
Rethinking Graph Neural Architecture Search from Message-passing

Shaofei Cai1,2, Liang Li1*, Jincan Deng1,2, Beichen Zhang1,2, Zheng-Jun Zha3, Li Su2, Qingming Huang1,2,4

1Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

3University of Science and Technology of China, China, 4Peng Cheng Laboratory, Shenzhen, China

{shaofei.cai,jincan.deng,beichen.zhang}@vipl.ict.ac.cn,liang.li@ict.ac.cn,zhazj@ustc.edu.cn,

{suli,qmhuang}@ucas.ac.cn

Abstract

Graph neural networks (GNNs) emerged recently as a

standard toolkit for learning from data on graphs. Cur-

rent GNN designing works depend on immense human ex-

pertise to explore different message-passing mechanisms,

and require manual enumeration to determine the proper

message-passing depth. Inspired by the strong searching

capability of neural architecture search (NAS) in CNN, this

paper proposes Graph Neural Architecture Search (GNAS)

with novel-designed search space. The GNAS can auto-

matically learn better architecture with the optimal depth

of message passing on the graph. Specifically, we de-

sign Graph Neural Architecture Paradigm (GAP) with tree-

topology computation procedure and two types of fine-

grained atomic operations (feature filtering & neighbor ag-

gregation) from message-passing mechanism to construct

powerful graph network search space. Feature filtering per-

forms adaptive feature selection, and neighbor aggregation

captures structural information and calculates neighbors’

statistics. Experiments show that our GNAS can search

for better GNNs with multiple message-passing mecha-

nisms and optimal message-passing depth. The searched

network achieves remarkable improvement over state-of-

the-art manual designed and search-based GNNs on five

large-scale datasets at three classical graph tasks. Codes

can be found at https://github.com/phython96/

GNAS-MP.

1. Introduction

Neural architecture search automatically designs effec-

tive neural networks and has achieved remarkable perfor-

mance beyond manually designed networks. Most works

focus on searching CNN and RNN networks for vision and

*Corresponding author.

language tasks [15, 20, 36, 38], including multi-label ob-

ject recognition [16, 32], detection [8], and sequence pre-

diction [24]. Recently, benefiting from the powerful rea-

soning capability, GNN has attracted much attention from

researchers. It has become the standard toolkit for analyz-

ing complex graph-structure data. In this paper, we intro-

duce graph neural architecture search for improving GNNs’

reasoning capability.

The core of GNN is the message-passing mechanism on

the graph, which aggregates neighbors’ information and up-

dates center node representations. The common message-

passing mechanisms can be divided into two classes: (1)

isotropic mechanism (e.g. GCN [12], GraphSage [9]) treats

every “edge direction” equally in node update equation. (2)

anisotropic mechanism (e.g. GAT [31], GatedGCN [4]) as-

signs weight for every edge according to joint representa-

tions of adjacent nodes. For example, GAT and GatedGCN

compute edge weights based on sparse attention and dense

attention mechanisms, respectively [5]. Each mechanism

has its characteristics of information transmission. Current

GNNs are usually stacked to multiple layers with the same

message-passing mechanism to capture long-range node de-

pendencies. An onefold message-passing mechanism limits

the reasoning power of graph networks. However, manu-

ally designing GNNs with multiple message-passing mech-

anisms requires immense human expertise.

Another critical problem for GNN is determining the

number of graph convolution layers, that is, the depth of

message-passing. Different from CNN, recent works [17,

29, 33] show that GNN’s reasoning capability degrades as

the network goes too deep. This results from that the rep-

resentations of adjacent nodes become closer to each other

after each graph convolution. In theory, with an extreme

depth, all nodes’ representations will converge to a station-

ary point. Further, the network depth is dataset-relevant.

Specifically, it depends on the diameter of the graph in the

specific dataset. In order to find the optimal network depth,

current works usually use enumeration with the high com-

6657

putational cost.

NAS has achieved great success by searching for effi-

cient operations in vast search space and discovering ex-

cellent representation network. Motivated by this, we ex-

plore NAS for GNN to solve the above problems. Search

space and search strategy are the most essential compo-

nents in NAS. The search space defines which architec-

tures can be represented in principle. The search strategy

details how to explore the search space, which is mainly

classified into reinforcement learning (RL) [3, 41, 42], evo-

lutionary algorithms (EA) [18, 27, 28] and gradient-based

(GB) [19, 35, 37] methods. However, traditional NAS [40]

methods cannot directly process graph-structure data be-

cause atomic operations (such as convolutions, pooling) in

search space come from the CNN and RNN domains. Re-

cently, researchers [26, 39] use existing GNNs (GCN [12],

GAT [31], etc.) and hyper parameters (the head number

of GAT, etc.) as atomic operations for searching. It’s es-

sentially a kind ensemble and fine-tuning of the existing

GNNs, instead of deriving a new GNN from the message-

passing mechanism. The coarse-grained operations (ex-

isting GNNs) cause redundant computation and limit the

searching upper bound for network reasoning capability.

In this paper, we propose Graph Neural Architecture

Search (GNAS) with novel-designed search space and

gradient-based search strategy to automatically learn better

architecture with an optimal depth of message-passing on

the graph. To raise the searching upper bound for higher

performance, we deconstruct GNN from the message-

passing mechanism and design Graph Neural Architecture

Paradigm (GAP). GAP introduces a tree-topology computa-

tion procedure with two types of fine-grained atomic oper-

ations to construct graph neural networks: (1) feature filter-

ing plays a role in adaptive feature selection using gating

mechanism, (2) neighbor aggregation captures structural

information via sum operation and calculates neighborhood

statistics with max and mean operations. Theoretically, re-

cent popular GNNs (GCN [12], GIN [34], GraphSage [9],

GAT [31], GatedGCN [4], etc.) can be approximated as the

special case of GAP. Following the paradigm, we design a

three-level search space and adopt a gradient-based search

strategy for architecture optimization. Figure 1 shows an

example of a graph neural network searched by GNAS.

Experiment results show that our GNAS can search bet-

ter graph networks than state-of-the-art manually designed

and search-based GNNs on five large-scale datasets at three

classical graph tasks. Moreover, as a significant finding, ex-

periments demonstrate that GNAS can search the optimal

depth rather than predefined depth of message-passing.

Our contributions can be summarized as follows:

• We propose a novel Graph Neural Architecture

Paradigm (GAP) with a tree-topology computation

procedure and two types of fine-grained atomic opera-

Graph Architecture	1

Graph Architecture 𝐾

Graph Architecture 𝑁

…

ℱ!

ℱ!

ℱ"

ℱ"

𝐿#$%𝐿!&# 𝐿!&#

Output

Input

Fusion

𝑁

layers

BN & Add

BN & Add

BN & Add

…

An architecture following GAP

𝒙
(𝟎)

𝒙
(𝟏)

𝒙
(𝟐)

𝒙
(𝟑)

𝒙
(𝟒)

𝒙
(𝟓)

𝒙
(𝟔)

𝒙
(𝟕)

Figure 1. An overview of graph neural network with N layers

searched by GNAS where each graph architecture layer follows

GAP. “BN & Add” module first applies batch normalization to

the output of the last graph architecture layer and then adds the

input of that. “Fusion” module (such as sum pooling) fuses the

computation tree branches to calculate the final output of each

graph architecture layer. Fs,Fd are feature filtering operations

and Lsum, Lmax, Lmean are neighbor aggregation operations.

tions to construct powerful graph neural networks.

• Following the GAP and gradient-based search strategy,

we propose Graph Neural Architecture Search to auto-

matically learn better GNN architecture with an opti-

mal depth of message-passing on the graph.

• We conduct extensive experiments on five datasets at

three classical tasks, and the results show the superi-

ority of our GNAS over SOTA manually designed and

search-based GNNs.

2. Graph Neural Architecture Paradigm

In this section, we first detail the topology of computa-

tion procedure for graph architecture. Second, we introduce

two kinds of operations to construct powerful graph archi-

tecture space: feature filtering and neighbor aggregation.

We then describe how to calculate the final output of archi-

tecture. Finally, based on this paradigm, we formulize the

approximation of the existing GNNs including GCN, GIN,

GraphSAGE, GAT and GatedGCN from GAP view.

2.1. Architecture

GAP defines the topology of graph neural architecture

as a directed tree. Each node x(i) is a latent representation

(x(0) denotes node embeddings of input graph) and each di-

rected edge (i, j) is associated with one operation that trans-

forms x(i) to x(j). From the message-passing mechanism

6658

Gate

ConcatMLP

⊙

𝒙
(𝒊)

𝒙
(𝒋)

Feature Filter

𝒙
(𝟎)

Neighbor Aggregator

MLP

Aggregate

Function

𝒙
(𝒋)

𝒙
(𝒊)

neighbors

Figure 2. The computation procedure of fine-grained atomic oper-

ations: feature filtering and neighbor aggregation operations. x(0)

is the latent input representation of graph architecture. “Gate” is

the module to compute the adaptive scaling factor. “Concat” de-

notes the concatenation operation. “Aggregate function” denotes a

continuous function of multisets (e.g. sum, mean, max) .

perspective, feature filtering is responsible for re-scaling

message, and neighbor aggregation is in charge of passing

the message on the graph.

Feature filtering. This kind of operation plays a role in

adaptive feature selection for each node by using a gating

mechanism to control the information flow. We design the

sparse filter Fs(·) and dense filter Fd(·) to perform coarse-

grained and fine-grained re-scaling, respectively. This com-

putation procedure can be formulated as

Fs(H) = QH, (1)

Fd(H) = Z ⊙ H, (2)

where ⊙ denotes hardmard product, Q ∈ R
n×n and Z ∈

R
n×d denote the re-scaling matrix to reweight node em-

beddings H ∈ R
n×d. Here, we introduce Hin for jointly

computing re-scaling factors, described as

Q = diag(MQ([H,Hin])), (3)

Z = MZ([H,Hin]), (4)

where MQ(·),MZ(·) denote R
2×d-to-R and R

2×d-to-Rd

multilayer perceptron, respectively, diag(·) converts the

vector into diagonal matrix. Inspired by the gating mech-

anism, we used σ(fc(·)) to simplify MQ(·) and MZ(·),
where fc(·) denotes fully-connected layer, σ(·) denotes the

sigmoid function. Besides, we design an identity filter to

help incorporate each node’s own features, which is similar

to a residual connection and is described as

I(H) = H. (5)

Neighbor aggregation. Neighbor aggregation captures

structural information and calculates neighborhood statis-

tics. We define the aggregators as continuous functions of

GNNs Approximation Formula

GCN Hout ≈ M(Lmean(Hin))

GIN Hout ≈ M([I(Hin)||Fs(Hin)||Lsum(Hin)])

GraphSage Hout ≈ M([I(Hin) ‖ Lmean(Hin)])

GAT Hout ≈ M(Fs(Lsum(Fs(Hin))))

GatedGCN Hout ≈ M([I(Hin) ‖ Fd(Lsum(Fd(Hin)))])

Table 1. Approximation formula for manually designed GNN net-

works (e.g. GCN, GIN, GraphSage, GAT and GatedGCN) from

GAP view.

multisets which aggregate information on neighbor nodes,

such as max, mean and sum. Different aggregators capture

different types of information. Work [34] demonstrates that

sum aggregator does well in capturing structural informa-

tion while max aggregator identifies representative elements

or the “skeleton” and is robust to noise and outliers. Ad-

ditionally, mean aggregator extracts statistics from the in-

put message, and allows the centre node to understand the

distribution of messages it receives. Considering that the

aggregators are complementary, GAP jointly uses multiple

aggregators to enhance the expressive power of GNN.

Output of architecture. All leaf nodes in the computa-

tion tree are taken into account when calculating the output.

Any continuous function of multisets can be used to fuse

the hidden embeddings. Specifically, we concatenate the

hidden embeddings and feed it into the multilayer percep-

tron to calculate the final output, described as

Hout = M(Concat({H|H ∈ A})), (6)

where A denotes the set of leaf nodes in the computation

tree, M(·) is multilayer perceptron.

Notably, in GAP, each root-to-leaf path contains at most

one neighbor aggregation operation, which means each

node can only access its first-order neighbor information.

This allows the architecture to be compared to other GNN.

More importantly, we can control the size of the neighbor-

hood receptive field by simply changing network depth.

Here, we discuss the role of jointly using feature filter-

ing operations and neighbor aggregation operations from

the message-passing mechanism perspective. In message-

passing, the source node sends the message, and the desti-

nation node receives the message. The feature filtering be-

fore the neighbor aggregation adaptively re-scales the mes-

sage to send to the neighbors. Similarly, the feature filter-

ing after the neighbor aggregation adaptively retains critical

messages received from the neighbors. The flexible com-

bination of the two kind of operations helps explore rich

message-passing model.

6659

GCN

Input

1

CAT & MLP

𝐿!"#$

Output

Input

1 3

Output

𝐿%&!𝐼

2

CAT & MLP

ℱ%

GIN

Input

1 2

Output

𝐿!"#$
𝐼

CAT & MLP

GraphSage

Input

1

CAT & MLP

Output

ℱ%

2

3

𝐿%&!

ℱ%

GAT

Input

1

CAT & MLP

Output

ℱ'

2

3

𝐿%&!

ℱ'

4

𝐼

GatedGCN

Figure 3. Illustrations of approximating manual designed GNNs. Fs,Fd are feature filtering operations and Lsum, Lmax, Lmean are

neighbor aggregation operations. I denotes identity operation. “CAT & MLP” module first concatenates the branches of the computation

tree and then uses a multilayer perceptron to calculate the output.

1

2 3

Input

2 1 3

5 4 6

8

7

9

𝒩, 𝐼, ℱ!, ℱ"

𝐼, 𝐿#$% , 𝐿#&$', 𝐿!(#

1

2 3

Input

2 1 3

5 4 6

8

7

9

𝐿#$% 𝐿#$% 𝐿!(#

ℱ"

ℱ!

ℱ!

ℱ!

ℱ"

𝐼

Figure 4. The illustration of deriving a discrete graph neural archi-

tecture from the search space (left figure) by cutting out edges and

selecting important operations. Blue and red edges represent the

feature filtering and neighbor aggregation operation, respectively.

2.2. GAP View for Traditional GNNs

GAP defines a kind of GNN designing paradigm, by

which most traditional GNNs (e.g., GCN, GIN, GraphSage,

GAT, GatedGCN) can be represented. These GNNs per-

form nested operations in Section 2.1 to compute latent rep-

resentations and concatenate them into a multilayer percep-

tron for output. All formulation approximation results are

shown in Table 1 and illustrated in Figure 3. The detailed

derivation can be found in the appendix.

3. Graph Neural Architecture Search

Following graph neural architecture paradigm (GAP),

we design a three-level search space. We then introduce

DARTS [19] algorithm to perform continuous relaxation

for search space and joint optimize the architecture and its

weights. After optimization, we show how to derive a dis-

crete sub-architecture from super-architecture. Finally, we

detail how GNAS searches the optimal depth of message-

passing for each specific dataset.

3.1. Search Space

We search for computation cells as the building blocks

and stack them for the final model. Considering that each

root-to-leaf path contains at most one neighbor aggregation

operation, we propose a three-level search space (illustrated

in Figure 4), where only the second level can use neighbor

aggregation operations.

The first level is a directed acyclic graph consisting of an

ordered sequence of N nodes. Each node x(i) is a hidden

embedding and each directed edge (i, j) is associated with

a feature filtering operation o
(i,j)
F that transforms x(i). We

also use a special zero operation to indicate a lack of con-

nection between two nodes, which is denoted as N . Each

intermediate node is computed based on all its predecessors:

x(j) =
∑

0≤i<j

o
(i,j)
F (x(i)). (7)

where 1 ≤ j ≤ N , 0 ≤ i < j, x(0) denotes input (root)

embedding. Let OF = {N , I,Fs,Fd} be a set of candidate

feature filtering operations, where o
(i,j)
F ∈ OF .

The second level consists of an ordered sequence of N

nodes and exactly N edges. The nodes are numbered from

N + 1 to 2N . The i-th edge (i, N + i) connects the node

x(i) in first level and node x(N+i) in second level. It is as-

sociated with a neighbor aggregation operation o
(i,N+i)
L that

6660

𝑥!

𝑥"

𝑥#
𝑥$

𝑥%

𝑥&

𝑥'
𝑥(

𝑥)

𝑥!

𝑥"

𝑥#
𝑥$

𝑥%

𝑥&

𝑥'
		𝑦#

𝑥)

𝑜!
𝑜!

𝑜!

𝑜ℱ
𝑜ℱ

𝑜ℱ

𝑜ℱ

𝑜ℱ
𝑥(

𝑜!

𝑜!
𝑜!

𝑜ℱ 𝑜ℱ
𝑜ℱ

𝑜ℱ
𝑜ℱ

𝐼

		𝑦"
𝐼

1

2

3

Figure 5. For an arbitrary graph neural architecture that follows

GAP (left figure), we can derive an equivalent variant from the

three-level search space (right figure).

transforms x(i). Specifically, we add identity operation I to

accommodate situations that do not require neighborhood

information. Each intermediate node in the second level is

computed based on its predecessor in the first level:

x(N+i) = o
(i,N+i)
L (x(i)) (8)

where 1 ≤ i ≤ N . Let OL = {I, Lsum, Lmean, Lmax} be

a set of candidate neighbor aggregation operations, where

o
(i,N+i)
L ∈ OL. Note that, there is no connection between

any paired nodes in second level.

The third level is also a directed acyclic graph consisting

of an ordered sequence of M nodes. Unlike the first level

with only one input node, the third level takes N nodes

of the second level as input. The edge is associated with

feature filtering operation o
(i,2N+j)
F same as the first level.

Each intermediate node is computed based on all its prede-

cessors:

x(2N+j) =
∑

N+1≤i<2N+j

o
(i,2N+j)
F (x(i)), (9)

where 1 ≤ j ≤ M .

It is easy to prove that any graph neural architecture

that follows GAP can be represented into three-level search

space by adding identity operation I and new nodes. For

the particular situation (Figure 5) that a single node emits

multiple edges with neighbor aggregation operation, we

propose the following solution. For each node x(i) that has

e (e > 1) outgoing edges associated with neighbor aggre-

gation operation, we add (e − 1) nodes connected to x(i)

using identity operation. We then pick the (e−1) successor

nodes of x(i) and connect them to the above new (e − 1)
nodes one by one. For each root-to-leaf path without neigh-

bor operation, we add a new node to the end of the path with

identity connection method. The above rules guarantee that

all root-to-leaf paths contain exactly one neighbor aggre-

gation operation. Finally, the ancestor nodes of all edges

associated with neighbor aggregation operation are divided

into the first level. The outgoing nodes of these edges are

Algorithm 1 Search Efficient GNN with Optimal message-

passing Depth

Input: dataset S
Output: graph neural network N

1: Initialize Do as half of average graph diameter of S
2: repeat

3: Initialize Ns as a search network with Do-layer

graph architectures

4: Optimize the architectures of Ns with GNAS on S
5: Derive a discrete sub-network of Nd from Ns

6: Di = Do

7: Update Do as the number of graph architectures with

at least one neighbor aggregation in Nd

8: until Di = Do

9: return Nd

divided into the second level. All other nodes are divided

into the third level. An example is illustrated in Figure 5.

This neat proof shows that our three-level search space can

construct a vast space of GNN.

3.2. Continuous Relaxation and Optimization

We use the same method as DARTS to make the search

space continuous. We relax the categorical choice of a par-

ticular operation to a softmax over all possible operations:

ō(i,j)(x) =
∑

o∈O

softmax(α(i,j)
o)o(x) (10)

where the operation mixing weights for a pair of nodes (i, j)
are parameterized by a vector α(i,j) of dimension |O|. O
can be either OF or OL. The task of architecture search

then reduces to learning a set of continuous variables α =
{α(i,j)}.

After relaxation, following DARTS [19], we jointly learn

architecture α and the weights w within all the mixed oper-

ations. α and w can be efficiently optimized using differen-

tiable methods. At the end of search, a discrete architecture

can be obtained by replacing each mixed operation ō(i,j)

with the most likely operation, i.e.

o(i,j) = argmaxo∈O(α
(i,j)
o). (11)

For each edge, we only retain the strongest non-zero opera-

tion. For each node, we only retain the strongest edge from

all of its incoming edges, where the strength of an edge is

the strength of its strongest operation.

3.3. Optimal Depth of Messagepassing

Message-passing depth is the number of stacked graph

architectures with neighbor aggregation, which determines

neighborhood receptive field size. For traditional GNN, the

message-passing depth is equal to the network depth be-

cause each layer of GNN aggregates the representations

6661

NODE CLASSIFICATION

PATTERN CLUSTER

Model Depth #Params Test Acc ± std Search Train #Params Test Acc ± std Search Train

MLP 4 0.11M 50.52± 0.00 - 0.11 hr 0.11M 20.94± 0.00 - 0.07 hr

GCN [12] 4 0.10M 63.88± 0.07 - 3.51 hr 0.10M 53.45± 2.03 - 1.30 hr

GIN [34] 4 0.10M 85.59± 0.01 - 0.40 hr 0.10M 58.38± 0.24 - 0.23 hr

GraphSage [9] 4 0.10M 50.52± 0.00 - 1.17 hr 0.10M 50.45± 0.15 - 0.97 hr

GAT [31] 4 0.11M 75.82± 1.82 - 0.57 hr 0.11M 57.73± 0.32 - 0.27 hr

GatedGCN [4] 4 0.10M 84.48± 0.12 - 3.09 hr 0.10M 60.40± 0.42 - 2.13 hr

MoNet [23] 4 0.10M 85.48± 0.04 - 0.90 hr 0.10M 58.06± 0.13 - 0.52 hr

GraphNAS [6] 4 0.48M 85.21± 0.01 120 hr 8.25 hr 0.48M 52.61± 0.22 120 hr 9.50 hr

GNAS 4 0.35M 86.80 ± 0.10 2.45 hr 2.15 hr 0.38M 62.21 ± 0.20 2.50 hr 1.20 hr

Table 2. Results of the model searched by our GNAS in comparision with state-of-the-art methods on node classification task, including

number of parameters, accuracy, searching cost and training cost.

Task Dataset Graphs Nodes Total Nodes

Graph Regression ZINC 12K 9-37 277,864

Node Classification
PATTERN 14K 44-188 1,664,491

CLUSTER 12K 41-190 1,406,436

Graph Classification
MNIST 70K 40-75 4,939,668

CIFAR10 60K 85-150 7,058,005

Table 3. Statistics of datasets used to evaluate the methods.

from neighbor nodes. Works [17, 29, 33] point that when

the network goes too deep, the aggregated information of

the center node quickly covers the whole graph, and all fea-

tures of nodes tend to converge to the same so that the nodes

lose their discriminability. Researchers usually take the

depth as a hyper parameter and determine the optimal depth

by enumeration. This brings a huge cost of time and com-

putation and requires a rich human experience. As a neu-

ral architecture search algorithm, our GNAS can not only

search for efficient GNN but also learn the optimal depth of

message-passing, which is detailed in Algorithm 1.

4. Experiments

4.1. Experimental setting

Datasets. Recent work [5] points that existing benchmarks

such as Cora [22], Citeseer [7] and TU [11] are too simple

to distinguish the representation power of complex GNNs.

Consequently, a new range of datasets across different real-

world tasks is proposed in [5]. To evaluate the search per-

formance of our GNAS, we access it on these datasets of

three tasks, including chemistry (ZINC [10]), mathemati-

cal modeling (PATTERN [5] and CLUSTER [5]) and com-

puter vision (CIFAR10 [13] and MNIST [14]). ZINC [10]

is one popular real-world molecular dataset of 250K graphs,

whose task is graph property regression, out of which we

randomly select 12K for efficiency. PATTERN [5] and

CLUSTER [5] are node classification tasks generated via

Stochastic Block Models [1], which are used to model

communities in social networks by modulating the intra-

and extra-communities connections. MNIST [14] and CI-

FAR10 [13] are classical image classification datasets con-

verted into graphs using super-pixels [2] which assigns each

node’s features as the super-pixel coordinates and intensity.

Details about the five datasets are shown in Table 3.

Searching setting. In GNAS, we define the operation set

O: sum aggregator, max aggregator, mean aggregator,

identity, sparse filter, dense filter and zero. Every operation

except zero is followed by the linear transformation func-

tion and the activation function ReLU [25]. In three-level

search space, we set 3 nodes at each level. For each compu-

tation cell, we concatenate all nodes in third level and pass

them into FC-BN-ReLU to get the final output. Besides, in

order to stabilize the gradient, additional residual connec-

tions are introduced. To carry out the architecture search,

we hold out half of the training data as the validation set.

A small network of 4 layers is trained using GNAS for 50

epochs, with batch size 64 (for both the training and valida-

tion set). We use momentum SGD to optimize the weights

w, with initial learning rate ηw = 0.025 (annealed down to

zero following a cosine schedule without restart), momen-

tum 0.9, and weight decay 3× 10−4. We use Adam [21] as

the optimizer for α, with initial learning rate ηα = 3×10−4,

momentum β = (0.5, 0.999) and weight decay 10−3.

Training setting. To make the comparison fair, we fol-

low work [5] for training procedure (data splits, optimizer,

metrics, Etc.) and structure (batch normalization, residual

connection, Etc.). Specifically, we use Adam optimizer [21]

with the same learning rate decay strategy for all models.

An initial learning rate is selected in {10−3, 10−4}, which

is reduced by half if the validation loss does not improve

after a fixed number of epochs, either 5 or 10. Considering

6662

GRAPH CLASSIFICATION

MNIST CIFAR10

Model Depth #Param Test Acc ± std Search Train #Param Test Acc ± std Search Train

MLP 4 0.10M 95.34± 0.14 - 1.48 hr 0.10M 56.34± 0.18 - 1.53 hr

GCN [12] 4 0.10M 90.71± 0.22 - 2.99 hr 0.10M 55.71± 0.38 - 4.39 hr

GIN [34] 4 0.10M 96.49± 0.25 - 1.41 hr 0.11M 55.26± 1.53 - 2.07 hr

GraphSage [9] 4 0.10M 97.31± 0.10 - 3.13 hr 0.10M 65.77± 0.31 - 3.29 hr

GAT [31] 4 0.11M 95.54± 0.21 - 1.25 hr 0.11M 64.22± 0.46 - 1.62 hr

GatedGCN [4] 4 0.10M 97.34± 0.14 - 3.50 hr 0.10M 67.31± 0.31 - 4.22 hr

MoNet [23] 4 0.10M 90.81± 0.03 - 3.82 hr 0.10M 54.66± 0.52 - 3.85 hr

GraphNAS [6] 4 0.48M 93.80± 0.10 120 hr 9.85 hr 0.48M 58.33± 0.63 120 hr 11.2 hr

GNAS 4 0.39M 98.01 ± 0.10 6.00 hr 3.10 hr 0.43M 70.10 ± 0.44 7.20 hr 3.45 hr

Table 4. Results of the model searched by our GNAS in comparision with state-of-the-art methods on graph classification task, including

number of parameters, accuracy, searching cost and training cost.

that the network’s depth has a significant impact on perfor-

mance, we compare different methods at a fixed depth. Be-

sides, edge features are excluded since not all methods can

take advantage of edge features. We run each experiment

with 4 different seeds.

4.2. Results on node classification task

As discussed in work [5], the PATTERN dataset tests

the fundamental graph task of recognizing specific prede-

termined subgraphs [30] and the CLUSTER dataset aims

at identifying community clusters in a semi-supervised set-

ting [12], where structural information on graph matters.

The experimental results are reported in Table 2. We have

the following observations; first, GIN (with sum aggrega-

tor) performs superiority over GCN (with mean aggrega-

tor), GraphSage (with max aggregator), and MLP (with-

out considering graph topology) on PATTERN and CLUS-

TER datasets. This proves that the sum aggregator does

better in capturing structural information on the graph bet-

ter than mean and max aggregators. Second, our GNAS

achieves significant performance improvement compared to

traditional GNNs. Third, our GNAS also performs better

than the current RL-based method GraphNAS. This benefits

from our novel-designed search space from GAP. In con-

trast, GraphNAS uses a coarse-grained search space with

existing GNNs as atomic operations. Further, GNAS has

fewer parameters and trains faster than GraphNAS [6].

Besides, we analyze the operations distribution of net-

work searched by GNAS. We find that our GNAS automat-

ically selects the optimal operations to build graph neural

architecture for each dataset. As illustrated in Figure 6,

the sum aggregator dominates the distribution of neighbor

aggregation. For feature filtering, we find that the selec-

tion frequency of dense feature filter (Fd) is significantly

lower than that of sparse feature filter (Fs) on PATTERN

and CLUSTER datasets because the original node features

LSum LMax LMean
0

2

4

6

8

10

12

14

16

18
CLUSTER
PATTERN
ZINC
MNIST
CIFAR10

s d
0

2

4

6

8

10

12

14

16

18 CLUSTER
PATTERN
ZINC
MNIST
CIFAR10

Figure 6. The distribution of searched operations about feature fil-

tering (left figure) and neighbor aggregation (right figure) on five

datasets.

are extremely simple on both datasets.

4.3. Results on graph classification task

The super-pixels datasets test graph classification us-

ing the popular MNIST and CIFAR10 image classification

datasets, which embeds the “skeleton” (super-pixel) of the

object into a graph. Table 4 shows the comparision re-

sults. Similar observations to node classification tasks (Sec-

tion 4.2) are obtained, e.g., our GNAS also achieves higher

performance than traditional and search-based GNNs on

both datasets. Besides, we also find that (1) max aggrega-

tor has the strength to recognize the “skeleton” of an object

on the graph and ignore the noise nodes. The proof is that

GraphSage achieves consistent performance improvement

over GCN and GIN. This is also found in [34]. (2) MLP

model without considering graph topology even performs

better than some GNN models, which means the structural

information is dispensable. (3) From the perspective of

operations distribution (Figure 6), GNAS prefers selecting

max aggregator than sum and mean aggregators for con-

structing final graph architecture. Further, the dense filter

6663

GRAPH REGRESSION-ZINC

Model Depth #Params MAE Search Train

MLP 4 0.10M 0.706 - 0.03 hr

GCN [12]
4 0.10M 0.459 - 0.16 hr

16 0.50M 0.367 - 0.71 hr

GIN [34]
4 0.10M 0.387 - 0.10 hr

16 0.50M 0.526 - 0.42 hr

GraphSage [9]
4 0.10M 0.468 - 0.15 hr

16 0.50M 0.398 - 0.68 hr

GAT [31]
4 0.10M 0.475 - 0.11 hr

16 0.53M 0.384 - 0.53 hr

GatedGCN [4]
4 0.10M 0.435 - 0.28 hr

16 0.41M 0.340 - 0.96 hr

MoNet [23]
4 0.11M 0.397 - 0.10 hr

16 0.50M 0.292 - 0.52 hr

GraphNAS [6]

4 0.48M 0.480 120 hr 0.45 hr

8 1.07M 0.413 120 hr 0.88 hr

12 1.67M 0.492 120 hr 1.20 hr

16 2.23M 0.540 120 hr 1.66 hr

GNAS

4 0.41M 0.276 0.35 hr 0.20 hr

8 0.82M 0.266 0.72 hr 0.39 hr

12 1.20M 0.242 1.10 hr 0.56 hr

16 1.68M 0.260 1.75 hr 0.82 hr

Table 5. Results of the model searched by our GNAS in compar-

ision with state-of-the-art methods on graph regression task, in-

cluding number of parameters, MAE metric, searching cost and

training cost. Lower MAE indicates better performance.

Fd is selected more frequently on CIFAR10 than MNIST

since the node features are more involved in CIFAR10.

4.4. Results on graph regression task

ZINC dataset tests the task of graph property regression

for contrained solubility, a vital chemical property for de-

signing generative GNNs for molecules. Table 5 reports

the comparision of different methods. First, we observe

that the performance of GNAS surpasses all the traditional

GNN and SOTA GrpahNAS. Furthermore, even the MAE

of GNAS with 4-Depth is better than other approaches with

16-Depth. We attribute this to the efficient message process-

ing capability explored by GNAS. Second, the experiments

verify the conclusion in literatures [17, 29, 33] that GNNs’

performance cannot always be increased by stacking more

layers. Third, our GNAS jointly selects sum and max aggre-

gators when searching, where the sum aggregator captures

structural information, and the max aggregator focuses on

the representative node.

4.5. Disscussion of messagepassing depth

As illustrated in Figure 7, we have conducted the exper-

iments with different initial search depths on ZINC dataset.

2 4 6 8 10 12 14 16 18 20 22 24
initial search depth

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

m
es

sa
ge

 p
as

si
ng

 d
ep

th

epoch 40
epoch 45
epoch 50
epoch 55
epoch 60
epoch avg

2 4 6 8 10 12 14 16 18 20 22 24
network depth

0.2

0.3

0.4

0.5

Te
st

 M
A

E
lo

ss

GCN
GAT
GatedGCN
GraphSage
GNAS

Figure 7. Message-passing depth searched by GNAS at different

initial search depth (left), and performance of GNNs at different

network depth (right) on ZINC dataset.

We observe that when the initial depth is less than 12,

the searched message-passing depth increases with initial

depth. Continuing to increase the initial depth, and the

searched depth converges to within the range of 12-14. This

indicates that the optimal message-passing depth on the

ZINC dataset is between 12 and 14. To verify this, we

evaluate the performance of the common GNNs with dif-

ferent message-passing depth. The depth parameter is set to

a range of 2-24 with an interval of 2. As shown in the right

panel of Figure 7, when the depth of the network is between

12 and 14, the network performance is approximately opti-

mal. This depth range is consistent with that searched by

GNAS. This demonstrates that our GNAS has the capabil-

ity for learning optimal message-passing depth. We can also

find that the performance of the architectures searched by

GNAS is far better than that of the manual designed GNNs.

5. Conclusion

In this paper, we study NAS for GNN from the

message-passing mechanism. A graph neural architecture

paradigm (GAP) is designed with two types of atomic op-

erations and tree-topology computation procedure. Based

on this paradigm, we propose GNAS with a three-level

search space and an efficient gradient-based search strat-

egy. GNAS can search for better graph architectures with

optimal message-passing depth, which has been the fo-

cus of researchers’ attention in the graph domain. Exper-

iment results on five datasets at three fundamental graph

tasks demonstrate that GNAS surpasses all human-made

and search-based GNNs.

Acknowledgement. This work was supported in
part by the National Key R&D Program of China
under Grand:2018AAA0102003, in part by National
Natural Science Foundation of China: 61771457,
61732007, 61772494, U19B2038, and in part by the
Fundamental Research Funds for the Central Universi-
ties.

6664

References

[1] Emmanuel Abbe. Community detection and stochastic block

models: recent developments. The Journal of Machine

Learning Research, 18(1):6446–6531, 2017. 6

[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien

Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic superpix-

els compared to state-of-the-art superpixel methods. IEEE

transactions on pattern analysis and machine intelligence,

34(11):2274–2282, 2012. 6

[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-

forcement learning. arXiv preprint arXiv:1611.02167, 2016.

2

[4] Xavier Bresson and Thomas Laurent. Residual gated graph

convnets. arXiv preprint arXiv:1711.07553, 2017. 1, 2, 6, 7,

8

[5] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent,

Yoshua Bengio, and Xavier Bresson. Benchmarking graph

neural networks. arXiv preprint arXiv:2003.00982, 2020. 1,

6, 7

[6] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue

Hu. Graph neural architecture search. In IJCAI, volume 20,

pages 1403–1409, 2020. 6, 7, 8

[7] Lise Getoor. Link-based classification. In Advanced methods

for knowledge discovery from complex data, pages 189–207.

Springer, 2005. 6

[8] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:

Learning scalable feature pyramid architecture for object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7036–7045, 2019. 1

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive

representation learning on large graphs. In Advances in neu-

ral information processing systems, pages 1024–1034, 2017.

1, 2, 6, 7, 8

[10] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S

Bolstad, and Ryan G Coleman. Zinc: a free tool to discover

chemistry for biology. Journal of chemical information and

modeling, 52(7):1757–1768, 2012. 6

[11] Kristian Kersting, Nils M. Kriege, Christopher Morris, Pe-

tra Mutzel, and Marion Neumann. Benchmark data sets for

graph kernels, 2016. 6

[12] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016. 1, 2, 6, 7, 8

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 6

[14] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

6

[15] L. Li, S. Jiang, and Q. Huang. Learning hierarchical seman-

tic description via mixed-norm regularization for image un-

derstanding. IEEE Transactions on Multimedia, 14(5):1401–

1413, 2012. 1

[16] Liang Li, Shuhui Wang, Shuqiang Jiang, and Qingming

Huang. Attentive recurrent neural network for weak-

supervised multi-label image classification. In Proceedings

of the 26th ACM international conference on Multimedia,

pages 1092–1100, 2018. 1

[17] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper in-

sights into graph convolutional networks for semi-supervised

learning. In Proceedings of the Thirty-Second AAAI Confer-

ence on Artificial Intelligence (AAAI-18), pages 3538–3545.

Association for the Advancement of Artificial Intelligence,

2018. 1, 6, 8

[18] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha

Fernando, and Koray Kavukcuoglu. Hierarchical representa-

tions for efficient architecture search. In International Con-

ference on Learning Representations, 2018. 2

[19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. In International Confer-

ence on Learning Representations, 2018. 2, 4, 5

[20] Xuejing Liu, Liang Li, Shuhui Wang, Zheng-Jun Zha,

Dechao Meng, and Qingming Huang. Adaptive recon-

struction network for weakly supervised referring expression

grounding. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), October 2019. 1

[21] Dougal Maclaurin, David Duvenaud, and Ryan Adams.

Gradient-based hyperparameter optimization through re-

versible learning. In International Conference on Machine

Learning, pages 2113–2122, 2015. 6

[22] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie,

and Kristie Seymore. Automating the construction of inter-

net portals with machine learning. Information Retrieval,

3(2):127–163, 2000. 6

[23] Federico Monti, Davide Boscaini, Jonathan Masci,

Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.

Geometric deep learning on graphs and manifolds using

mixture model cnns. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages

5115–5124, 2017. 6, 7, 8

[24] Brian B Moser, Federico Raue, Jörn Hees, and Andreas Den-

gel. Dartsrenet: Exploring new rnn cells in renet architec-

tures. In International Conference on Artificial Neural Net-

works, pages 850–861. Springer, 2020. 1

[25] Vinod Nair and Geoffrey E Hinton. Rectified linear units

improve restricted boltzmann machines. In ICML, 2010. 6

[26] Matheus Nunes and Gisele L Pappa. Neural architecture

search in graph neural networks. In Brazilian Conference

on Intelligent Systems, pages 302–317. Springer, 2020. 2

[27] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial

intelligence, volume 33, pages 4780–4789, 2019. 2

[28] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,

Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Ku-

rakin. Large-scale evolution of image classifiers. In Interna-

tional Conference on Machine Learning, pages 2902–2911,

2017. 2

[29] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou

Huang. Dropedge: Towards deep graph convolutional net-

works on node classification. In International Conference

on Learning Representations, 2019. 1, 6, 8

[30] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-

genbuchner, and Gabriele Monfardini. The graph neural

6665

network model. IEEE Transactions on Neural Networks,

20(1):61–80, 2008. 7

[31] Petar Veličković, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph

Attention Networks. International Conference on Learning

Representations, 2018. accepted as poster. 1, 2, 6, 7, 8

[32] Zihao Wang, Chen Lin, Lu Sheng, Junjie Yan, and Jing Shao.

Pv-nas: Practical neural architecture search for video recog-

nition. arXiv preprint arXiv:2011.00826, 2020. 1

[33] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,

Chengqi Zhang, and Philip S. Yu. A comprehensive survey

on graph neural networks. IEEE Transactions on Neural Net-

works and Learning Systems, page 1–21, 2020. 1, 6, 8

[34] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.

How powerful are graph neural networks? In International

Conference on Learning Representations, 2019. 2, 3, 6, 7, 8

[35] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun

Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel

connections for memory-efficient architecture search. In In-

ternational Conference on Learning Representations, 2019.

2

[36] S. Yang, L. Li, S. Wang, W. Zhang, Q. Huang, and Q. Tian.

Skeletonnet: A hybrid network with a skeleton-embedding

process for multi-view image representation learning. IEEE

Transactions on Multimedia, 21(11):2916–2929, 2019. 1

[37] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-

rakchi, Thomas Brox, and Frank Hutter. Understanding and

robustifying differentiable architecture search. In Interna-

tional Conference on Learning Representations, 2019. 2

[38] Zheng-Jun Zha, Jiawei Liu, Di Chen, and Feng Wu. Adver-

sarial attribute-text embedding for person search with nat-

ural language query. IEEE Transactions on Multimedia,

22(7):1836–1846, 2020. 1

[39] Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu.

Auto-gnn: Neural architecture search of graph neural net-

works. arXiv preprint arXiv:1909.03184, 2019. 2

[40] Yizhou Zhou, Xiaoyan Sun, Chong Luo, Zheng-Jun Zha, and

Wenjun Zeng. Posterior-guided neural architecture search.

In Proceedings of the AAAI Conference on Artificial Intelli-

gence, volume 34, pages 6973–6980, 2020. 2

[41] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016. 2

[42] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8697–8710,

2018. 2

6666

