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Abstract

Monitoring treatment response in longitudinal studies

plays an important role in clinical practice. Accurately

identifying lesions across serial imaging follow-up is the

core to the monitoring procedure. Typically this incorpo-

rates both image and anatomical considerations. How-

ever, matching lesions manually is labor-intensive and

time-consuming. In this work, we present deep lesion

tracker (DLT), a deep learning approach that uses both

appearance- and anatomical-based signals. To incorporate

anatomical constraints, we propose an anatomical signal

encoder, which prevents lesions being matched with visu-

ally similar but spurious regions. In addition, we present

a new formulation for Siamese networks that avoids the

heavy computational loads of 3D cross-correlation. To

present our network with greater varieties of images, we

also propose a self-supervised learning (SSL) strategy to

train trackers with unpaired images, overcoming barriers

to data collection. To train and evaluate our tracker, we

introduce and release the first lesion tracking benchmark,

consisting of 3891 lesion pairs from the public DeepLesion

database. The proposed method, DLT, locates lesion cen-

ters with a mean error distance of 7mm. This is 5% bet-

ter than a leading registration algorithm while running 14

times faster on whole CT volumes. We demonstrate even

greater improvements over detector or similarity-learning

alternatives. DLT also generalizes well on an external clin-

ical test set of 100 longitudinal studies, achieving 88% ac-

curacy. Finally, we plug DLT into an automatic tumor mon-

itoring workflow where it leads to an accuracy of 85% in

assessing lesion treatment responses, which is only 0.46%

lower than the accuracy of manual inputs.

1. Introduction

Monitoring treatment response by identifying and mea-

suring corresponding lesions is critical in radiological work-

flows [20, 40, 1, 47]. Manually conducting these procedures

is labor-intensive, as expert clinicians must review multi-

ple images and go back and forth between these images for

comparison. This is usually subject to considerable inter-

Figure 1. Comparison of our approach with two state-of-the-art

approaches for 3D tracking. The proposed DLT can predict lesion

centers more precisely than SiamRPN++ [29] and DEEDS [22].

observer variability [48]. Therefore, computer aided tools

have the opportunity to lower costs, increase turnaround

speeds, and improve reliability.

Automatic image-based lesion monitoring can be de-

composed into several sub-procedures: (1) detect lesions of

interest; (2) then track instances of the same lesion across

different time points; and (3) measure changes among the

identified instances. The first step of detecting lesions of in-

terest can be formulated as object detection. In general, the

computer vision field has made progress toward this prob-

lem [21, 31, 65]. However, medical imaging has its distinct

challenges as the data is often in 3D format, e.g., computed

tomography (CT), and usually the required annotations are

unavailable. Therefore, there are efforts to improve object

detection with medical images [27, 45, 55, 12, 58, 49, 44].

Similarly step (3) also has many viable solutions because

it can be formulated as (3D) object segmentation, which

is a fundamental topic that attracts attentions from both

computer vision [34, 56, 15] and medical image analysis

[42, 38, 17, 43, 11, 50]. In contrast, step (2), tracking the

same lesion across different time points, is not as well de-

veloped as lesion detection and segmentation. Part of the

lack of development can be attributed to the lack of good

benchmark datasets to evaluate performance. In this work,

we address this by both introducing a public benchmark and

also formulating a powerful lesion tracking solution, called

DLT, that can accurately match instances of the same lesion
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across different images captured at different time points and

contrast phases by using both appearance and anatomical

signals. In Fig. 1, we show two real-life examples of lesion

tracking.

Similar with visual tracking in the general computer vi-

sion, lesion tracking can be viewed as to match instances

of the same lesion in neighboring time frames. However,

it is challenging due to changes in size and appearance.

Lesion size can enlarge multiple times than its baseline or

nadir. Meanwhile, its appearance varies during the follow-

up exam because of morphological or functional changes,

commonly attributed to necrosis or changes in vascularity.

Therefore, an effective tracker should handle both size and

visual changes of lesions. Trackers based on image regis-

tration [1, 47] are robust to appearance changes, as registra-

tion inherently introduces anatomical constraints for lesion

matching. The involved body part and surrounding organs

of the target lesion are constrained among different images.

However, registration algorithms [22, 23, 36, 37, 5] are usu-

ally less sensitive to local image changes; thus, they can be

inaccurate to track small-sized lesions or lesions with large

shape changes. On the other hand, appearance-based track-

ers [40, 14] handle size and appearance changes by project-

ing lesion images into an embedding space [62, 59], where

images of the same lesion have similar embeddings and

images of different lesions are different from one another.

However, these appearance-based trackers may mismatch

lesions with visually similar but spurious backgrounds.

Therefore, to combine the merits of both strategies, we de-

sign our tracker to conduct appearance based recognition

under anatomical constraints.

Because the proposed deep lesion tracker (DLT) is a deep

learning model, providing enough training data is a pre-

requisite for good performance. To this end, we construct

a dataset with 3891 lesion pairs, collected from DeepLe-

sion [61], to train and evaluate different tracking solu-

tions. We publicly release this dataset to facilitate related

research1. Although more training pairs can promote a

stronger tracker, labor and time costs preclude easily col-

lecting and annotating a large number of longitudinal stud-

ies for a specific clinical application. Therefore, we also in-

troduce an effective self-supervised learning (SSL) strategy

to train trackers. Importantly, this strategy can train lesion

trackers using images from only one time point, meaning

non-longitudinal datasets can be used, which are more read-

ily collected. This allows for a more ready introduction of

more lesion instances with varied appearances and sizes.

With the proposed DLT and model training strategies,

we achieve 89% matching accuracy on a test set of 480 le-

sion pairs. Meanwhile, we demonstrate that DLT is robust

to inaccurate tracking initializations, i.e., the given initial

lesion center. In our robustness study, inaccurate initializa-

1https://github.com/JimmyCai91/DLT

tion causes 10% accuracy drops on SiamRPN++ [29] and

DEEDS [22]. In contrast, the accuracy of DLT only de-

creases by 1.9%. We then apply DLT to an external test-

ing set of 100 real-life clinical longitudinal studies, deliv-

ering 88% matching accuracy and demonstrating excellent

generalizability. Finally, we plug DLT into a lesion moni-

toring pipeline to simulate automatic treatment monitoring.

The workflow assesses lesion treatment responses with 85%

accuracy, which is only 0.46% lower than the accuracy of

manual inputs.

2. Related Work

Visual object tracking is an active research topic in gen-

eral computer vision [8, 35, 18, 54, 53, 6, 39, 51, 52]. We fo-

cus our review on recent progresses, especially deep learn-

ing based approaches.

Tracking as Similarity Learning. Tracking of target

objects can be achieved via similarity comparisons between

the object template and proposals from the search domain.

Similarities are measured by either color/intensity represen-

tations [19], spatial configurations [63, 33], or their com-

binations [6]. Recently, deep learning features are more

widely used for visual tracking [53, 39, 18, 54] as they out-

perform hand-crafted features with more expressive repre-

sentations. To efficiently extract and compare deep learning

features, SiamFC [7] and CFNet [52] use a cross-correlation

layer at the end of Siamese architectures [9]. This cross-

correlation layer uses Siamese feature maps extracted from

the template image patch as a kernel to operate fully circu-

lar convolution on the corresponding Siamese feature maps

of the search image. This procedure encodes the informa-

tion regarding the relative position of the target object inside

the search image. Within the same framework of SiamFC,

SiamRPN++ [29] introduced strategies to allow training of

Siamese networks with modern very deep networks, e.g.,

dense convolutional network (DenseNet) [25], to further

boost tracking accuracy. This is critical for medical im-

age analysis as many medical applications lack large-scale

training data and rely on transfer learning of pre-trained net-

works for good performance [46].

Siamese networks have also been investigated in medical

image analysis. Gomariz et al. [14] applied 2D Siamese net-

works to track liver landmarks in ultra-sound videos. Liu et

al. [32] extended similar 2D Siamese networks in a coarse-

to-fine fashion. While, Rafael-Palou et al. [40] performed

3D Siamese networks with CT series, only shallow net-

work architectures were evaluated on tracking lung nodules.

However, we follow SiamRPN++ [29] to use Siamese net-

works with 3D DenseNet backbones and apply it to conduct

universal lesion tracking in whole body CT images. Pro-

cessing different types of lesions with a unified deep learn-

ing model [45, 49, 61, 62, 59, 60, 10, 12] demonstrates com-

putational efficiency and could also alleviate model over-
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fitting. Different from prior formulations of Siamese net-

works, we propose a simple but effective 3D kernel decom-

position to speed up 3D cross-correlation operations for ob-

ject matching. This provides dramatic boosts in efficiency,

reducing over 65% of FLOPs in our fast cross-correlation

(FCC) layer.

Tracking as Detector Learning. Tracking as detec-

tor learning relies on developing discriminative models to

separate the target from background regions [2, 3, 24, 19].

A discriminative model that is suitable for visual tracking

should consist of two core components, namely a classifier

that can be efficiently updated online during visual tracking

[2, 3, 24] and a powerful feature representation, e.g. fea-

tures extracted by convolutional neural networks (CNNs)

[28, 25] that can let the classifier easily differentiate objects

in the feature space. Following this strategy, SO-DLT [54],

FCNT [53], and MDNet [39] all train CNNs offline from

large-scale object recognition tasks so that the learnt fea-

ture representation is general with visual objects. During

tracking, they freeze the lower layers of the network as a

feature extractor and update the higher layers to adapt to

the specific video domain.

In this work, we consider the strategy of tracking via de-

tector learning and accordingly construct our strong lesion

tracking baselines. Given the specialty of processing med-

ical data, especially 4D CT images (3D image plus time),

there are no baseline methods ready for comparison. Thus,

we construct our own lesion tracking baselines by concate-

nating the state-of-the-art lesion detection [12, 58] models

with deep learning feature extractors [62, 59]. However,

the tracker developed with this strategy can be sub-optimal

since the detection models feature extractors are developed

from independent offline tasks. In contrast, our proposed

DLT unifies the tasks of feature extraction and target ob-

ject localization in an end-to-end structure and outperforms

these detector learning baselines with higher accuracy and

faster speed.

Tracking Priors from Image Registration. Visual

tracking in video follows a prior of spatial consistency,

which means the search space in the next video frame can

be constrained to be near to the current location. This prior

is helpful for improving tracking efficiency and making the

model robust to background distractors [51, 7, 14]. Sim-

ilarly, lesion tracking in CT should follow a spatial con-

sistency governed by anatomical considerations. This im-

plies that the surrounding organs and structures of a lesion

will not drastically change. Under such constraints, image

registration approaches [22, 23, 36, 37, 5] can perform le-

sion tracking via image alignment. Specifically, registration

algorithms are designed to optimize the global structural

alignment, i.e. accurately align boundaries of large organs,

while being robust to local changes. Nonetheless, although

reported results suggest that registration algorithms are use-

ful for aligning large-sized lesions [47, 41, 64], they can fail

to track small-sized lesions and struggle whenever there are

local changes in the lesion’s appearance.

In this work, we improve upon the capabilities of reg-

istration approaches using deep learning based lesion ap-

pearance recognition to match lesions based on both vi-

sual and anatomical signals. Specifically, we first roughly

initialize the location of a target lesion using image regis-

tration, i.e., affine registration [36]. Then, our DLT deep

learning model refines the location to the lesion center us-

ing appearance-based cues. In contrast with approaches that

use the spatial and structural priors simply in pre- [51, 7] or

post-processing [14], DLT takes them as its inputs and prop-

agates them together with CT-based visual signal to gener-

ate the final target location. The priors also function as at-

tention guidance, letting the appearance learning focus on

vital image regions.

3. Deep Lesion Tracker

We build DLT based on the structure of Siamese net-

works because they are efficient and deliver state-of-the-

art visual tracking performance for many computer vision

tasks. The core component of Siamese-based tracking is a

correlation filter, which is also known as cross-correlation

layer. It uses Siamese features extracted from the template

image patch as a kernel to perform explicit convolutional

scanning over the entire extent of the search image feature

masps. Fig. 2 shows its overall configuration. Our goal is

to apply the proposed model to process three dimensional

medical data, i.e., CT images. Therefore, we create net-

work backbones in 3D and introduce an anatomy signal en-

coder (ASE) to guide lesion tracking with anatomical con-

straints. To avoid the prohibitive computational expenses of

3D cross-correlation between the template and the search

image, we introduce a simple but effective formulation to

speed up this procedure.

Problem definition. We use It and Is to respectively

denote a template and search CT image. In It, a lesion is

known with its center µt and radius rt. Given It, Is, µt, and

rt, the task of lesion tracking is to locate the same lesion in

Is by predicting its new center µs.

3.1. Image Encoder: 3D DenseFPN

In lesion tracking, the Siamese network needs to process

lesions with varied appearances and sizes in 3D images. As

shown in Fig. 3, we use a deep 3D image encoder with large

model capacity, so that it can learn effective feature repre-

sentations. Specifically, we transform DenseNet into 3D by

duplicating its 2D convolutional kernels along the third di-

rection and then downscaling weight values by the number

of duplications [13]. This configuration is found to be more

effective than 3D UNet [17] on modeling universal lesion

appearances [12]. We then add a feature pyramid network
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Figure 2. The configuration of our proposed deep lesion tracker.

(FPN) [30] after the 3D DenseNet to generate visual fea-

tures at three scales. We visually depict the detailed con-

figuration of 3D DenseFPN in Fig. 3. For clarity, we use

ψ1, ψ2, and ψ3 to refer to the image mapping functions that

generate feature maps from the largest to the smallest reso-

lutions, respectively.

3.2. Anatomy Signal Encoder and Its Inputs

We observe that directly implementing lesion tracking

with Siamese networks can produce matches with visually

similar but spurious regions. In contrast, affine registration

[36] is a robust approach to roughly align CT images. It is

achieved by solving

TAff = argmin
TAff∈A

‖TAff(It)− Is‖1, (1)

where A is the space of affine transforms. The projected

location of the template lesion, TAff(µt), is usually located

close to the actual target lesion. While prior art has used

affine registration as pre- [51, 7] or post-processing [14],

these do not provide mechanisms for incorporation into

a tracking pipeline that cross-correlates template features

across the entire extent of the search image. For example,

pre-registering will have minimal effect on the translation-

invariant cross-correlation. Instead, as shown in Fig. 2, we

encode anatomy signals as Gaussian heatmaps centered at

lesion locations:

G(µ, nr) = exp

(

−

∑

i∈{x,y,z} (i− µi)2

2(nr)2

)

, (2)

where we find n = 4 delivers the best performance. For

It we simply use the template lesion location and size:

G(µt, nrt). For Is we use the affine-projected location and

size of the template lesion: G(TAff(µt), nTAff(rt)). For clar-

ity, we simply refer to the template and search anatomy sig-

nal maps as Gt and Gs, respectively. We solve Eq. 1 using

SimpleElastix [36].

Fig. 3 depicts the network configuration of the proposed

ASE. It encodes anatomical signals into high-dimensional

anatomical features with three different resolutions. In cor-

respondence with 3D DenseFPN, we denote the network

functions for the three scales as φ1, φ2, and φ3 from the

largest to the smallest, respectively.

3.3. Fast Cross­Correlation

As mentioned, correlation is a core operation of

Siamese-based tracking, which creates a correspondence

map between target and search features, ψ(It) and φ(Gt),
respectively. Because we perform the same operation at

each scale, we drop the scale subscripts here for simplic-

ity. To conduct cross-correlation, we first fuse image and

anatomy features. For example, to fuse ψ(It) and φ(Gt)
we use

F = ψ(It)⊙ φ(Gt), (3)

where ⊙ is element-wise multiplication and we constrain

φ(Gt) to have the same shape as ψ(It). We observe from

experiments that fusing ψ(It) and φ(Gt) with ⊙ performs

better than channel-wise concatenation. Next, we define a

cropping function to extract a 3×3×3 template kernel as,

K = C(F, µt, (3, 3, 3)). (4)

where the kernel is centered at µt after any potential fea-

ture downscaling. To encode the global image context

better, we also extract another larger size kernel Kg =
C(F, µt, (7, 11, 11)). Here we limit its size in the z-

direction to be 7 since the size of It during model training

is only (32, 384, 384).
Following the traditional cross-correlation operation [7],

we define the correspondence map as,

M = (K ⋆ S) + (Kg ⋆ S), (5)
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Figure 3. Network configurations of the proposed image encoder 3D DenseFPN and anatomy signal encoder (ASE).

where S = ψ(Is) ⊙ φ(Gs) and + is the element-wise

sum. Unfortunately, a direct use of Kg introduces a heavy

computational load. We propose to decompose Kg along

the axial, coronal, and sagittal directions and obtain flat-

tened kernels as Kg,z ∈ R
(1,11,11), Kg,x ∈ R

(7,1,11), and

Kg,y ∈ R
(7,11,1), where we omit the dimensions of batch

size for clarity. As Fig. 2 demonstrates, the proposed FCC

layer performs the flattening using learned 3D convolutions

configured to produce an output of identical size as the ker-

nel, except with one dimension flattened. The resulting

faster version of Eq. 5 is

M = (K ⋆ S) +
∑

i∈x,y,z

Kg,i ⋆ S. (6)

We also tested kernel decomposition by simply extracting

the middle “slices” of Kg along the three dimensions, but it

did not perform as well as the learned flattening operations.

Adding back the scale subscripts, the final output is a

probability map:

Ŷ = σ(WT (M1 + U2 + U3) + b), (7)

where σ(·) is the Sigmoid function,W and b are parameters

of the final fully convolutional layer, U2 is M2 up-scaled by

(1, 2, 2), and U3 is M3 up-scaled by (1, 4, 4). The predicted

lesion center µp is the index of the global maximum in Ŷ .

4. Supervised and Self-Supervised Learning

DLT is capable of both supervised and self-supervised

learning (SSL). It is flexible enough to learn from paired

annotations, when enough are available, and to also use ef-

ficient self-supervised learning.

4.1. Supervised Learning

Based on the introduced network architecture, Ŷ , the

output of DLT is a dense probability map representing the

likelihood of each location to be the target lesion center.

Therefore, we define the ground truth as a Gaussian kernel

centered at the target location µs. Formally, we first define

Y = G(µs, rs) and then downsize it to match the dimen-

sions of Ŷ . We use focal loss [31, 65] in training:

Lsl =
∑

i

{

(1− ŷi)
α log(ŷi) if yi = 1

(1− yi)
β(ŷi)

α log(1− ŷi) otherwise
, (8)

where yi and ŷi are the i-th voxels in Y and Ŷ , respectively,

and α = 2 and β = 4 are focal-loss hyper-parameters [31,

65]. The ground-truth heat map is < 1 everywhere except

at the lesion center voxel. So that the training can converge

quickly, it ignores hard voxels that are near µs.

Center augmentation. In practice, labels from clin-

icians may not represent the exact lesion centers. The

provided location, µt, may shift inside the central area.

Therefore, to increase model robustness we train DLT with

random location shifts. This is achieved by adding µt

with ∆µt, which is randomly sampled from the sphere

‖∆µt‖2 ≤ 0.25rt.

4.2. Self­Supervised Learning

Since our proposed DLT is built upon Siamese pair-

wise comparison, it inherently supports learning with self-

supervision. The key insight is that effective visual rep-

resentation for object recognition can be learned by com-

paring the template image, It, with its augmented counter-

parts. With It, we implement data augmentations including

(1) elastic deformations at random scales ranging from 0

to 0.25, (2) rotations in the xy-plane with a random angle

ranging from -10 to 10 degrees, (3) random scales ranging

from 0.75 to 1.25, (4) random crops, (5) add Gaussian noise

with zero mean and a random variance ranging from 0 to

0.05, and (6) Gaussian blurring with a random sigma rang-

ing from 0.5 to 1.5 [26]. Each augmentation individually

takes place with the probability of 0.5. For clarity, we define

Taug as any combination of the data augmentations. There-

fore, each self-supervised image “pair” comprises It and

Taug(It) with corresponding anatomical signals of Gt and

Taug(Gt). The same training procedure as supervised learn-

ing can then be followed. It is worth mentioning that our
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SSL strategy shares a similar spirit with recent contrastive

learning studies that matches an image with its transformed

version [16], but in the pixel-level.

We select non-longitudinal images from DeepLe-

sion [61] and use the bounding box annotations as µt and

rt. When bounding box annotations are not available, the

template lesions can be extracted by applying a pre-trained

universal lesion detector on It and randomly selecting top-

scoring proposals. However, we do not explore that here.

Limited by GPU memory, when combining the super-

vised learning with SSL, we switch the training of DLT be-

tween both schemes as:

Lmix =

{

Lssl if λ ≤ τ

Lsl otherwise
, (9)

where λ ∈ [0, 1] is a random number and we empirically set

the threshold τ to 0.25 in our experiments.

5. Experiments

5.1. Datasets

DeepLesion is a large-scale CT database of lesions re-

leased by the National Institute of Health (NIH) in 2018

[61, 62]. It contains over 30 thousand lesions and each

lesion is associated with a size measurement defined by

the response evaluation criteria in solid tumours (RECIST)

[20]. The RECIST measurement consists of two diameters:

the longest diameter followed by the longest diameter that

is perpendicular to the first one. Both diameters are drawn

by doctor in a manually selected axial slice. Based on this

measurement, we define the ground truth lesion center µ to

be the mean of diameters’ four end points and the radius r

is approximated to be the half of the longest diameters. In

total, our publicly released deep longitudinal study (DLS)

dataset inherits 3008, 403, and 480 lesion pairs from the

DeepLesion’s train, validate, and test splits, respectively.

From Chang Gung Memorial Hospital (IRB

202000584A3C601), we also collected an external

validation set that consists of 536 lesions from 100 lon-

gitudinal studies of 86 patients, including 45 cervical,

27 endometrial, and 14 ovarian cancers (mean age, 53.3

years). The median time interval between CT studies was

217 days (range, 8-2304 days). We apply the best DLT

configuration, developed on the DeepLesion dataset, to

track the corresponding target lesions, if they exist. To

assess the tracking accuracy we measured the acceptance

rate of a board-certificated radiologist with over 10 years of

clinical practice experience.

5.2. Evaluation Metrics

For an annotated pair of lesion a and b, we evaluate

tracking both from a to b and from b to a. Therefore, in

total, we have 906 and 960 directed lesion pairs in the val-

idation and test sets, respectively. We define a center point

matching (CPM) accuracy, which represents the percentage

of correctly matched lesions. A match will be counted cor-

rect when the Euclidean distance between the ground truth

center and the predicted center is smaller than a threshold.

We first set the threshold to be the corresponding lesion ra-

dius and refer the matching accuracy CPM@Radius or sim-

ply CPM. However this threshold is not tight enough to dif-

ferentiate trackers as some lesions have large sizes. We then

use an adaptive threshold min(r, 10mm) to limit the al-

lowed maximum offset in large lesions and we refer to this

matching accuracy as CPM@10mm. We empirically use

10mm because 55% lesions in the test set have larger than

10mm radius.

We also measure the absolute offset between ground

truth and predicted centers in mm and report the mean Eu-

clidean distance (MED) and its projections MEDX , MEDY ,

MEDZ in each direction. The speed of trackers is counted

using seconds per volume (spv).

5.3. Comparisons with State­of­the­art Approaches

Traditional registration approaches. We use both the

widely used rigid affine registration method [36] and

DEEDS [22] deformable registration. The latter is consid-

ered the state-of-the-art deformable approach for CT regis-

tration [57]. The implementation that we use is optimized

in C++ [23] and the CT volumes have been resampled to the

isotropic resolution of 2mm.

Learning based registration. We use VoxelMorph [5],

which is a general deep learning framework for deformable

medical image registration that can deliver state-of-the-art

performance with a much faster speeds than traditional ap-

proaches. We train VoxelMorph with image pairs from

DLS. Image pairs are first aligned by affine registration and

then resampled to 0.8mm by 0.8mm in xy-plane with a

slice thickness of 2mm. The same image resolution is ap-

plied to all of the following experiments.

Tracking by detector learning. These approaches first de-

tect lesion candidates. Then, an image encoder is used to

project both the template lesion and the detected candidates

into feature vectors. Lastly, a nearest neighbor classifier is

applied to identify the tracked lesion. We tested the de-

tector with the 2D LENS [61] and 3D VULD [12] detec-

tors, both of which report good performance on DeepLe-

sion. As for the image encoder, we tested LesionGraph [62]

and LesaNet [59], which are also developed from DeepLe-

sion for lesion attribute description. Therefore, we evaluate

four baselines, i.e., LENS-LesionGraph, LENS-LesaNet,

VULD-LesionGraph, and VULD-LesaNet.

Tracking by similarity learning. We adapt SiamRPN++

[29] with 3D DenseFPN so that it can process CT images

and perform fair comparison with DLT. The largest size of
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Figure 4. Comparisons of our methods with three state-of-the-art trackers. The top 3 closest to center distances are reported in mm.

Method CPM@ CPM@ MEDX MEDY MEDZ MED speed

10mm Radius (mm) (mm) (mm) (mm) (spv)

Affine [36] 48.33 65.21 4.1±5.0 5.4±5.6 7.1±8.3 11.2±9.9 1.82

VoxelMorph [4] 49.90 65.59 4.6±6.7 5.2±7.9 6.6±6.2 10.9±10.9 0.46

LENS-LesionGraph [58, 62] 63.85 80.42 2.6±4.6 2.7±4.5 6.0±8.6 8.0±10.1 4.68

VULD-LesionGraph [12, 62] 64.69 76.56 3.5±5.2 4.1±5.8 6.1±8.8 9.3±10.9 9.07

VULD-LesaNet [12, 59] 65.00 77.81 3.5±5.3 4.0±5.7 6.0±8.7 9.1±10.8 9.05

SiamRPN++ [29] 68.85 80.31 3.8±4.8 3.8±4.8 4.8±7.5 8.3±9.2 2.24

LENS-LesaNet [58, 59] 70.00 84.58 2.7±4.8 2.6±4.7 5.7±8.6 7.8±10.3 4.66

DLT-SSL 71.04 81.52 3.8±5.3 3.7±5.5 5.4±8.4 8.8±10.5 3.57

DEEDS [22] 71.88 85.52 2.8±3.7 3.1±4.1 5.0±6.8 7.4±8.1 15.3

DLT-Mix 78.65 88.75 3.1±4.4 3.1±4.5 4.2±7.6 7.1±9.2 3.54

DLT 78.85 86.88 3.5±5.6 2.9±4.9 4.0±6.1 7.0±8.9 3.58

Table 1. Comparisons between the proposed DLT and state-of-the-art approaches.

Method CPM@10mm MED (mm)

SiamRPN++ [29] 51.27 (↓ 17.6) 10.6±10.3 (↑ 2.3)

DEEDS [22] 53.85 (↓ 18.0) 9.8±8.9 (↑ 2.4)

DLT-SSL 64.24 (↓ 6.80) 10.0±11.4 (↑ 1.2)

DLT 70.36 (↓ 8.49) 8.1±8.7 (↑ 1.2)

DLT-Mix 75.03 (↓ 3.62) 8.0±10.5 (↑ 0.9)

Table 2. Robustness evaluation. ↓ and ↑ demonstrate decrease and

increase of measurements, respectively, compared with the values

reported in Table 1.

the template kernel is (3, 5, 5) for computational efficiency.

DLT and its variants. DLT is trained using DLS. DLT-

SSL is trained using only SSL with non-longitudinal train-

ing images of DeepLesion that do not exist in DLS. DLT-

Mix is trained with a combination of supervised and self-

supervised learning, which is defined by Eq. 9.

Results. Table 1 shows the comparative results. With

CPM@10mm, DLT and DLT-Mix achieve the first and sec-

ond places, respectively, leading DEEDS at the third place

by over 6%. DLT-SSL is at the 4th place outperform-

ing its SSL counterparts, i.e., affine registration and Voxel-

Morph, by over 20%. With CPM@Radius, DLT-Mix is the

best tracker, and it outperforms DEEDs and SiamRPN++

by 3.2% and 8.4%, respectively. With MED, DLT per-

forms the best. We notice that LENS-LesionGraph out-

performs DLT in MEDX by 0.9mm because LENS is a

2D lesion detector with a bounding-box regression layer,

which is dedicated to locating the lesion accurately in the

xy-plane. Similarly, LENS-LesaNet outperforms DLT by

0.3mm in MEDY . However, in MEDZ , DLT greatly out-

performs LENS-LesionGraph and LENS-LesaNet by 2mm

and 1.7mm, respectively, showing the importance of 3D

DenseFPN. In terms of speed, affine registration and Voxel-

Morph are the top 2 methods but they are not as accurate as

the others. Among the top 3 methods, DLT and DLT-Mix

run about 4 times faster than DEEDS on the DeepLesion

dataset. Fig. 4 shows seven visual examples of lesion track-

ing, where the results produced by our trackers are closer to

the ground truth than others.

Robustness evaluation. In this experiment, we simulate

human inputs. In testing, we shift the template center µt

with ∆µt, which is randomly sampled from the sphere

‖∆µ‖2 ≤0.25rt. For each directed lesion pair, 9 shifted

centers together with the original center are stored. In to-

tal, we create 9060 and 9600 directed lesion pairs from the

validation and test sets, respectively. With these augmented

lesion pairs, we evaluate trackers to see if they are robust

with inaccurate human inputs or not.

Table 2 shows the results. DLT-Mix is in the first place

for both CPM and MED metrics. DEEDS turns out to be

the most vulnerable method with 18% drop in CPM and

2.4mm increase in MED. In comparison, DLT-Mix only

drops 3.62% in CPM and increases only 0.9mm in MED.

Additionally, DLT-SSL is more robust than DLT in CPM,

demonstrating the benefit of SSL in training robust trackers.
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Eq. 6: Kg ψ, φ Eq. 2: G test speed

id size learn dim. size (n) MED spv

a N/A N/A 64 4 9.3 1.44

b 7,7,7 X 64 4 9.4 2.38

c 7,15,15 X 64 4 7.7 24.1

d 7,11,11 X 64 2 7.4 3.51

e 7,11,11 X 64 8 8.5 3.51

f 7,11,11 X 32 4 8.7 2.25

g 7,11,11 X 128 4 7.9 5.83

h 7,11,11 X 64 N/A 9.3 3.51

i 7,11,11 % 64 4 9.3 3.51

j 7,11,11 X 64 4 7.9 3.51

Table 3. Parameter analysis of the proposed components.

Parameter Analysis. Table 3 presents our parameter anal-

ysis for different model configurations, with model j rep-

resenting our final configuration without the multiplication

fusion of Eq. 3 or the center augmentation of Sec. 4.1.

We present test results, but note that our model selection

was based off of our validation (which can be found in the

supplementary material). Model a is identical to our final

model, except that the global kernel has been disabled, re-

sulting in significant MED increases and demonstrating the

importance of the global kernel. Models b and c explore dif-

ferent global kernel sizes, indicating performance can vary

somewhat, but is not overly sensitive to the choice. How-

ever, too large of a kernel results in an order of magnitude

greater runtime, justifying our choice of a (7, 11, 11) kernel.

As model e demonstrates, when the ASE heat map of Eq. 2

covers too large of an area it can lose its specificity, resulting

in performance degradation. Models f and g show the effect

of different embedding feature dimensions, again showing

that performance is not overly sensitive to this choice, as

long as the embedding dimension is large enough. In terms

of the need for the anatomy signal of ASE, model h demon-

strates its removal considerably increases the MED. Finally,

model i’s performance shows that the learnable decomposi-

tion of Eq. 6 is critical for accurate tracking. Adding Eq. 3

and center augmentation to model j results in our final con-

figuration featured in Table 1.

5.4. Impact on Downstream Measurements

In this experiment, we compare trackers with down-

stream size measurements. We use a pre-trained model,

OneClick [50] that takes the image Is and the predicted le-

sion center µp as its inputs and regresses the RECIST diam-

eters of the target lesion. For simplicity, we only compare

the long diameters. We use evaluation metrics including

mean absolute error (MAE) in mm, growth accuracy, and

treatment response accuracy. With the template diameter dt,

search diameter ds, and OneClick predicted diameter dp, we

define dp as a correct growth prediction, if and only if the in-

equality (ds-dt)(dp-dt)>0 holds. The growth accuracy rep-

resents the percentage of correct growth predictions. The

treatment response, ρ=(ds-dt)/dt, is defined based on the

Input MAE Growth Response

generator (mm) acc. (%) acc. (%)

DEEDS [22] 2.69±4.12 78.02 84.17

DLT 2.47±3.58 79.69 85.10

Manual inputs 2.31±3.16 79.69 85.56

Table 4. Impact on automatic lesion size measurement when using

the OneClick [50] model.

Method CPM@Radius speed (spv)

DEEDS [22] 85.6 67.1±17.8

DLT 88.4 4.7±0.35

Table 5. External evaluation.

RECIST guideline [20], which classifies a treatment re-

sponse as partial response if ρ≤-0.3, as progressive disease

if ρ ≥0.2, or as stable disease if ρ ∈(-0.3,0.2). We then

predict treatment response using ρp=(dp-dt)/dt.

We tested DLT, DEEDS, and manual inputs, i.e. the

ground truth lesion centers. Table 4 shows the results. DLT

outperforms DEEDS in MAE by 0.22mm, which is an 8%

improvement. Compared with manual inputs, DLT exhibits

the same growth accuracy and is only 0.46% lower in the

treatment response accuracy.

External Evaluation. We further invite a board-certified

radiologist to manually assess DLT with 100 longitudinal

studies recruited from real-life clinical workflows. The user

provides binarized responses, i.e., inside- or outside-lesion

for the CPM@Radius metric. We compared the tracking re-

sults of DLT with DEEDS in Table 5. DLT delivers 88.4%

CPM accuracy and outperforms DEEDS by 2.8%. Besides,

DLT requires only 4.67 seconds to process a whole body

CT, which is over 14 times faster than DEEDS. These re-

sults also underscore the value of our DLS dataset.

6. Conclusion & Discussion

In this work, we introduce a new public benchmark for

lesion tracking and present DLT as our solution. Due to the

different setup of medical applications, DLT differs from

general visual trackers in two aspects. First, DLT does not

regress bounding boxes for target lesions because as men-

tioned in Sec. 5.4, the lesion size can be accurately predicted

by the down stream measurement module. Second, DLT

does not perform long-term tracking because time points in

longitudinal studies is much less than general videos. Also,

manual calibration occurs much more often in lesion track-

ing than general object tracking.

Our presented DLT has been demonstrated effective for

lesion tracking, outperforming a comprehensive set of base-

lines that represent various tracking strategies. DLT can

be trained via either supervised or self-supervised learning,

where the combination of both training schemes results in

the best performance and robustness. We benchmark the

task of lesion tracking on our DLS dataset which will be

made available upon request.
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