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Abstract

We consider the challenging blind denoising problem for

Poisson-Gaussian noise, in which no additional information

about clean images or noise level parameters is available.

Particularly, when only “single” noisy images are avail-

able for training a denoiser, the denoising performance of

existing methods was not satisfactory. Recently, the blind

pixelwise affine image denoiser (BP-AIDE) was proposed

and significantly improved the performance in the above

setting, to the extent that it is competitive with denoisers

which utilized additional information. However, BP-AIDE

seriously suffered from slow inference time due to the inef-

ficiency of noise level estimation procedure and that of the

blind-spot network (BSN) architecture it used. To that end,

we propose Fast Blind Image Denoiser (FBI-Denoiser) for

Poisson-Gaussian noise, which consists of two neural net-

work models; 1) PGE-Net that estimates Poisson-Gaussian

noise parameters 2000 times faster than the conventional

methods and 2) FBI-Net that realizes a much more efficient

BSN for pixelwise affine denoiser in terms of the number

of parameters and inference speed. Consequently, we show

that our FBI-Denoiser blindly trained solely based on single

noisy images can achieve the state-of-the-art performance

on several real-world noisy image benchmark datasets with

much faster inference time (×10), compared to BP-AIDE.

1. Introduction

Convolutional neural network (CNN)-based denoisers

achieved impressive state-of-the-art denoising performances

mainly by utilizing the supervised learning approach based

on collecting many clean and noisy image pairs. The perfor-

mance gain was first shown in the additive white Gaussian

noise setting [47, 42, 48, 26, 36, 14], then the approach was

extended also to the Poisson-Gaussian noise setting, which

better models the real-world source-dependent noise. It was
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demonstrated that the gain was attained not only with respect

to the quantitative metrics, e.g., PSNR or SSIM [44], on the

real-world noise benchmarks such as DND [35], SIDD [3]

and FMD [49], but also with respect to the inference time for

denoising (using GPUs), compared to the more conventional

prior- or optimization-based methods [17, 21].

Despite above promising achievements, the plain super-

vised learning approach has a critical drawback in a more

practical, real-world setting, since the availability of the

enough number of the clean-noisy images pairs for training

is sometimes a luxury that cannot be simply assumed. For

example, in medical imaging (CT or MRI), obtaining the un-

derlying clean image for a noisy image becomes extremely

time-consuming and expensive. In order to overcome this

drawback, several attempts have been made in recent years.

The first approach is to utilize unpaired clean images and

generate synthetic noisy images to again carry on the su-

pervised training with the generated pairs. For example, in

[7, 46], based on in-camera signal processing (ISP) pipeline

and specific Poisson-Gaussian noise parameters, they gener-

ated synthetic noisy sRGB or rawRGB images from clean

sRGB images. Another examples can be found in [45, 16], in

which they learned a model to generate noise present in the

given noisy images, then used that model to corrupt the clean

images to build paired supervised training set. While these

approaches were shown to achieve good performance for

some specific settings, they either lack generalities or have

limited performance for real-world noisy image denoising.

The second recent approach to remove the requirement of

clean-noisy pairs is to train a denoiser solely based on noisy

images [25, 23, 6, 24, 38, 34, 13, 41]. However, those meth-

ods also had their own limitations, such as requiring pairs

of independently realized noisy images for the same clean

source [25, 50], poor performance on benchmark datasets

[23, 6], large inference time due to requiring many number

of samplings [38], or limited or no experiment on real-world

noise setting [24, 34, 41, 50, 13].

Recently, BP-AIDE [10], which extends the framework

of [12, 11], was proposed as another attempt to lift the re-

quirement of clean images. Namely, the scheme made a
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unique combination of Generalized Anscombe Transforma-

tion (GAT) [5], Poisson-Gaussian noise estimation [28, 20],

and an unbiased estimator of MSE for pixelwise affine de-

noisers proposed in [11] in order to train a blind denoiser

for Poisson-Gaussian noise solely on single noisy images

with no additional information. The method achieved the

state-of-the-art performance on several benchmarks for real-

world noise [49, 3, 35] compared to the methods [23, 17]

that operate in the identical setting. However, BP-AIDE

had one critical limitation; it suffers from the slow infer-

ence time due to the following two reasons. First, for every

given noisy image, BP-AIDE must separately carry out the

Poisson-Gaussian noise parameter estimation, which usu-

ally takes a couple of seconds for moderately sized images.

Second, the method simply utilizes the so-called blind-spot

network (BSN) architecture proposed in [12] as a denoiser,

but the corresponding structure is quite complex and requires

large GPU memory, leading to a slow inference time.

To tackle above limitation, we make two significant im-

provements on BP-AIDE and propose Fast Blind Image

Denoiser (FBI-Denoiser). Firstly, we propose PGE (Poisson-

Gaussian Estimation)-Net, which learns to estimate the

Poisson-Gaussian noise parameters solely from noisy im-

ages by converting GAT and Gaussian noise estimation steps

to tensor operations and by proposing a novel loss function.

Secondly, we devise FBI-Net, a new compact fully convolu-

tional BSN, which performs almost the same as the network

in [12] but significantly reduces the inference time. The

FBI-Denoiser is trained in two steps; first train PGE-Net

with noisy images, then train FBI-Net again with the same

noisy images and the outputs of PGE-Net, following the pro-

cedures of BP-AIDE. As a result, we significantly improve

the inference time of BP-AIDE (×10 speed-up) as well as

achieve the state-of-the-art blind denoising performance on

real-world noise benchmarks [49, 3, 35].

2. Related Works

Neural network based blind image denoising As men-

tioned above, several blind image denoisers are proposed

to resolve the issue of the dependence on clean images

for training. Table 1 summarizes and compares the set-

tings of recently proposed schemes. A variety of schemes

[24, 41, 33, 34, 13, 50] were proposed, but their applicability

to the Poisson-Gaussian noise was limited. Noise2Noise

(N2N) [25] has been shown to be effective for Poisson-

Gaussian noise setting, but it still required two indepen-

dent realizations of noisy images for the same source,

which is not practical. For address such limitation of N2N,

Noise2void (N2V) [23], Noise2self (N2S)[6], and BP-AIDE

[10] adopted self-supervised learning approach which can

be solely trained with single images corrupted by Poisson-

Gaussian noise. Their settings fully coincide with ours, but

they suffer from either poor performance or slow inference

time. More recently, D-BSN [45] was proposed for the set-

ting with unpaired clean and noisy images. It also contains

self-supervised (self-sup) learning step that improved N2V

by elaborating the blind spot network architecture and pixel-

wise noise level estimation network, but we show that our

FBI-Denoiser significantly outperforms it.

Table 1. Summary of different settings among the recent baselines.

Alg. \Requirements Noisy pairs Poisson-Gaussian noise

HQ-SSL [24], SURE [41, 33],

Noiser2Noise [34], GAN2GAN [13]
✗ ✗

Ext. SURE [50] ✓ ✗

N2N [25] ✓ ✓

N2V [23], N2S [6], BP-AIDE [10],

D-BSN [45] (Self-Sup), Self2Self [38]
✗ ✓

FBI-Denoiser ✗ ✓

Traditional denoising method The classical denoising

methods, e.g., wavelet-based [18], filtering-based [8, 17],

optimization-based [19, 29, 21] and effective prior-based

[51], are typically capable of denoising with only single

noisy images. However, since the training procedure with

multiple images is absent in these methods, they suffer from

large inference time and limited performance.

Noise estimation method Most of above methods assume

that prior knowledge about noise characteristics is given, but,

it is typically unavailable in practice. To alleviate this unreal-

istic assumption, several noise estimation methods have been

proposed, especially for two well-known noise models: ad-

ditive white Gaussian noise (AWGN) and Poisson-Gaussian

noise model. For AWGN, the noise variance of an image is

assumed to be constant over all pixel values, i.e., the only

parameter is the noise variance. Recently, low-rank patch

selection methods [27, 37] using principal component anal-

ysis (PCA) showed the state-of-the-art performance in the

AWGN case. [15] further refined this approach by resolving

the underestimation problem of [27, 37] through statistical

analysis of the eigenvalues. Unlike the case of AWGN, the

Poisson-Gaussian noise model [20], which is often used

to characterize the real source-dependent noise in the raw-

sensed images, has a heterogeneous noise variance and two

parameters (α, σ). Most existing methods [20, 4, 43, 28]

for estimating Poisson-Gaussian noise first obtain the lo-

cal estimated means and variances, then fit the noise model

with these local estimates using maximum likelihood estima-

tion (MLE). [20] first proposed the Poisson-Gaussian noise

model and an estimation algorithm for it using wavelet de-

composition. Recently, [28] extended this approach to the

generalized source-dependent noise by suggesting iterative

patch selection method.

3. Problem Setting and Preliminaries

3.1. Notations

We denote x ∈ R
n as the clean image and Y ∈ R

n as its

noise-corrupted observation. The real-world image sensor
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noise is generally modeled with the Poisson-Gaussian noise

model [20] which consists of two mutually independent

components. Under this model, the i-th noisy pixel becomes

Yi = αPi +Ni, i = 1, . . . , n (1)

in which Pi ∼ Poisson(xi) is the source-dependent Pois-

son noise with mean xi caused by photon sensing, Ni ∼
N (0, σ2) is the remaining signal-independent Gaussian

noise. Here, α > 0 is a scaling factor which depends on the

sensor and analog gain, and σ is the standard deviation of the

Gaussian noise. For each clean and noisy image, we assume

that each pixel is normalized and clipped to have a value in

the range [0, 1]. Thus, the Poisson-Gaussian noise model is

characterized by the parameters (α, σ) and the noise variance

of Y can be represented as

Var [Y |x] = α2x+ σ2 (2)

3.2. Generalized Anscombe Transformation (GAT)

A common approach for denoising the noisy image cor-

rupted with Poisson-Gaussian noise is to apply GAT [5],

which transforms each pixel Yi > 0 to

Gα,σ(Yi) =
2

α

√

αYi +
3

8
α2 + σ2. (3)

The transform (3) is known to stabilize the noise of each

pixel of the transformed image, Gα,σ(Y ), such that it ap-

proximately becomes Gaussian with unit variance. Using

this property, we can have a simple denoising scheme for

Poisson-Gaussian noise. Namely, a general Gaussian de-

noiser can be applied to Gα,σ(Y ) to obtain a denoised ver-

sion D. Then, by denoting Di as the i-th pixel of D, the

estimate of the original clean image x is obtained by apply-

ing the Inverse Anscombe transformation (IAT), which is

often approximated by [30]

Iα,σ(Di) (4)

=
1

4
D2

i +
1

4

√

3

2
D−1

i −
11

8
D−2

i +
5

8

√

3

2
D−3

i −
1

8
−

σ2

α2

Thus, the final denoised image becomes x̂ = I(D). Note

both the GAT and IAT require noise parameters (α, σ).

3.3. BP­AIDE

As briefly mentioned in the Introduction, BP-AIDE [10]

combined GAT (3) and Poisson-Gaussian noise estimation

methods [28, 20], which estimates α and σ2 of (1), with a

pixelwise affine denoiser developed in [12]. The method

consists of 3 steps, (1) Est+GAT (2) Training (3) Inference,

and we briefly review each step below.

(1) Est+GAT Use the Poisson-Gaussian noise estimation

methods [28, 20] to obtain the estimated noise parameters

(α̂, σ̂). Then, apply GAT (3) with the estimated parameters

and obtain the transformed image Gα̂,σ̂(Y ). Then, the nor-

malized version of the transformed image is obtained by

Z , (Gα̂,σ̂(Y )−m)/β, in which m = mini Gα̂,σ̂(Yi) and

β = maxi Gα̂,σ̂(Yi)−mini Gα̂,σ̂(Yi). Note each pixel in Z

has a value in [0, 1], and the variance of the noise becomes

approximately β−2.

(2) Training Given the normalized, transformed noisy image

Z, BP-AIDE trains a pixelwise affine denoiser f(Z;w) ∈
R

n, proposed in [12], of which i-th reconstruction is

fi(Z;w) = a1(w,C−i
k×k) · Zi + a0(w,C−i

k×k). (5)

In (5), C−i
k×k denotes the k × k noisy patch surrounding Zi

that excludes Zi, and {am(w,C−i
k×k)}m=0,1 are the outputs

of a specially designed fully convolutional network with

parameter w that takes Z as input, but guarantees the ex-

clusion of Zi in the output for location i (i.e., the so-called

blind-spot network (BSN)).

Given m distinct (normalized, transformed) noisy im-

ages Z = {Z(j)}mj=1, the training of BP-AIDE is done by

minimizing

L(Z;w) =
1

m

m
∑

j=1

Ln

(

Z(j),f(Z(j);w); (β(j))−2
)

, (6)

in which the Ln(·; ·) in (6) is defined in [11] as

Ln(Z,f ;σ2) ,
1

n
‖Z − f‖22 +

σ2

n

n
∑

i=1

(2a1,i − 1), (7)

in which f , f(Z;w) and a1,i , a1(w,C−i
k×k) for nota-

tional brevity. Now, it is shown in [12, Lemma 1] that if the

noise that generates Z is additive, independent, zero-mean

with homogeneous variance, e.g., AWGN, then (7) becomes

an unbiased estimate of the mean-squared error (MSE) of

f(Z;w) for estimating the underlying clean image. An im-

portant point to emphasize is that such unbiasedness only

holds for the pixelwise affine denoisers of the form (5) with

{am(w,C−i
k×k)}m=0,1 being conditionally independent of

Zi given Z−i (i.e., the outputs of a BSN). Since the GAT

transformed and normalized image Z(j) approximately has

AWGN with variance (β(j))−2, minimizing (6), which only

depends on the noisy images Z and no underlying cleans,

indeed becomes minimizing the unbiased estimate of MSE.

In [10], BP-AIDE simply adopted the BSN architecture pro-

posed in [12] and trained the network for obtaining the pix-

elwise slope and intercept {am(w,C−i
k×k)}m=0,1 for all i.

(3) Inference Once the training is done, when denoising a

given test noisy image Yte at the inference time, the Est+GAT

step is first applied to obtain Zte, then gets denoised by

f(Zte,wBP-ADIE) in the transformed domain. Then, we ap-

ply the reverse of the normalization step in Est+GAT to

obtain D and finally apply the IAT (4) with the estimated

noise parameters (α̂, σ̂) obtained in the Est+GAT step.
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Figure 1. Overall process of FBI-Denoiser.

3.4. Motivation

While BP-AIDE achieved the state-of-the-art denoising

performance for real-world noise benchmarks among the

methods that only use single noisy images, we observe its

critical bottleneck in inference time lies in the Est+GAT

step described above. Namely, the Poisson-Gaussian noise

parameters (α, σ) need to be estimated for each and every

given test image, which typically takes in the order of a

few seconds using modern CPUs. Moreover, the BSN from

[12], denoted by QED network, uses three different kind of

masked convolution filters, which results in large memory

usage and unnecessary FLOPs that slows down the inference

time. As described in the next section, we dramatically

improve the inference time of BP-AIDE (×10) by learning

to estimate the Poisson-Gaussian noise parameters with a

separate network (PGE-Net) and devising a novel BSN (FBI-

Net) with much simpler structure.

4. Main Method

As illustrated in Figure 1, our proposed FBI-Denoiser

consists of two phases: first train PGE-Net for Poisson-

Gaussian noise estimation (Phase 1), then train FBI-Net for

blind denoising (Phase 2). In the subsequent sections, we

first present the intuition of and the training procedure of

PGE-Net (Section 4.1), then present in details about the new

BSN architecture (Section 4.2).

4.1. Training PGE­Net: Phase 1

As mentioned in Section 3.2, GAT [5] is known to sta-

bilize the noise such that the noise for each pixel in the

transformed image, Gα,σ(Y ), become approximately inde-

pendent Gaussian with unit variance. We use this property of

GAT to build an intuition for training a network to estimate

the Poisson-Gaussian noise parameters, (α, σ).
Before describing our method, we introduce a few more

notations. First, let Y denote a noisy image as before that

is corrupted by the Poisson-Gaussian noise model (1) with

true parameter (α, σ). Moreover, define B as a patch ex-

tracted from Y and pB(x) as the PDF of the clean x over

B. Moreover, denote Gα̂,σ̂(Y ) as the GAT-transformed im-

age with estimated (α̂, σ̂), and the stabilized noise variance

of Gα̂,σ̂(Y ) is denoted by Var (Gα̂,σ̂(Y )|x). Now, in [31,

Proposition 1], it has been shown that, under reasonable

assumptions, the following set

SB ,

{

(α̂, σ̂) :

∫

√

Var (Gα̂,σ̂(Y ) |x)pB(x)dx = 1
}

becomes a locally smooth curve around the true noise pa-

rameter (α, σ). With this proposition,[31] showed that when

multiple patches, {Bi}’s, are extracted from an image, then

the true (α, σ) typically lie in the intersection ∩iSBi
.

While the findings of [31] can be applied to estimating

true (α, σ) for a single image, we extend this intuition for

devising a neural network-based estimation method that can

learn the estimation function from multiple noisy images. In

Figure 2, we show that when the patches {Bi}’s are extracted

from multiple noisy images that are corrupted with Poisson-

Gaussian noise with the same parameter (α, σ), the true

(α, σ) also tends to lie near the intersection ∩iSBi
. This

observation suggests that we can use patches from multiple

noisy images and may learn a neural network model that can

directly estimates the noise parameters (α̂, σ̂) that make the

noise variance of Gα̂,σ̂(Y ) close to 1. Furthermore, when

sufficiently many noisy images with various levels of (α, σ)
are available as a training set, we may also expect the neural

network to generalize well to unseen noise parameters.

Our PGE-Net exactly realizes the intuition made above.

We first define a neural network, h(·,θ) : Y → R
2, that

takes the Poisson-Gaussian noise corrupted image Y and

outputs the noise parameter estimates (α̂, σ̂). Moreover, we

denote η(·) : Z → R as the function in [15] that estimates

the Gaussian noise variance from an input image Z. Then,

given m distinct noisy images Y = {Y (j)}mj=1, the loss

function for our PGE-Net becomes

LPGE(Y;θ) ,
m
∑

j=1

(

η
(

Gα̂(θ),σ̂(θ)(Y
(j))

)

− 1
)2

, (8)

in which α̂(θ) , h1(Y
(j);θ) and σ̂(θ) , h2(Y

(j);θ) are

the estimated noise parameters (α̂, σ̂) that are outputs of
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Figure 2. SB curves for ten patches each cropped from different

images randomly selected from the MIT-Adobe FiveK Dataset [9]

(True (α, σ) = (0.01, 0.01) denoted by x.)

h(·,θ). For the specific architecture of h(·,θ), we used a

three layer U-Net [39] architecture and average pooling layer

in the output layer.

Now, when using (8) as a loss function to minimize for

training h(·,θ), an important point to check is whether all

the operations for computing the loss is differentiable with

respect to the network parameter θ and can be implemented

with tensor operations. To that end, we can see that the

GAT (3) can be tensorized by a linear operation and apply-

ing an element-wise function. However, implementing the

Gaussian noise variance estimation η(·) [15] with tensor

operations is not trivial since it involves iterative for-loop

procedures. To that end, we utilized several tricks using the

lower triangular matrix multiplication and masking scheme

to replace iterative procedures with tensor operations. De-

tails about the implementations can be found in the Supple-

mentary Material (S.M).

Note the main purpose of PGE-Net is not to simply esti-

mate the noise parameters in a myopic way, but to estimate

them fast such that the GAT-transformed image (with the

estimated parameters) has stabilized noise variance close to 1

for the next denoisng step. Once our PGE-Net is learned via

minimizing (8), it enjoys extremely fast inference time (us-

ing GPU) as only simple forward pass of the neural network

is required to estimate the noise parameters (α̂, σ̂). More-

over, as we show in Section 5.2, our method becomes much

more stable than the conventional noise estimation meth-

ods since PGE-Net can smoothly generalize from multiple

noisy images, whereas the methods in [20, 28], which run

optimization routines separately for each image, may fail to

correctly estimate depending on the input image.

4.2. Training FBI­Net: Phase 2

Once the noise parameters (α̂, σ̂) are estimated with PGE-

Net, our denoising network FBI-Net is trained following the

same training procedure of BP-AIDE described in Section

3.3 (as also shown in Phase 2 of Figure 1); namely, minimize

(6) with the transformed (with the estimated (α̂, σ̂)) and

normalized images Z(j). Recall that the BSN architecture

was necessary for implementing the pixelwise affine denoiser

(5) and maintaining the unbiasedness of (7), and we devise a

more efficient BSN in this section.

The ideal condition for BSN is to have a simple structure

that excludes only Zi when computing the activation value

at location i in any layer. In practice, some methods im-

plemented BSN by discarding some more pixels other than

Zi when computing the activation value at location i, but

obviously, the more we exclude, the worse the performance

becomes. Recently, several network architecture to enhance

the efficiency of BSN were proposed [12, 23, 24, 45] in the

denoising context. N2V [23] maintains above constraint indi-

rectly by adopting randomly masking scheme. The masking

scheme severely degrades training efficiency since only few

pixels can be utilized. HQ-SSL [24] suggests more efficient

constrained model by adopting four-way rotations as shown

in Figure 3(a). But the requirement of four rotated input

images gives limited efficiency. D-BSN [45] devised a com-

pletely re-designed model. As shown in Figure 3(b), they

mainly use two different types of a masked CNN layer and

1 × 1 convolution layer to maintain the constraint. This

model significantly improves efficiency over previous meth-

ods, however, it still has the disadvantage of having a lot of

unwanted holes excluded from the receptive field. As shown

in Figure 3(c), FC-AIDE [12] designed three different layers,

denoted as Q, E and D layer. By utilizing three layers, they

obtain the ideal condition we described above. However,

since each of the three layers has to be stacked separately for

getting it, the model is relatively complex and its inference

time is slow.

We propose a more efficient BSN architecture (FBI-Net)

by re-designing three different zero-masked convolution lay-

ers, L1, L2 and L3 as described in Figure 3(d). L1 is a center

masked 3× 3 size of convolution layer which is equal with

the first layer proposed in D-BSN. L2 is 5× 5 size of convo-

lution layer which is all masked except for eight holes and

L3 is 7× 7 size of convolution layer which only has weights

at the center and each edge. Note that L3 can be replaced

with 3× 3 size of a dilated convolution layer (dilation = 3).

By stacking these layer sequentially, we can get an almost

full receptive field with fewer holes than D-BSN. Compared

with FC-AIDE, even though FBI-Net have some holes in the

receptive field, our layers have the advantage of obtaining a

simpler architecture and fewer parameters. Figure 3 shows

Table 2. The comparison of BSN on an image of size 512×512.

FC-AIDE D-BSN FBI-Net

Num of parameters 754,000 6,612,000 340,000

GPU memory

requirement
2,581MB 4,231MB 2,512MB

Inference time 0.29 0.99 0.21

the overall architecture of FBI-Net. We sequentially stacked

layers in the order of L1, L2 and L3 but we only stacked

L3 after 4-th layer. Following the finding of FC-AIDE [12],
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Figure 3. The layers of previously proposed blind spot network and our FBI-Net.

we used PReLU [22] for all activation functions and Resid-

ual Module (RM) proposed in Figure 3(f). To maintain the

constraint, we only used 1 × 1 CNN layer for the output

layer and RM. For all experiments, we set L = 17 which

has a receptive field of 181×181 size. Note that we add two

different residual connections denoted by Inner and Outer

residual connection. We found out that these residual connec-

tions make more stable training and improve the denoising

performance as can be shown in the ablation study. Table

2 shows the performance comparison of each BSN when

denoising an image of size 512 × 512. Compared to the

baselines, the proposed FBI-Net uses much smaller number

of parameters and achieves the fastest inference time while

the GPU memory requirement is small.

5. Experimental Results

5.1. Data and Experimental settings

Data and Implementation details In synthetic noise ex-

periments, we used two datasets: BSD400 [32] for grayscale

images and MIT-Adobe FiveK Dataset (Fivek) [9] for raw-

RGB images. For evaluation of the grayscale images, the

standard BSD68 dataset [40] was used. For Fivek, which

is composed of 5, 000 images, 4, 800 images were used for

training, and the remaining 200 were used as a test set. To

reflect the real noise characteristics, various levels of Poisson-

Gaussian noise were simulated. Note each model is individ-

ually trained and tested with designated noise characteristics.

For real noise experiments, we used three real-world noisy

image datasets: Fluorescence Microscopy Denoising (FMD)

dataset [49], which is composed of grayscale microscopy im-

ages, and SIDD [3] / DND [35] which consist of raw-RGB

and sRGB images. In FMD, raw noisy images from three

separate general configurations are used; confocal FISH (CF

FISH), confocal MICE (CF MICE) and two-photon MICE

(TP MICE).The training on SIDD and DND was done us-

ing only raw-RGB images, and we received the evaluation

results on both raw-RGB and sRGB test sets by submitting

the results to the public websites [2, 1], respectively. Note

that SIDD provides training, validation and test datasets, but

DND only provides test images to the public. For training

a model, we generated m = 25, 000 noisy patches of size

210 × 210 from each dataset. To reflect the complexity of

real noise, we reduced the range of slope coefficient a1(·) in

(5), i.e., we changed from [0, 1] which is the original range

of a1(·) suggested by [10] to [0, 0.1]. For a fair compari-

son, we used the same range [0, 0.1] for both BP-AIDE and

FBI-Denoiser in all experiments. The details on the software

platform, training and hyperparameters are in the S.M.

Baselines We first compared the accuracy of the noise pa-

rameters from PGE-Net (phase 1) with two representative

baselines: Foi [20] and Liu [28]. Then, we compared the

overall denoising performance of FBI-Denoiser with follow-

ing baselines: GAT+BM3D [17], N2V [23], D-BSN [45],

and BP-AIDE [10]. GAT+BM3D is a traditional method, but

it is still a very powerful baseline for the Poisson-Gaussian

noise denoising. The estimation method in Liu [28] is used

as a noise estimation method for GAT+BM3D and BP-AIDE,

since it achieves robust performance in real-world noise

benchmarks. Moreover, the self-supervised step of D-BSN

is used as a baseline for fair comparison. As an upper bound,

we trained a model in a supervised way (i.e., using clean

target images), denoted as "Sup", that uses the same net-

work architecture as FBI-Net. All results of the baselines
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are reproduced with publicly available source codes, and for

brevity, FBI-Denoiser is denoted as “FBI-D” in this section.

5.2. Experimental results on noise estimation

Here, we first validate the effectiveness of the noise es-

timation of PGE-Net. Table 3 shows the average of the

estimated (α̂, σ̂) values, obtained by Foi [20], Liu [28] and

PGE-Net from BSD68 images that are corrupted by four

different noise levels specified by each row in the table. In

Table 3. The average values of estimated α̂ and σ̂ for BSD68. Bold

denotes the best result among the three methods.

Noise level

(α, σ)
Foi [20] Liu [28] PGE-Net

α̂ σ̂ α̂ σ̂ α̂ σ̂

(0.1, 0.02) 0.096 0.042 0.072 0.045 0.098 0.003

(0.1, 0.0002) 0.097 0.035 0.071 0.044 0.095 0.0001

(0.05, 0.02) 0.049 0.031 0.04 0.04 0.052 0.0001

(0.05, 0.0002) 0.051 0.018 0.039 0.034 0.051 0.0001

addition, we indirectly measured the performance of noise

estimation by comparing the denoising performance (on

BSD68 and Fivek) of GAT+BM3D that uses the estimated

noise parameters from each estimation method, as shown

in Table 4. Moreover, the performance of GAT+BM3D us-

ing the ground truth noise level is reported in the table as

an upper bound. Firstly, from Table 3, we observed that

unlike for α, PGE-Net seems to significantly underestimate

σ. However, we observe from Table 4 that GAT+BM3D

with the estimated parameters of PGE-Net still shows com-

petitive denoising performance compared to others [20, 28]

with much faster inference time (×2000). This suggests that

the underestimated σ̂ of PGE-Net has little impact on the

denoising performance of GAT+BM3D or BP-AIDE frame-

work (which carry out GAT using σ̂). As we emphasized
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Figure 4. Histogram of estimated α̂ for BSD68 from each estima-

tion method.

in Section 4.1, we believe this somewhat counter-intuitive

result is possible since the underestimation of PGE-Net for

σ turns out to be inconsequential for ensuring that the GAT-

transformed image (with the estimated parameters of PGE-

Net) has stabilized noise with homogeneous variance close to

1. To verify this more in detail, we conducted an experiment

using an additional toy example in S.M.

Furthermore, Figure 4 shows the histograms of the α̂
values (on BSD68) for two different noise levels obtained by

each estimation method. From the figure, we observe that

Table 4. Denoising results of GAT+BM3D with the estimated noise

parameters. Red and blue denote the highest and the second highest

result among the noise estimation algorithms, respectively.

Dataset

(PSNR / SSIM)

Performance of GAT+BM3D

Foi Liu PGE-Net Ground truth

BSD68
(α, σ)

(0.01,0.0002) 29.88 / 0.8432 30.33 / 0.8623 30.14 / 0.8521 30.34 / 0.8641

(0.01,0.02) 29.73 / 0.8393 30.08 / 0.8564 29.81 / 0.8433 30.16 / 0.8570

(0.05,0.0002) 26.07 / 0.7292 26.16 / 0.7371 26.14 / 0.7335 26.18 / 0.7362

(0.05,0.02) 26.03 / 0.7269 26.12 / 0.7352 26.11 / 0.7344 26.16 / 0.7349

Time for noise estimation 3.123s 1.084s 0.002s -

Fivek
(α, σ)

(0.0005,0.0002) 43.63 / 0.8645 49.05 / 0.9722 49.11 / 0.9736 49.41 / 0.9764

(0.0005,0.02) 41.90 / 0.8586 44.51 / 0.9188 44.11 / 0.9144 44.57 / 0.9173

(0.01,0.0002) 40.24 / 0.8493 42.33 / 0.9170 42.01 / 0.9060 42.46 / 0.9152

(0.01,0.02) 40.95 / 0.8347 41.26 / 0.8857 41.28 / 0.8863 41.14 / 0.8812

Time for noise estimation 2.521s 1.812s 0.002s -

the standard deviations of α̂’s obtained by PGE-Net are far

smaller than those of others, and, in particular, the failure

case (in which α̂ goes to zero) does not occur in PGE-Net.

Note such failure case of α̂ is fatal for training BP-AIDE or

FBI-Denoiser since the extremely small value of α̂, which is

a denominator of GAT (3), causes the gradient explosion.

5.3. Experimental results on denoising

Synthetic noise The experimental results on synthetic raw-

RGB Fivek dataset are shown in the top of Table 5. We simu-

lated not only the specified levels of (α, σ), but also a mixture

of noise levels denoted as “Mixture noise”, which were gen-

erated by following the same procedure as [7] for sampling

multiple noise levels. From the results, we first note that

our FBI-D performs very well (often the best) compared

to other baselines across various noise levels, including the

“Mixture noise” case, with a fast inference time. From this

result, we can confirm again that PGE-Net is very effective

for FBI-D to achieve a competitive denoising performance.

Secondly, BP-AIDE and GAT+BM3D also aschieve good

results, however, these methods have very slow inference

times due to the computational cost of the noise estimation

method in Liu [28]. Finally, D-BSN achieves a good per-

formance for the weak noise cases, which surpasses FBI-D,

however, when the noise is mixed or strong, D-BSN is far

inferior to others. In S.M, we analyze why FBI-D achieves

relatively low performance in the weak noise cases.

Table 5. PSNR(dB)/SSIM on Fivek (Synthetic) / FMD (Real) vali-

dation dataset. The colored texts are as before.
Dataset GAT+BM3D N2V D-BSN BP-AIDE FBI-D FBI-D (Sup)

Synthetic
Fivek

(α, σ)

(0.01, 0.0002)
42.33

/0.9170

30.39

/0.8541

44.50

/0.9602

43.54

/0.9464

44.43

/0.9569

44.80

/0.9600

(0.01, 0.02)
41.26

/0.8857

29.21

/0.8168

38.06

/0.8280

42.59

/0.9350

43.14

/0.9402

44.38

/0.9537

(0.05, 0.02)
36.42

/0.8034

25.84

/0.7386

26.13

/0.4363

38.37

/0.9107

39.30

/0.9165

42.17

/0.9402

Mixture noise
46.94

/0.9560

33.43

/0.8949

39.91

/0.8336

46.43

/0.9658

46.87

/0.9695

47.55

/0.9702

Real FMD

CF FISH
31.31

/0.8920

31.92

/0.8831

22.86

/0.4479

32.17

/0.8841

32.22

/0.8853

32.98

/0.9111

CF MICE
37.20

/0.9617

37.54

/0.9611

30.61

/0.7305

38.31

/0.9634

38.32

/0.9637

38.95

/0.9669

TP MICE
33.76

/0.9157

33.34

/0.9080

26.24

/0.4239

33.89

/0.9023

33.95

/0.9084

34.40

/0.9217

Inference time 5.13s 0.06s 0.99s 2.00s 0.21s

Real-world noise The results on FMD dataset are reported

in the bottom of Table 5. From the table, we observe again

that FBI-D consistently outperforms other baselines. More-

over, D-BSN suffers from serious performance degradation,

and this illustrates another example of poor applicability of

D-BSN when the noise is strong.

5774



Noisy patch GAT+BM3D N2V D-BSN BP-AIDE FBI-D (SIDD)

PSNR/SSIM 36.00/0.9360 33.61/0.9022 23.61/0.5210 36.94/0.9570 37.10/0.9592

Noisy image

Figure 5. Visualization results of DND

Table 6 shows the results on SIDD [3] and DND [35]

datasets. In DND, since the 50 noisy test images are avail-

able, we regard this set as both training and test set. Note

this is perfectly possible since all methods in Table 6 do

not require any clean images for training. In addition, par-

ticularly for the DND results, we also report the results of

BP-AIDE and FBI-D, which are trained on the training set of

SIDD. For clarity, we present two versions of BP-AIDE and

FBI-D trained on different datasets; “(SIDD)” and “(DND)”

stand for the dataset used for training, respectively. From

the table, firstly, we reconfirm the similar tendency as Table

5; i.e., FBI-D mostly dominates other baselines and enjoys

fast inference time. Note SIDD and DND datasets contain

a mixture of various noise levels, hence, this result shows

the robustness and effectiveness of our FBI-D for the real

“mismatched” noise case. Secondly, from the strong perfor-

mance of “FBI-D (SIDD)” for both SIDD and DND, we

verify the strong generalization capability of FBI-D. We also

note that, as we show in the S.M., the performance of “FBI-D

(SIDD)” is also competitive with supervised trained models.

Finally, the visualization results in Figure 5 re-emphasize

the strength of “FBI-D (SIDD)”; it reconstructs the detailed

texture much better than any other baselines.

Table 6. PSNR(dB)/SSIM on SIDD and DND dataset. The colored

texts are as before.

Dataset GAT+BM3D N2V D-BSN
BP-AIDE

(SIDD)

BP-AIDE

(DND)

FBI-D

(SIDD)

FBI-D

(DND)

Real

SIDD

RAW
48.52

/0.9800

46.30

/0.9760

37.16

/0.8390

50.45

/0.9900
-

50.57

/0.9900
-

sRGB
34.61

/0.8789

32.85

/0.8470

24.07

/0.4999

37.91

/0.9420
-

38.07

/0.9420
-

DND

RAW
47.53

/0.9761

45.41

/0.9688

39.63

/0.8642

47.75

/0.9770

47.60

/0.9732

48.02

/0.9787

47.53

/0.9706

sRGB
37.98

/0.9203

35.82

/0.9022

30.23

/0.7095

38.79

/0.9446

38.60

/0.9259

38.98

/0.9451

38.56

/0.9185

Inference time 5.13s 0.06s 0.99s 2.00s 0.21s

5.4. Ablation study

Ablation study on PGE-Net Here, we analyze the effect of

the loss function of PGE-Net (8) by comparing with the naive

supervised estimation model. Table 7 shows the PSNR/SSIM

values of GAT+BM3D using estimated noise parameters

from different methods on Fivek dataset corrupted with a

mixture of noise levels (α ∈ [0, 0.162], σ ∈ [0, 0.06]). For

comparison, we trained “Sup (MSE)” with exact same ar-

chitecture as PGE-Net by minimizing the MSE between

(α, σ) and (α̂, σ̂). The result of PGE-Net overwhelming that

of “Sup (MSE)” may seem counter-intuitive, but we verify

that when GAT is done with the estimated noise parame-

ters of PGE-Net and “Sup (MSE)”, the average variances of

the noise in the transformed images become 1.03 and 1.58,

respectively. Thus, it turns out that “Sup (MSE)” merely

focuses on estimating α and σ via minimizing the squared

error, but its estimated parameters do not necessarily result

in stabilized variance after carrying out GAT using them. We

believe this result again shows the effectiveness and strength

of our loss function (8) for PGE-Net.

Table 7. Ablation studies of PGE-Net on Fivek (with a mixed noise)

PSNR/SSIM Foi [20] Liu [28] PGE-Net Sup (MSE)

GAT+BM3D 37.23 / 0.9113 38.58 / 0.9336 38.72 / 0.9350 35.84 / 0.8674

Ablation study on FBI-Net We demonstrate the neces-

sity of each component of FBI-Net. Table 8 compares the

PSNR/SSIM values of the networks with and without each

component on Fivek (α = 0.01, σ = 0.02). RC and RM

denotes Residual Connection and Residual Module, respec-

tively. All networks are supervised trained. From the table,

we observe a serious performance degradation when any

component of FBI-Net is absent, hence, conclude that RC

and RM in our FBI-Net are essential for the successful train-

ing of FBI-D.

Table 8. Ablation studies of FBI-Net on Fivek (α = 0.01, σ =
0.02).

Component FBI-Net Case1 Case2 Case3 Case4 Case5 Case6 Case7

Outer RC ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗

Inner RC ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗

RM ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

PSNR

/SSIM

44.38

/0.9537

44.11

/0.9506

44.31

/0.9529

44.19

/0.9520

44.24

/0.9525

28.82

/0.5103

28.84

/0.5118

28.82

/0.5103

6. Concluding Remarks

We proposed FBI-Denoiser which resolves the computa-

tional complexity issue of BP-AIDE by devising PGE-Net,

which is much faster than conventional Poisson-Gaussian

noise estimation (×2000), and FBI-Net, which is an efficient

blind spot network. We showed FBI-Denoiser achieves the

state-of-the-art blind image denoising performance solely

based on “single” noisy images with much faster inference

time on various synthetic/real noise benchmark datasets.
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