. More importantly, it

enables GAIA to provide the indicators for diverse down-

stream tasks; otherwise, it is impractical to obtain a reliable

measure for novel datasets. The unified label space may in-

troduce long-tail and partial annotation problems as claimed

in [67]. Nevertheless, we note that these problems barely

influence the downstream finetuning in our experiments.

3.1.2 Unified Architecture Training

The search space of supernet in GAIA consists of network

depth, layer width, and input scale, which are factors mostly
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Figure 2: Model ranking in different settings. (a) and (b) show the ranking of models with different and similar FLOPs

respectively. (c) shows the ranking of “fast-finetuned” models with similar FLOPs but different input scales and depths.

correlated with computation budgets. We follow the regime

of weight sharing learning mentioned in [65], that only lay-

ers and channels of the lower index are kept when sampling

subnets out of supernet. In this way, models of different ar-

chitectures could be optimized collectively. However, there

exists a disturbing problem about weight sharing learning,

that different sub-networks are interfering with each other

throughout the training process of supernet.

To mitigate the problem, a method named progressive

shrinking (PS) is proposed in OFA [8], that the search space

is gradually loosed, from kernel size to depth, and finally

to width. Although it has shown significant effectiveness in

task of image classification, it seems not to fit well in ob-

ject detection. The reason underlying has been mentioned

in previous works [40, 15] that the effective receptive field

of network matters in object detection, thus a reasonable

search space is required to cover a wide range of network

depth. The regime that shrinks search space in order of dif-

ferent aspects might not be able to alleviate the interference

among models with huge variation in depth, as in this pa-

per the depth of a single stage may vary from 12 to 87. In

addition, it is crucial to keep a good compatibility between

input scale and depth as mentioned in [55] when sampling

models during upstream training.

Taking these understandings into consideration, we pro-

pose a training scheme named anchor-based progressive

shrinking (ABPS) that shrinks multiple search dimensions

step by step. To begin with, we select a model anchor and

build a subordinate search space surrounding it while keep-

ing the basic compatibility of depth and input scales. After

training for a while, we shrink the model anchor, then fine-

tune on the new search space surrounding the model anchor.

We repeat the process several times until the entire search

space covers a wide latency range.

3.2. Taskspecific Adaptation

3.2.1 Task-specific Architecture Selection (TSAS)

After training supernet on the unified data pool, one needs

to select high-quality models based on domains of interests

and constraints on computation budgets. There two reasons

making the architecture selection difficult: First, evaluat-

ing more than 300K candidates on each downstream task is

prohibitively expensive. Besides, directly evaluate models

sampled from supernet may not reflect the true quality of

architecture , which is an avoided issue in methods [65, 8].

In this part, we delve into the model ranking correlation and

seek for a reliable selection regime that exhibits strong rank-

ing ability. The Kendall Tau [32] index is applied to analyze

the ranking correlations quantitatively.

To begin with, we focus on how the ranking correlation

behaves among models with different FLOPs, as in most

cases, models with larger FLOPs tend to have better preci-

sions if they share similar architecture. Given a search space

surrounding a randomly picked model anchor, we split sub-

nets into groups based on BFLOPs, and study the model

ranking across different FLOPs. In each group, we ran-

domly evaluate 100 models and pick the best-performing

models as the representative. We finetune these models with

the standard 1× scheduler and take the results as ranking

references. Then we apply a 0.2× “fast-finetuning” sched-

uler on them and compare the ranking ability with direct

evaluation. As shown in Figure 2a, the correlations between

results of direct evaluation and 1× are extremely weak and

the Kendall Tau is only 0.18, while fast-finetuning dramat-

ically strengthen the correlations and the Kendall Tau is

boosted from 0.18 to 0.85. Similar phenomenon is ob-

served when models share the similar FLOPs, as shown in

Figure 2b. Thus in GAIA, we rely on results of the fast-

finetuned models as indicators for model selection instead

of the direct evaluation results, which are totally unreliable.

Since applying fast-finetuning on 300K models is still

costly, we need to narrow down the search space to a

tiny but instructive one. To this end, we randomly sam-

ple models of different input scales and depths around a

fixed FLOPs, and apply the fast-finetuning to find the de-

cisive factors. As illustrated in Figure 2c, models with the

same input scales and depths tend to attain similar preci-

sions while models with either different input scales or dif-

ferent depths have more diverse precisions. Thus in GAIA,
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Figure 3: Visualization of output features in fc7 layer from

GAIA using t-SNE. We take person category as an example

and sample 1000 images for each dataset. The color repre-

sents the dataset for each image.

we apply a two-step search scheme to robustly find high-

quality models. In the first step, we randomly sample K

(usually 5) models as a group for each combination of input

scales and total depths in each sub search space while keep

these models satisfying the given constraints. We directly

evaluate these models and pick the best-performing model

in each group. In the second step, we keep the top 50%
models among the picked, fast-finetune them and select the

best architecture based on the fast-finetuning results.

3.2.2 Task-specific Data Selection (TSDS)

Since GAIA has been able to produce a series of supe-

rior architectures according to downstream tasks, we nat-

urally want to take a step further: Is it possible that GAIA

could select relevant data to support downstream tasks even

more? This is particularly favorable in data-scarce scenar-

ios where very few datapoints are available for the tasks.

Given massive upstream datasets Ds and a specific down-

stream dataset Dt, data selection aims to find the subset

D∗
s ∈ P (Ds), where P (Ds) is the power set of Ds, such

that D∗
s minimizes the risk of a model F on the task dataset

Dt:

D∗
s = argmin

D∗

s
∈P(Ds)

EDt
[F (Dt ∪D∗

s)] , (1)

where F (D∗
s ∪Dt) denotes the model F trained on the

union of Dt and D∗
s , the EDt

denotes the risk on the val-

idation set of Dt.

Ideally, using more data yields better performance. How-

ever, the assumption does not always stand in transfer learn-

ing scenario due to the domain gap. The task relationship

could be roughly divided into three types: positive correla-

tion, negative correlation, and unrelatedness. If the domain

between the source and target tasks are similar, the relation-

ship tends to be positive. If two tasks are dissimilar, the

source task may not boost the target task, even hurt the per-

formance. Hence, the essential problem is how to close the

gap between two tasks. Some works focus on adversarial

training [12] and data synthesis [31], while we turn to ex-

ploit the large-scale public object detection datasets by data

selection.

We find that models of GAIA under large-scale pre-

training implicitly learn the domain representation in both

upstream and downstream datasets, suggesting that it is

possible to measure the domain similarity. We visual-

ize the output features of person in fc7 layer from GAIA

in Figure 3, and the following characteristics can be ob-

served. First, features from common datasets like COCO,

Objects365, and Open Images, are apt to occupy diverg-

ing space, while features from specific datasets like Cal-

tech, CityPersons, Comic, and Watercolor usually lie in

a small and compact space respectively. Second, feature

spaces of similar datasets are close to each other. For in-

stance, the Comic shares almost the same space with Water-

color. Third, there are noticeable overlaps of feature space

between common and specific datasets, indicating that com-

mon datasets may contain similar data as those in specific

datasets.

With the ability of domain clustering powered by GAIA,

we propose to produce the D∗
s by data selection. To be

specific, for each image in Ds = {Is1, Is2, · · · , IsP } and

Dt = {It1, It2, · · · , ItQ} we compute a represent vector for

its every category, where P and Q are the number of images

in Ds and Dt, respectively. Those categories are defined in

the unified label space ∪L = {c∪1, c∪2, · · · }. For each im-

age and each category, the represent vector V (Ii, c∪p) could

be obtained by averaging the output features in fc7 layer

from all instances. Then we find the most relevant data for

each category by using two alternative strategies based on

the cosine distances between V (Isi, c∪p) and V (Itj , c∪p):

• top-k. Choosing top-k images from Ds for each Itj .

• most-similar. Retrieving the most similar images in

all P ×Q relation pairs.

We collect relevant images until the total number meets the

expectation, for instance, |D∗
s | = 1000.

4. Experiments

4.1. Datasets

Upstream Datasets. GAIA is trained on the union of

Open Images [34], Objects365 [53], MS-COCO [38], Cal-

tech [18], and CityPersons [66] under the unified label

space. Open Images, Objects365, and MS-COCO are the

common detection datasets, containing 500, 365, and 80
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categories, respectively. We use the Open Images 2019

challenge split with 1.7 millions images as train set and 40k

images as validation. For Objects365, following the official

protocol, we use 600k for training and 30k for validation.

For COCO, following the standard protocol, 115k subset

is used to train, and 5k is used as minival. Caltech and

CityPersons are two specific datasets for pedestrian detec-

tion, containing 42k and 3k train set, 4k and 0.5k validation,

respectively. These upstream datasets result in a unified la-

bel space with 700 categories.

Table 1: Setting of search space that surrounds different

model anchors. Each architecture parameter is sampled

from minimum to maximum with certain step. W [0] de-

notes the width of the network stem.

AR50 AR77 AR101

Dmin [2,2,4,2] [2,2,11,2] [2,2,17,2]

Danchor [3,4,6,3] [3,4,15,3] [3,4,23,3]

Dmax [4,6,8,4] [4,6,19,4] [4,6,29,4]

Dstep [1,2,2,1] [1,2,4,1] [1,2,6,1]

Wmin [32,48,96,192,384]

Wanchor [64,64,128,256,512]

Wmax [64,80,160,320,640]

Wstep [16,16,32,64,128]

Smin 400 480 560

Sanchor 560 640 720

Smax 720 800 880

Sstep 80 80 80

Downstream Tasks. We conduct extensive experiments

on Universal Object Detection Benchmark (UODB) [3].

Note that UODB is not used in upstream training phase

and consists of 10 diverse sub-datasets: Pascal VOC [19],

WiderFace [63], KITTI [20], LISA [44], DOTA [59], Wa-

tercolor [31], Clipart [31], Comic [31], Kitchen [21] and

DeepLesions [61]. We follow the official data split and met-

ric for all above datasets. Details of each dataset are docu-

mented in the Supplementary Material section A.

4.2. Implementation Details

4.2.1 Architecture Space

In all experiments, we use the Faster RCNN [52] with

FPN [36] as the base framework. ResNet [29] is adopted as

the network prototype in GAIA, and both the task-agnostic

unification and task-specific adaptation are applied on it.

The reason for choosing ResNet is that ResNet is still the

most paradigmatic network architecture in object detection

and is especially popular in real-world applications. For

anchor-based progressive shrinking (ABPS) during training

stage, we choose 3 model anchors in our experiments for

simplicity and the corresponding search spaces are shown

in Table 1. We refer to these model anchors as AR50, AR77

and AR101. In each iteration during training, we randomly

pick an available model that obeys one of the prescribed

rules in search space for optimization. The rules includes:

models with the maximum depth, models with the mini-

mum width and other likenesses. Details of more prescribed

rules are shown in the Supplementary Material section B.

4.2.2 Upstream Training

The training of the supernet starts with AR101 for 24

epochs, then the search space shrinks to AR77 and finally

to AR50, and we finetune each search space for 13 epochs.

Each time we shrink search space, we add a single epoch of

warm-up which is essential. We follow the training setting

defined in Detectron2 [58] except the input scales are ad-

justed to [Smin : Sstep : Smax] for each sub search space.

By convention, no other data augmentation is applied ex-

cept the standard horizontal flipping. The initial learning

rate is set 0.00125 per image and is decayed by a factor of

10 at 16 and 21 epoch. For finetuning in the shrunk search

space, the learning rate restarts with the initial value and is

decayed by a factor of 10 at 8 and 11 epoch. The supernet

of GAIA is trained from scratch, thus we apply the sync-

BN which is essential as proved in [27]. We use SGD to

optimize the training loss with 0.9 momentum and 0.0001

weight decay. IoU-sampling [45] is applied to make sure

that subnets could learn balanced knowledge across object

scales. Since the supernet of GAIA are trained to learn a

great number of categories, we find that the gradients de-

rived from class-specific supervision are diluted over time

compared to that from class-agnostic supervision. To alle-

viate the issue, we multiply the loss weights of head by a

factor of 5.

4.2.3 Downstream Fine-Tuning

Given a downstream dataset and categories of interests, we

apply the TSAS to find the most appropriate architecture

and extract corresponding weights from supernet. Besides,

we conduct a weight surgery on the weights of the last fc

layer in head to focus on related categories. For categories

included in the unified label space of GAIA, we keep the

pre-trained weights. For categories that are not in the label

space, we find their closest neighbors based on the word

vectors, and take the weights for initialization.

The initial learning rate of downstream finetuning is set

0.0001875 per image and is decayed by a factor of 5 after

8 and 11 epoch. We train for 13 epochs in total and all

the other configuration is consistent with the training setting

of supernet. As for the fast-finetuning in TSAS, we use a

warm-up for one epoch and train for 2 epochs. The initial

learning rate of downstream finetuning is set 0.0001875 per

image and is decayed by a factor of 10 after the first epoch.

4.3. Results on COCO Dataset

Taking COCO dataset as an example, we demonstrate

how GAIA is capable of generating high-quality mod-
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Table 2: Results of models with different FLOPs on COCO minival. All models are trained with 1× scheduler if not specified.

Models with “*” are trained with 3× scheduler. The FLOPs is calculated with input size of [3,Scale,Scale], and the latency

is measured on the entire validation set of COCO on V100 with batchsize of 1.

Group Pre-train Scale Depth Width FLOPs Latency AP AP50 AP75 APS APM APL

ResNet50
ImageNet

800 [3,4,6,3] [64, 64, 128, 256, 512] 137.4B 39ms 37.08 59.52 39.74 22.63 40.92 46.51

ResNet101 800 [3,4,23,3] [64, 64, 128, 256, 512] 188.5B 51ms 39.41 61.62 43.04 24.42 43.61 50.53

ResNet50∗
ImageNet

800 [3,4,6,3] [64, 64, 128, 256, 512] 137.4B 39ms 39.78 60.47 42.23 23.27 42.57 50.04

ResNet101∗ 800 [3,4,23,3] [64, 64, 128, 256, 512] 188.5B 51ms 41.75 62.24 45.77 25.28 45.61 54.39

ResNet50
GAIA

800 [3,4,6,3] [64, 64, 128, 256, 512] 137.4B 39ms 42.91 64.43 47.12 28.01 47.07 53.81

ResNet101 800 [3,4,23,3] [64, 64, 128, 256, 512] 188.5B 51ms 46.07 67.28 50.64 29.31 50.45 58.50

30-45B

GAIA

400 [4,4,8,4] [48,48,96,192,384] 44.3B 17ms 38.21 58.73 40.62 18.15 42.18 54.79

45-60B 480 [4,6,8,4] [48,48,96,256,384] 59.4B 19ms 40.44 61.07 43.77 21.65 43.66 55.96

60-75B 560 [4,6,15,4] [48,80,96,192,512] 74.4B 26ms 42.59 64.01 46.07 24.82 46.78 57.42

75-90B 560 [4,6,21,4] [64,80,96,192,512] 88.1B 28ms 43.60 64.81 47.34 24.97 47.85 58.62

90-105B 560 [4,6,21,4] [64,80,160,192,512] 101.1B 30ms 44.05 65.15 47.91 25.55 48.69 59.09

105-120B 640 [4,6,21,4] [64,80,160,192,512] 119.2B 33ms 44.46 65.71 47.49 26.77 48.31 57.21

120-135B 720 [3,4,23,3] [64,64,128,192,640] 133.9B 38ms 45.27 66.64 49.47 27.97 49.44 57.89

135-150B 800 [4,6,23,3] [48,48,96,192,640] 149.1B 44ms 45.55 66.89 50.08 28.96 49.94 58.01

150-180B 800 [3,4,23,3] [64,64,96,256,512] 178.7B 47ms 46.02 67.40 50.52 28.80 50.37 59.01

180-210B 880 [3,4,25,4] [48,48,96,256,384] 209.8B 53ms 46.41 67.98 50.88 29.83 50.83 58.32

Table 3: Results of models with different whistles and bells on COCO minival. All models are trained with 1× scheduler.

“ImageNet” and “GAIA” denote the pre-training datasets respectively. The architecture of GAIA-TSAS in table is {D:

[4,6,23,3], W :[48,48,128,192,384], S: 800}.

Backbone ImageNet GAIA DCN Cascade-Head AP AP50 AP75 APS APM APL Latency

ResNet50

X 37.0 59.5 39.7 22.6 40.9 46.5
39ms

X 42.9 64.4 47.1 28.0 47.1 53.8

X X 40.8 63.7 44.3 25.6 44.4 52.3
44ms

X X 44.8 66.4 49.2 29.0 48.6 57.3

X X 40.9 59.7 44.4 24.1 44.5 52.3
47ms

X X 45.8 64.6 50.1 29.7 49.6 58.4

X X X 44.9 64.8 49.2 27.2 49.2 59.4
53ms

X X X 47.9 66.9 52.6 31.7 51.5 61.9

GAIA-TSAS X X X 49.1 68.0 54.0 30.5 53.4 65.0 55ms

Table 4: Results of GAIA on other upstream datasets using

ResNet50. We follow the official protocol, i.e., mmAP for

Objects365, mAP for Open Images, and MR−2(Miss Rate,

lower is better) for Caltech and CityPersons. “TSAS” de-

notes that an architecture with similar latency as ResNet50

is applied.

Dataset
Pre-train

TSAS Metric
ImageNet GAIA

Objects365

X 21.5

X 24.0

X X 26.1

Open Images

X 52.2

X 59.5

X X 62.4

Caltech

X 5.5

X 2.2

X X 1.7

CityPersons

X 14.7

X 11.1

X X 10.4

els powered by data unification and architecture adapta-

tion. First, we compare the results of the vanilla ResNet50

and ResNet101 trained with different weight initializa-

tion. As shown in Table 2, models with GAIA pre-

training yield huge improvements over models with Im-

ageNet pre-training, which is 5.83% for ResNet50 and

6.66% for ResNet101. Since the data of COCO dataset

are included in the data pool of supernet, we also compare

the results of GAIA with models trained for 3× with Ima-

geNet pre-training for fairness. The improvements are still

considerable(+3.23% and +4.22%), indicating that data

from other sources are of great help. With the help of TSAS,

the improvements are further boosted to 5.49% and 4.66%.

In addition, GAIA is able to produce models across a

wide latency range efficiently. Since there are no pre-trained

weights for models other than ResNet50 and ResNet101,

models with customized architecture are obliged to be

trained from scratch. Within 1× the training time, models

trained from GAIA outperform models trained from scratch

12.67% on average as shown in Figure 1b.

We also conduct experiments to see whether models gen-

erated from GAIA are compatible with whistles and bells.

We select DCN [15] and Cascade-RCNN [10] which are

two of the most effective methods in object detection. As
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Table 5: Results of GAIA on UOBD datasets. † stands for our re-implemented baseline. “COCO” and “GAIA” denote the

pre-training datasets, respectively.

Method KITTI VOC WiderFace LISA Kitchen DOTA DeepLesion Comic Clipart Watercolor Avg.

Baseline [3] 64.3 78.5 48.8 88.3 87.7 57.5 51.2 45.8 32.1 52.6 60.7

DA [3] 68.0 82.4 51.3 87.6 90.0 56.3 53.4 53.4 55.8 60.6 65.9

Baseline† 67.1 81.5 62.1 90.0 89.5 68.3 57.4 45.5 31.2 53.4 64.6

COCO 70.2 84.2 61.4 88.6 88.7 64.7 52.4 51.6 56.9 56.1 67.5

GAIA 72.9 85.9 62.6 91.2 89.8 69.2 59.4 57.0 67.9 63.5 71.9

GAIA-TSAS 75.6 87.4 62.7 92.1 90.1 70.8 62.1 61.1 72.2 69.7 74.4

Table 6: Results of task-specific data selection (TSDS).

Three strategies, including random, top-k, and most-similar,

are used.

pre-train TSDS KITTI Comic Watercolor Average

COCO - 44.9 36.4 45.3 42.2

GAIA

- 45.4 46.9 51.1 47.8

random 40.3 46.1 49.9 45.4

top-k 46.7 48.0 51.2 48.6

most-similar 48.6 48.2 53.6 50.1

displayed in Table 3, the gain from GAIA is congruent with

these methods. With the help of TSAS, we achieve an AP

of 49.1% with only 1× scheduler while keeping the latency

almost unchanged.

4.4. Results on Other Upstream Datasets

We also provide the results in other seen datasets in Ta-

ble 4. Objects365, Open Images, Caltech, and CityPersons

are parts of the pre-training datasets for GAIA. We build

their baseline from widely-used ImageNet pre-training, and

train them individually until they converge and the perfor-

mances stop growing. Then we apply downstream finetun-

ing for all datasets from GAIA pre-training. We find that

GAIA outperforms the baseline in these four datasets by

2.5%, 8.8%, 3.3%, and 3.6%, respectively. The significant

improvement in Open Images is mainly caused by the gain

from those long-tail categories. Moreover, with the ability

of task-specific architecture selection (TSAS), GAIA yields

additional 0.5% ∼ 2.9% improvements. Detailed compar-

isons with state-of-the-art are available in the supplemen-

tary material.

4.5. Transfer Learning on Downstream Datasets

To evaluate the generalizability of GAIA, we conduct ex-

periments on downstream datasets from UODB [3]. Table 5

reports the mAP and GAIA shows great success on various

datasets. It can be seen that our re-implemented ImageNet

pre-trained baseline achieves 64.6% mAP on average which

is 3.9% higher than the UODB baseline, and the COCO

pre-training brings 2.9% improvements. Therefore, these

counterparts are strong enough to validate the effectiveness

of GAIA. Empowered by the unified label space and large-

scale dataset pre-training, GAIA can steadily improve the

performance by 4.4% on average. Furthermore, TSAS of

GAIA yields another 2.5% improvements overall.

4.6. Data Selection for Datascarce Scenarios

In this section, we evaluate our proposed task-specific

data selection (TSDS) in few datapoints settings. From

the unseen UODB data source, we pick three datasets with

small label space for convenience. We start our investiga-

tion with 10 images per datasets as the baseline. The images

are randomly sampled from the corresponding dataset while

making each category have at least 2 images. As shown in

Table 6, the average mAP of GAIA without TSDS outper-

forms the COCO pre-trained baseline by 5.6%. With data

selection strategies, it is obvious that choosing relevant data

is crucial. Randomly selecting data is harmful to the per-

formance because it introduces much out-domain data and

disturbs the target domain learning. It is also nice to see that

top-k and most-similar strategies bring additional gains by

0.8% ∼ 2.3% on average, showing the benefit of large-scale

pre-trained GAIA for the data selection.

5. Conclusion

In this work, we revisit the efficacious generalizability

of transfer learning and its limitation to downstream cus-

tomization, and harmonize the gap between generalist and

specialist models. We present a transfer learning system

named GAIA, which could automatically and efficiently

give birth to specialized solutions according to heteroge-

neous downstream needs. Constructing GAIA involves a

heavy workload, thus it leaves much space for future work

to make it better. It could also be extended to more archi-

tectures like MobileNetV3, more frameworks like GAIA-

YOLO, and more vision tasks like GAIA-Seg. In the end,

we sincerely hope that our work could substantially help

more practitioners in the community of object detection.
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